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Numerical Complexity of Spatially Varying Blur

Approximations using Piecewise Convolutions and Sparse

Wavelet Representations.

Paul Escande † Pierre Weiss ‡

Abstract

Restoring images degraded by spatially varying blur is a problem encountered in
many disciplines such as astrophysics, computer vision or biomedical imaging. One of
the main challenges to perform this task is to design efficient numerical algorithms to
approximate integral operators.

We review the main approaches developped so far and detail their pros and cons. We
then analyze the numerical complexity of the mainstream approach based on piecewise
convolutions. We show that this method provides an ε-approximation of the matrix-
vector product in O

(
Nd log(N)ε−d

)
operations where Nd is the number of pixels of a

d-dimensional image. Moreover, we show that this bound cannot be improved even if
further assumptions on the kernel regularity are made.

We then introduce a new method based on a sparse approximation of the blurring
operator in the wavelet domain. This method requires O

(
Ndε−d/M

)
operations to

provide ε-approximations, where M ≥ 1 is a scalar describing the regularity of the blur
kernel. We then propose variants to further improve the method by exploiting the fact
that both images and operators are sparse in the same wavelet basis.

We finish by numerical experiments to illustrate the practical efficiency of the pro-
posed algorithms.

Keywords: Image deblurring, spatially varying blur, integral operator approximation,
wavelet compression, piecewise convolution

1 Introduction

The problem of image restoration in the presence of spatially varying blur appears in many
domains. Examples of applications in computer vision, biomedical imaging and astronomy
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are shown in Figures 1, 2 and 3 respectively. In this paper, we propose new solutions to ad-
dress one of the main difficulties associated to this problem: the computational evaluation
of matrix-vector products.

A spatially variant blurring operator can be modelled as a linear operator and therefore
be represented by a matrix H of size Nd ×Nd, where Nd represents the number of pixels
of a square d-dimensional image. Sizes of typical images range from Nd = 106 for small
2D images, to Nd = 1010 for large 2D or 3D images. Storing matrices and computing
matrix-vector products using the standard representation is impossible for such sizes: it
amounts to tera or exabytes of data/operations. In cases where the Point Spread Functions
(PSF) supports are sufficiently small in average over the image domain, the operator can
be coded as a sparse matrix and be applied using traditional approaches. However, this
assumption is not satisfied in many practical applications and it cannot be applied whenever
super-resolution is targeted, since the PSFs supports depends on the image resolution.
Spatially varying blurring matrices therefore require the development of computational
tools to compress and evaluate them in an efficient way.

To the best of our knowledge, the first attempts to address this issue appeared at the
beginning of the seventies (see e.g. [37]). Since then, many techniques were proposed
and we will describe them in a short account in Section 4. The most broadly applied
approach nowadays is based on what will be coined “piecewise convolutions” in this paper.
In a nutshell, this approach consists in decomposing images into squares and to apply a
space invariant blur on each element of the decomposition separately. This approach was
described precisely in [33] and is still an active topic of research (see e.g. [23, 15]).

Contributions of the paper Our first contribution is a theoretical analysis of a simple
version of this technique. We address the following question: how many floating point
operations are necessary to construct a piecewise convolution approximation H̃ of H such
that the spectral norm ‖H− H̃‖2→2 ≤ ε? Under mild regularity assumptions on the PSF,

we show that the answer is O
(
Nd log (N) ε−d

)
operations. Moreover, we show that this

bound is tight: it holds whatever the regularity of the PSFs variations.
Our second contribution is the design of a new approach based on sparse approximation

of H in the wavelet domain. Using techniques initially developed for pseudo-differential
operators [4, 31], we show that approximations H̃ satisfying ‖H − H̃‖2→2 ≤ ε, can be

obtained with this new technique, in no more than O
(
Ndε−d/M

)
operations. In this

complexity bound, M ≥ 1 is an integer that describes the smoothness of the blur kernel.
For M ≥ 2, this new bound is significantly better than the one for piecewise convolutions.

Controlling the spectral norm is usually of little relevance in image processing. Our
third contribution is the design of algorithms that iteratively construct sparse matrix pat-
terns adapted to the structure of images. These algorithms rely on the fact that both
natural images and operators can be compressed simultaneously in the same wavelet basis.

We finish the paper by numerical experiments. We show that the proposed algorithms
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allow significant speed ups compared to some versions of piecewise convolutions.

Outline of the paper The outline of this paper is as follows. We introduce the notation
used throughout the paper in Section 2. We propose an original mathematical description
of blurring operators appearing in image processing in Section 3. We review the main
existing computational strategies and analyse their pros and cons in Section 4. By far, in
the literature, the most commonly approach used to blur images consists in using piecewise
convolutions [32, 33, 23, 15]. Since this technique is so widespread, we propose an original
analysis of its theoretical efficiency in Section 5. We introduce the proposed method and
analyze its theoretical efficiency Section 6. We then propose various algorithms to design
good sparsity patterns in Section 7. Finally, we perform numerical tests to analyze the
proposed method and compare it to the standard methods based on piecewise convolutions
in Section 8.

(a) Sharp image (b) Blurred image and the associated PSF

Figure 1: An example in computer vision. Image degraded by spatially varying blur due
to a camera shake. Images are from [22] and used here by courtesy of Michael Hirsch.

2 Notation

In this paper, we consider d dimensional images defined on a domain Ω = [0, 1]d. The
space L2(Ω) will denote the space of squared integrable functions defined on Ω.

Let α = (α1, . . . , αd) denote a multi-index. The sum of its components is denoted
|α| =

∑d
i=1 αi. The Sobolev spaces WM,p are defined as the set of functions f ∈ Lp with

partial derivatives up to order M in Lp where p ∈ [1,+∞] and M ∈ N. These spaces,
equipped with the following norm are Banach spaces

‖f‖WM,p = ‖f‖Lp + |f |WM,p , where, |f |WM,p =
∑
|α|=M

‖∂αf‖Lp . (1)

In this notation, ∂αf = ∂α1

∂x
α1
1

. . . ∂
αd

∂x
αd
d

f .
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(a) (b)

Figure 2: An example in astronomy. Image degraded by spatially varying blur due to
atmoshpere turbulence http://www.sdss.org/.

Figure 3: An example in biology. Image of a multicellular tumor spheroid imaged in 3D
using Selective Plane Illumination Microscope (SPIM). Fluorescence beads (in green) are
inserted in the tumor model and allow the observation of the PSF at different locations.
Nuclei are stained in red. On the left-hand-side the 3D PSF outside of the sample is
observed. On the right-hand-side the 3D PSF inside the sample is observed. This image
is from [25] and used here by courtesy of Corinne Lorenzo.
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Let X and Y denote two metric spaces endowed with their respective norms ‖ · ‖X
and ‖ · ‖Y . In all the paper H : X → Y will denote a linear operator and H∗ its adjoint
operator. The subordinate operator norm is defined by

‖H‖X→Y = sup
x∈X,‖x‖X=1

‖Hx‖Y .

The notation ‖H‖p→q corresponds to the case where X and Y are endowed with the
standard Lp and Lq norms. In all the paper, operators acting in a continuous domain are
written in plain text format H. Finite dimensional matrices are written in bold fonts H.
Approximation operators will be denoted H̃ in the continuous domain or H̃ in the discrete
domain.

In this paper we consider a compactly supported wavelet basis of L2(Ω). We first
introduce wavelet basis of L2([0, 1]). We let φ and ψ denote the scaling and mother wavelets.
We assume that the mother-wavelet ψ has M vanishing moments, i.e.

for all 0 ≤ m < M,

∫
[0,1]

tmψ(t)dt = 0.

We assume that supp(ψ) = [−c(M)/2, c(M)/2]. Note that c(M) ≥ 2M − 1, with equality
for Daubechies wavelets, see, e.g., [29, Theorem 7.9, p. 294].

We define translated and dilated versions of the wavelets for j ≥ 0 as follows

φj,l = 2j/2φ
(
2j · −l

)
,

ψj,l = 2j/2ψ
(
2j · −l

)
, (2)

with l ∈ Tj and Tj = {0, . . . , 2j − 1}.
In dimension d, we use separable wavelet bases, see, e.g., [29, Theorem 7.26, p. 348].

Let m = (m1, . . . ,md). Define ρ0
j,l = φj,l and ρ1

j,l = ψj,l. Let e = (e1, . . . , ed) ∈ {0, 1}d.
Wavelet ψej,m is defined by ψej,m(x1, . . . , xd) = ρe1j,m1

(x1) . . . ρedj,md(xd). Elements of the
separable wavelet basis consist of tensor products of scaling and mother wavelets at the
same scale. Note that if e 6= 0 wavelet ψej,m has M vanishing moments in Rd. We let
Ij,m = ∪e suppψej,m.

We assume that every function f ∈ L2(Ω) can be written as

u =
〈
u, ψ0

0,0

〉
ψ0

0,0 +
∑

e∈{0,1}d\{0}

+∞∑
j=0

∑
m∈Tj

〈
u, ψej,m

〉
ψej,m.

This is a slight abuse since wavelets defined in (2) do not define a Hilbert basis of L2([0, 1]d).
There are various ways to define wavelet bases on the interval [11] and wavelets having a
support intersecting the boundary should be given a different definition. We stick to these
definitions to keep the proofs simple.
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We let Ψ∗ : L2(Ω)→ l2(Z) denote the wavelet decomposition operator and Ψ : l2(Z)→
L2(Ω) its associated reconstruction operator. The discrete wavelet transform is denoted
Ψ : RN → RN . We refer to [29, 14, 11] for more details on the construction of wavelet
bases.

3 Blurring operators and their mathematical properties

3.1 A mathematical description of blurring operators

In this paper, we consider d-dimensional real-valued images defined on a domain Ω = [0, 1]d,
where d denotes the space dimension. We consider a blurring operator H : L2(Ω)→ L2(Ω)
defined for any u ∈ L2(Ω) by the following integral operator:

∀x ∈ Ω, Hu(x) =

∫
y∈Ω

K(x, y)u(y)dy. (3)

The functionK : Ω×Ω→ R is a kernel that defines the Point Spread Function (PSF)K(·, y)
at each location y ∈ Ω. The image Hu is the blurred version of u. By the Schwartz kernel
theorem, a linear operator of kind (3) can represent any linear operator if K is a generalized
function. We thus need to determine properties of K specific to blurring operators that
will allow to design efficient numerical algorithms to approximate the integral (3).

We propose a definition of the class of blurring operators below.

Definition 1 (Blurring operators). Let M ∈ N and f : [0, 1]→ R+ denote a non-increasing
bounded function. An integral operator is called a blurring operator in the class A(M,f)
if it satisfies the following properties:

1. Its kernel K ∈ CM (Ω× Ω);

2. The partial derivatives of K satisfy:

(a)
∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω, |∂αxK(x, y)| ≤ f (‖x− y‖∞) . (4)

(b)
∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω,

∣∣∂αyK(x, y)
∣∣ ≤ f (‖x− y‖∞) . (5)

Let us justify this model from a physical point of view. Most imaging systems satisfy
the following properties:

Spatial decay.
The PSFs usually have a bounded support (e.g. motion blurs, convolution with
the CCD sensors support) or at least a fast spatial decay (Airy pattern, Gaussian
blurs,...). This property can be modelled as property 2a. For instance, the 2D Airy
disk describing the PSF due to diffraction of light in a circular aperture satisfies 2a
with f(r) = 1

(1+r)4
(see e.g. [5]).

6



PSF smoothness.
In most imaging applications, the PSF at y ∈ Ω, K(·, y) is smooth. Indeed it is the
result of a convolution with the acquisition device impulse response which is smooth
(e.g. Airy disk). This assumption motivates inequality (4).

PSFs variations are smooth
We assume that the PSF does not vary abruptly on the image domain. This property
can be modelled by inequality (5). It does not hold true in all applications. For
instance, when objects move in front of a still background, the PSF can only be
considered as piecewise regular. This assumption simplifies the analysis of numerical
procedures to approximate H. Moreover, it seems reasonable in many settings. For
instance, in fluorescence microscopy, the PSF width (or Strehl ratio) mostly depends
on the optical thickness, i.e. the quantity of matter laser light has to go through,
and this quantity is intrinsically continuous. Even in cases where the PSFs variations
are not smooth (e.g. spatially varying motion blur), the discontinuities locations are
usually known only approximately and it seems important to smooth the transitions
in order to avoid reconstruction artifacts.

Remark 1. A standard assumption in image processing is that the constant functions
are preserved by the operator H. This hypothesis ensures that brightness is preserved on
the image domain. In this paper we do not make this assumption and thus encompass
image formation models comprising blur and attenuation. Handling attenuation is crucial
in domains such as fluroescence microscopy.

Remark 2. The above properties are important to derive mathematical theories, but only
represent an approximation of real systems. The methods proposed in this paper may be
applied even if the above properties are not satisfied and are likely to perform well. It is
notably possible to relax the boundedness assumption.

4 A brief review of existing approximation methods

Various approaches have been proposed in the literature to approximate the integral oper-
ator (3). In this section, we review some of these methods. We briefly discuss their pros
and cons.

In many situations, K(x, ·) and K(·, y) have a bounded support and this property can
be exploited to accelerate computations. In the following we therefore assume that the
integral operator H ∈ A(0, fκ) where fκ is defined by:

fκ(r) =

{
1 if r ≤ κ
0 otherwise,

and κ ∈]0, 1] is the maximal radius of the PSFs of the operator and its adjoint.
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4.1 Direct discretization

The most straightforward approach to approximate the product Hu numerically consists
of discretizing (3) using the rectangle rule. Let Ω = {k/N, k ∈ {0, . . . , N − 1}d} denote a

Euclidean discretization of Ω and u ∈ RNd
denote a discretization of u on Ω. The product

Hu can be approximated by Hu where H is an Nd ×Nd matrix defined by

H =
1

Nd
(K(x, y))x∈Ω,y∈Ω . (6)

The rationale behind this discretization is that if u and H are sufficiently smooth

∀x ∈ Ω, Hu(x) ' 1

Nd

∑
y∈Ω

K(x, y)u(y). (7)

This approach is simple to implement but a matrix vector product costs O(N2d) arithmetic
operations. By taking into account the boundedness of the kernel support, one can easily
reduce the complexity to O(κdN2d). Indeed, for each of the Nd pixels, the method performs
(κN)d operations (additions and multiplications).

This method has the advantages of being straightforward to understand and implement.
It is also easily parallelizable. It is thus a suitable method when the PSF width remains
small over the image domain. However, it becomes unusable whenever the image size and
the PSF sizes become large, i.e., in most practical settings.

Note that other quadrature formulas can be used and improve the approximation qual-
ity.

4.2 Composition of a diffeomorphism and a convolution

One of the first alternative method proposed to reduce the computational complexity, is
based on first applying a diffeomorphism to the image domain [37, 38, 30, 39] followed by
a convolution using FFTs and an inverse diffeomorphism. The diffeomorphism is chosen in
order to transform the spatially varying blur into an invariant one. This approach suffers
from two important drawbacks:

• first it was shown that not all spatially varying kernel can be approximated by this
approach [30],

• second, this method requires good interpolation methods and the use of Euclidean
grids with small grid size in order to correctly estimate integrals.
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4.3 Approximation by separable kernels

This approach was described in [1, 26]. The main idea is to approximate the kernel K of
H by a separable kernel K̃ that reads:

K̃(x, y) =
d∏

k=1

K̃k(xk, yk)

where each K̃k : [0, 1] × [0, 1] → R operates in only one direction. With this assumption,
the approximation operator H̃ can be decomposed as the product of d one-dimensional
operators H̃(k)

H̃ = H̃(1) ◦ . . . ◦ H̃(d). (8)

with

∀x ∈ Ω, H̃(k)u(x) =

∫
yk∈[0,1]

K̃k(xk, yk)u (x1, . . . , yk, . . . , xd) dyk.

In the discrete setting, the computational complexity of a product H̃u is O(dκNd+1)
operations where κ denotes the PSF extent in pixels. The complexity of a product is
thus reduced by a factor κd−1Nd−1 compared to the standard discretization described in
paragraph 4.1.

The separability assumption (8) implies that y 7→ K(·, y) is a separable function, mean-
ing that the PSFs are separable. Moreover, it implies that x 7→ K(x, ·) is a separable func-
tion, meaning that the PSFs variations are also separable. Unfortunately, most physically
realistic PSFs are not separable (see, e.g., Figure 4). Furthermore, the separability of the
PSFs variations is an extremely restrictive assumption. There are however a few cases
where this approximation might be sound. For instance, in 3D fluorescence microscopy, it
is common to approximate the PSFs by anisotropic Gaussians [43], and to assume that the
Gaussian variances only vary along one direction (e.g., the propagation of light direction)
[35, 28, 3].

4.4 Diagonal approximation of blurring operators in wavelet or wavelet
packet bases

Some works [8, 17] proposed to approximate blurring operators H using operators diagonal
in wavelet or wavelet packet bases. This idea consists in defining an approximation H̃ of
kind H̃ = ΨΣΨ∗, where Ψ∗ and Ψ are wavelet (packet) transforms and Σ is a diagonal ma-
trix. The wavelet transforms might be redundant in order to ensure translation invariance.
This diagonal approximation mimics the fact that shift-invariant operators are diagonal in
the Fourier domain. These approaches lead to fast O(Nd) algorithms to compute matrix
vector products. In [17], we proposed to deblur images using diagonal approximations of
the blurring operators in redundant wavelet packet bases. This approximation was shown
to be fast and efficient in deblurring images when the exact operator was scarcely known
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Figure 4: An orthogonal view of a Variable Refractive Index Gibson and Lanni PSF ob-
tained with the PSF Generator [27]

or in high noise levels. It is however too coarse for applications with low noise levels. Let
us note that similar approaches based on Gabor multipliers were shown to provide very
good results in ODFM systems (slowly varying smoothing operators) [18, 24].

4.5 Piecewise convolutions

Probably the most commonly used approach is the piecewise convolution approximation of
the kernel [32, 33, 21, 23, 15]. We advise the reading of [15] for an up-to-date description
of this approach and its numerous refinements. Due to its wide use, we propose a detailed
analysis of the simplest version of the method in the next section.

5 An analysis of piecewise convolution algorithms

The main idea of this approach is to decompose the image domain into subregions and
perform a convolution on each subregion. The results are then gathered together to obtain
the blurred image. In its simplest form, this approach consists in partitioning the domain
Ω in squares of equal sizes. More advanced strategies consist in decomposing the domain
with overlapping subregions. The blurred image can then be obtained by using windowing
functions that interpolate the kernel between subregions (see, e.g., [32, 23, 15]).

In this section, we analyze this approach from a theoretical point of view: we derive up-
per and lower complexity bounds on the approximation error with respect to the subregions
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sizes.

5.1 Description of the method

We consider the simple case where the region Ω is partitioned into non-overlapping sub-
regions. We decompose the domain Ω = [0, 1]d in md subregions of edge length 1/m. We

denote the subregions ωk =
[
k1−1
m , k1m

]
× . . .×

[
kd−1
m , kdm

]
for k ∈ {1, . . . ,m}d (see Figure 5

for an illustration in 1D). The operator H is approximated by H̃m defined by

H̃m =

m∑
k1,...,kd=1

1ωkH̃
(k) (9)

where H̃(k) is a convolution operator representing the spatially invariant blur in the sub-
region indexed by k and

1ωk(x) =

{
1 if x ∈ ωk
0 otherwise.

The convolution kernel associated to H̃(k) is set to h̃k(y) = K(ck, ck − y) where ck
denotes the center of the set ωk. This choice ensures that H̃mu(ck) = Hu(ck).

Figure 5: Illustration of the notations in 1D. The domain Ω is decomposed in md = 4
subregions of length 1/m. The PSF support has a maximal width κ. The center of each
subregion ωk is denoted ck.

5.2 Theoretical analysis

We first study this approach in the continuous setting. We assume that the kernel K is
L-Lipschitz:

∀(x1, y1), (x2, y2) ∈ Ω, |K(x1, y1)−K(x2, y2)| ≤ L ‖(x1, y1)− (x2, y2)‖∞ . (10)
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Under this assumption, we obtain the following result.

Lemma 1 (Upper-Bounds). For all kernels K satisfying (10), the approximation error
satisfies: ∥∥∥H − H̃m

∥∥∥
2→2
≤ L

m
. (11)

Proof. Proof in Appendix A.

Remark 3. The same result holds if instead of the global Lipschitz assumption (10), we
assume the less stringent

∀(x, y) ∈ Ω× Ω and for all h, |K(x+ h, y + h)−K(x, y)| ≤ L‖h‖∞.

This assumption basically indicates that the kernel K can be considered as a convolution
locally, since convolution kernels satisfy, K(x+ h, y + h) = K(x, y) for all x, y, h.

Lemma 2 indicates that the bound in Lemma 1 is tight for all C1 kernels that are not
convolutions.

Lemma 2 (Lower-Bounds). Let K be a C1(Ω × Ω) kernel of a space varying integral
operator. Then there exists a constant c > 0 such that,∥∥∥H − H̃m

∥∥∥
2→2
≥ c

m
. (12)

Proof. Proof in Appendix A.

5.3 Numerical complexity

In this paragraph, we assume that the image consists of Nd ∈ N pixels. The PSF volume in
the discrete setting is thus approximately equal to (κN)d. We let H̃m denote the discrete
piecewise convolution approximation of H. It is defined similarly to (9). The complexity of
the piecewise convolution approach in the discrete setting is summarized in the following
theorem.

Theorem 3. Let K denote a Lipschitz kernel that is not a convolution. Let H denote
the discretized operator defined in equation (6). Let H̃m denote the discrete piecewise
convolution approximation of H. The following results hold:

i) A product H̃mu implemented with FFTs with u ∈ RNd
is performed in a number of

operations proportional to

d(N + κNm)d log

(
N

m
+ κN

)
. (13)
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ii) For sufficiently large m and N with m < N , there exists constants 0 < c1 ≤ c2 such
that

c1

m
≤
∥∥∥H− H̃m

∥∥∥
2→2
≤ c2

m
. (14)

iii) For sufficiently large N ∈ N and sufficiently small ε > 0, the number of operations

required to obtain
∥∥∥H− H̃m

∥∥∥
2→2
≤ ε is proportional to

d(LκN)d log(κN)

εd
. (15)

Proof. Proof in Appendix A.

One cannot hope to improve this complexity result due to Lemma 2. In particular, the
method efficiency is insensitive to higher degrees of regularity of the kernel.

Remark 4. Many authors proposed to decompose the domain into overlapping sub-regions
and use linear interpolations of PSF on the overlapping domains. We do not analyze this
technique in this paper. It is not clear yet whether it would improve the complexity result
(15).

6 Wavelet representation of the blurring operator

In this section, we show that blurring operators can be well approximated by sparse rep-
resentations in the wavelet domain. Since H is a linear operator in a Hilbert space, it can
be written as H = ΨΘΨ∗, where Θ : l2(Z) → l2(Z) is the (infinite dimensional) matrix
representation of the blur operator in the wavelet domain. Matrix Θ is characterized by
the coefficients:

θe,e
′

j,m,k,n =
〈
Hψej,m, ψ

e′
k,n

〉
, ∀j, k ∈ N, ∀(m,n) ∈ Tj × Tk, ∀e, e′ ∈ {0, 1}d . (16)

In their seminal papers [31, 12, 4], Y. Meyer, R. Coifman, G. Beylkin and V. Rokhlin
prove that the coefficients of Θ decrease fastly away from its diagonal for a large class
of pseudo-differential operators. They also show that this property allows to design fast
numerical algorithms to approximate H, by thresholding Θ to obtain a sparse matrix. In
this section, we detail this approach precisely and adapt it to the class of blurring operators.
Let us acknowledge that a similar algorithm has been developed independently in [42]. This
paper contains however no theoretical analysis of the method’s complexity.

This section is organized as follows: first, we discuss the interest of approximating H
in a wavelet basis rather than using the standard discretization described in paragraph
4.1. Second, we provide various theoretical results concerning the number of coefficients
necessary to obtain an ε-approximation of H.
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6.1 Discretization of the operator by projection

The proposed method relies on a discretization of H different from that of paragraph
4.1. The main idea is to use a projection on a finite dimensional linear subspace VN =
Span(ϕ1, . . . , ϕN ) of L2(Ω) where (ϕ1, ϕ2, . . .) is an orthonormal basis of L2(Ω). We define
a projected operator HN by HNu = PVNHPVNu. where PVN is the projector on VN . We
can associate an N ×N matrix Θ to this operator defined by Θ = (〈Hϕi, ϕj〉)1≤i,j≤N .

It is very common in image processing to assume that natural images belong to func-
tional spaces containing functions with some degree of regularity. For instance, images are
often assumed to be of bounded total variation [36]. This hypothesis implies that

‖u− PVNu‖2 = O(N−α) (17)

for a certain α > 0. For instance, in 1D, if (ϕ1, ϕ2, . . .) is a wavelet or a Fourier basis and
u ∈ H1(Ω) then α = 2. For u ∈ BV (Ω) (the space of bounded variation functions), α = 1
in 1D and α = 1/2 in 2D [29, 34].

Moreover, if we assume thatH is a regularizing operator, meaning that ‖Hu−PVNHu‖2 =
O(N−β) with β ≥ α for all u satisfying (17), then we have:

‖Hu−HNu‖2
= ‖Hu− PVNH(u+ PVNu− u)‖2
≤ ‖Hu− PVNHu‖2 + ‖PVNH‖2→2‖PVNu− u‖2
= O(N−α).

This simple analysis shows that under mild assumptions, the Galerkin approximation
of the operator converges and that the convergence rate can be controlled. The situation
is not as easy for standard discretization using finite elements for instance (see, e.g., [41, 2]
where a value α = 1/6 is obtained in 2D for BV functions, while the simple analysis above
leads to α = 1/2).

6.2 Discretization by projection on a wavelet basis

In order to get a representation of the operator in a finite dimensional setting, we truncate
the wavelet representation at scale J . This way, we obtain an operator H̃ acting on a space
of dimension Nd, where Nd = 1 +

∑J−1
j=0 (2d − 1)2dj denotes the numbers of wavelets kept

to represent images.
After discretization, it can be written in the following convenient form:

H = ΨΘΨ∗ (18)

where Ψ : RNd → RNd
is the discrete separable wavelet transform. Matrix Θ is an Nd×Nd

matrix which corresponds to a truncated version (also called finite section) of the matrix
Θ defined in (16).
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6.3 Theoretical guarantees with sparse approximations

Sparse approximations of integral operators have been studied theoretically in [4, 31]. They
then have been successfully used in the numerical analysis of PDEs [13, 10, 9]. Surprisingly,
they have been scarcely applied to image processing. The two exceptions we are aware of are
the paper [8], where the authors show that wavelet multipliers can be useful to approximate
foveation operators. More recently, [42] proposed an approach that it very much related
to that of our paper. It contains however no analysis of complexity with respect to the
precision ε.

Let us recall a typical result that motivates the proposed approach. We stick to the
one-dimensional case for the ease of exposition.

Lemma 4 (Decay of θe,e
′

j,m,k,n). Assume that H is a blurring operator (see Definition 1)
in the class A(M,f). Assume that the mother wavelet is compactly supported with M
vanishing moments.

Then, the coefficients of Θ satisfy the following inequality:∣∣∣θe,e′j,m,k,n

∣∣∣ ≤ CM2−(M+ d
2 )|j−k|2−min(j,k)(M+d)fj,m,k,n (19)

where fj,m,k,n = f (dist (Ij,m, Ik,n)), CM is a constant that does not depend on j, k,m, n, e
and e′ and

dist (Ij,m, Ik,n) = inf
x∈Ij,m, y∈Ik,n

‖x− y‖∞

= min

(
0,
∥∥∥2−jm− 2−kn

∥∥∥
∞
− (2−j + 2−k)

c(M)

2

)
. (20)

Proof. See Appendix C.

Lemma 4 is the key to obtain all subsequent complexity estimates.

Theorem 5. Let Θη be the matrix obtained by zeroing all coefficients in Θ such that

2−min(j,k)(M+d)fj,m,k,n ≤ η.

Let H̃η = ΨΘηΨ
∗ denote the resulting operator. Suppose that f is compactly supported

in [0, κ] and that η ≥ N−(M+d). Then:

i) The number of non zero coefficients in Θη is bounded above by

C ′M (Nκ)d η−
d

M+d (21)

where C ′M > 0 is independent of N .

ii) The approximation H̃η satisfies
∥∥∥H− H̃η

∥∥∥
2→2

. η
M
M+d .
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iii) The number of coefficients needed to satisfy
∥∥∥H− H̃η

∥∥∥
2→2
≤ ε is bounded above by

C ′′M (Nκ)d ε−
d
M (22)

where C ′′M > 0 is independent of N .

Proof. See Appendix D.

Remark 5. There are a few differences making the wavelet approach more attractive than
piecewise convolutions from a theoretical point of view:

• A discretization in the wavelet domain provides better theoretical guarantees than
the standard quadrature rules (see Section 6.1).

• A comparison between the upper-bound (22) and the bound (15) is instructive. In the
piecewise convolution approach, there is no hope to obtain a better approximation
rate than O

(
1
m

)
(see Proposition 12). For the wavelet approach, the situation is

different: the method is capable of handling automatically the degree of smoothness

of the integral kernelK since there is a dependency in ε−
d
M whereM is the smoothness

of the integral operator.

• We will see in the next section that the method is quite versatile since different
sparsity patterns can be chosen depending on the knowledge of the blur kernel and
on the regularity of the signals that are to be processed.

• The method can also handle more general singular operators as was shown in the
seminal papers [31, 12, 4].

7 How to define sparsity patterns?

A key step to control the approximation quality is the selection of the coefficients in the
matrix Θ that should be kept. For instance, a simple thresholding of Θ leads to sub-optimal
and somewhat disappointing results. In this section we propose algorithms to select the
most relevant coefficients for images belonging to functional spaces such as that of bounded
variation functions. We study the case where Θ is known completely and the case where
only an upper-bound such as (19) is available.

7.1 Problem formalization

Let H be the Nd ×Nd matrix defined in equation (18). We wish to approximate H by a
matrix H̃K of kind ΨSKΨ∗ where SK is a matrix with at most K non zero coefficients.
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Let SK denote the space of Nd ×Nd matrices with at most K non zeros coefficients. The
problem we address in this paragraph reads

min
SK∈SK

‖H− H̃K‖X→2

= min
SK∈SK

max
‖u‖X≤1

‖Hu−ΨSKΨ∗u‖2.

The solution of this problem provides the best K-sparse matrix SK , in the sense that no
other choice provides a better SNR uniformly on the unit ball {u ∈ RN , ‖u‖X ≤ 1}.

The norm ‖ · ‖X should be chosen depending on the type of images that have to be
blurred. For instance, it is well-known that natural images are highly compressible in the
wavelet domain. Therefore, a natural choice could be to set ‖u‖X = ‖Ψ∗u‖1. This choice
will ensure a good reconstruction of images that have a wavelet decomposition with a low
`1-norm.

Another very common assumption in image processing is that images have a bounded
total variation. Functions in BV (Ω) can be characterized by their wavelet coefficients [34].
For instance, if u ∈ BV ([0, 1]), then

|〈u, φ0〉|+
+∞∑
j=0

2j−1∑
m=0

2j |〈u, ψj,m〉| < +∞ (23)

for all wavelet bases. This result motivated us to consider norms defined by

‖u‖X = ‖ΣΨ∗u‖1

where Σ = diag(σ1, . . . , σN ) is a diagonal matrix. Depending on the regularity level of the
images considered, different diagonal coefficients can be used. For instance, for BV images
in 1D, one could set σi = 2j(i) where j(i) is the scale of the i-th wavelet, owing to (23).

We can now take advantage of the fact that images and operators are sparse in the
same wavelet basis. Let z = Ψ∗u and ∆ = Θ−SK . Since we consider orthogonal wavelet
transforms: ∥∥∥H− H̃K

∥∥∥
X→2

= max
‖u‖X≤1

‖Ψ(Θ− SK)Ψ∗u‖2

= max
‖Σz‖1≤1

‖(Θ− SK)z‖2

= max
‖z‖1≤1

∥∥∆Σ−1z
∥∥

2
.

By letting ∆(i) denote the i-th column of ∆, we finally get the following simple expression
for the operator norm: ∥∥∥H− H̃

∥∥∥
X→2

= max
1≤i≤Nd

1

σi

∥∥∥∆(i)
∥∥∥

2
. (24)
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Our goal is thus to find the solution of:

min
SK∈SK

max
1≤i≤Nd

1

σi

∥∥∥∆(i)
∥∥∥

2
. (25)

7.2 An algorithm when Θ is known

Finding the minimizer of problem (25) can be achieved using a simple greedy algorithm:
the matrix Sk+1 is obtained by adding the largest coefficient of the column ∆i with largest
Euclidean norm to Sk. This procedure can be implemented efficiently by using quick sort
algorithms. The complete procedure is described in Algorithm 1. The overall complexity
of this algorithm is O(N2 log(N)). The most computationally intensive step is the sorting
procedure in the initialisation. The loop on k can be accelerated by first sorting the set
(γj)1≤j≤N , but the algorithm’s complexity remains essentially unchanged.

Algorithm 1: An algorithm to find the minimizer of (25).

Input:
Θ: Nd ×Nd matrix;
Σ: Diagonal matrix;
K: the number of elements in the thresholded matrix;
Output:
SK : Matrix minimizing (25)
Initialization:
Set SK = 0 ∈ RNd×Nd

;
Sort the coefficients of each column Θ(j) of Θ in decreasing order;
The sorted columns Θ(j),S and index set Ij satisfy Θ(j),S(i) = Θ(j)(Ij(i));

Compute the norms γj =
‖Θ(j)‖22
σ2
j

;

Define O = (1, . . . , 1) ∈ RNd
;

O(j) is the index of the largest coefficient in Θ(j),S not yet added to SK ;
begin

for k = 1 to K do
Find l = arg max

j=1...N
γj ;

Update γl = γl −

(
Θ(l),S(O(l))

σl

)2

;

Set O(l) = O(l) + 1 ;
Set SK(Il(O(l)), l) = Θ(Il(O(l)), l) ;

end

end
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7.3 An algorithm when Θ is unknown

In the previous paragraph, we assumed that the full matrix Θ was known. There are
at least two reasons that make this assumption irrelevant. First, computing Θ is very
computationally intensive and it is not even possible to store this matrix in RAM for
medium sized images (e.g. 512× 512). Second, in blind deblurring problems, the operator
H needs to be inferred from the data and adding priors on the sparsity pattern of SK
might be an efficient choice to improve the problem identifiability.

When Θ is unknown, we may take advantage of equation (19) to define sparsity pat-
terns. A naive approach would consist in applying Algorithm (1) directly on the upper-
bound (19). However, this matrix cannot be stored and this approach is applicable only for
small images. In order to reduce the computational burden, one may take advantage of the
special structure of the upper-bound: equation (19) indicates that the coefficients θj,m,k,n
can be discarded for sufficiently large |j − k| and sufficiently large distance between the
wavelet supports. Equation (19) thus means that for a given wavelet ψj,m, only its spatial

neighbours in neighbouring scales have significant correlation coefficients
〈
Hψej,m, ψ

e′
k,n

〉
.

We may thus construct sparsity patterns using the notion of multiscale neighbourhoods
defined below.

Definition 2 (Multiscale shift). The multiscale shift s ∈ Zd between two wavelets ψej,m
and ψe

′
k,n is defined by

s =
⌊ n

2max(k−j,0)

⌋
−
⌊ m

2max(j−k,0)

⌋
. (26)

Note that for k = j, the multi-scale shift is just s = n − m and corresponds to the
standard shift between wavelets, measured as a multiple of the characteristic size 2−j . The
divisions by 2max(k−j,0) and 2max(j−k,0) allow to rescale the shifts at the coarsest level. This
definition is illustrated in Figure 6.

Definition 3 (Multiscale neighborhood). Let

NNN =
{

(j, (k, s)), (j, k) ∈ {0, . . . , log2(N)− 1}2, s ∈ {0, . . . , 2min(j,k) − 1}d
}

denote the set of all neighborhood relationships, i.e. the set of all possible couples of type
(scale, (scale,shift)). A multiscale neigborhood N is an element of the powerset P(NNN ).

Definition 4 (Multiscale neighbors). Given a multiscale neigborhoodN , two wavelets ψej,m
and ψe

′
k,n will be said to be N -neighbors if (j, (k, s)) ∈ N where s is defined in equation

(26).

The problem of finding a sparsity pattern is now reduced to finding a good multiscale
neighborhood. In what follows, we let NNN (j) = {(k, s), (j, (k, s)) ∈ NNN} denote the set of
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j=0

j=1

j=2

s=0s=-1

s=0

Figure 6: Illustration of a multiscale shift on a 1D signal of size 8 with the Haar basis.
The shifts are computed with respect to wavelet ψ1,1. Wavelets ψ0,0, ψ2,2 and ψ2,3 have a
multiscale shift s = 0 with ψ1,1 since their support intersects that of ψ1,1. Wavelets ψ1,0,
ψ2,0 and ψ2,1 have a multiscale shift s = −1 with ψ1,1 since their support intersects that
of ψ1,0.
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scales

Figure 7: Illustration of a multiscale neighborhood on a 1D signal. In this example, the
neighborhood at scale 1 isN (1) = {(−1, 0), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1), (2, 0)}.
Notice that the two red wavelets at scale 2 are neighbors of the orange wavelet at scale 1
and that this relationship is described through only one shift.

all possible neighborhood relationships at scale j. This is illustrated in Figure 7. Let
N ∈ P(NNN ) denote a multiscale neighborhood. We define the matrix SN as follows:

SN ((j,m, e), (k, n, e′)) =

{
θe,e

′

j,m,k,n if ψej,m is an N -neighbor of ψe
′
k,n

0 otherwise.

Equation (19) indicates that

|θe,e
′

j,m,k,n| ≤ u(j, k, s)

with
u(j, k, s) = CM2−(M+ d

2 )|j−k|−(M+d) min(j,k)fj,m,k,n

and fj,m,k,n = f
(

min
(

0, 2−min(j,k) ‖s‖∞ − (2−j + 2−k) c(M)
2

))
. Let U be the matrix de-

fined by U((j,m, e), (k, n, e′)) = u(j, k, s). Finding a good sparsity pattern can now be
achieved by solving the following problem:

min
N∈P(NNN )
|N |=K

max
1≤i≤N

1

σi

∥∥∥(U− SN )(i)
∥∥∥

2
(27)

where (U− SN )(i) denotes the i-th column of (U− SN ).
In what follows, we assume that σi only depends on the scale j(i) of the i-th wavelet.

Similarly to the previous section, finding the optimal sparsity pattern can be performed
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using a greedy algorithm. A multiscale neighborhood is constructed by iteratively adding
the couple (scale, (scale,shift)) that minimizes a residual. This technique is described in
Algorithm 2.

Algorithm 2: An algorithm to find the minimizer of (27).

Input:
u: Upper-bound ;
Σ: Diagonal matrix;
K: the number of elements of the neighborhood;
Output:
N : multiscale neighborhood minimizing (27)
Initialization:
Set N = ∅;
Compute the norms γk =

‖U(k)‖22
σ2
k

;

begin
for k = 1 to K do

Find j∗ = arg max
j=1...N

γj ;

(The column with largest norm)
Find (k∗, s∗) = arg max

(k,s)∈NNN (j∗)
u2(j∗, k, s)2max(j∗−k,0) ;

(The best scale and shift for this column is (k∗, s∗))
(The number of elements in the neighborhood relationship (j∗, (k, s)) is
2max(j∗−k,0))
Update N = N ∪ {(j∗, (k∗, s∗))} ;
Set γk = γk − u2(j∗, k∗, s∗) · 2max(j∗−k,0)

end

end

Note that the norms γk only depend on the scale j(k), so that the initialisation step only
requires O(N log2(N)) operations. Similarly to Algorithm 1, this algorithm can be accel-
erated by first sorting the elements of u(j, k, s) in decreasing order. The overall complexity
for this algorithm is O(N log(N)2) operations.

8 Numerical experiments

In this section we perform various numerical experiments in order to evaluate the practical
efficiency of wavelet based methods. We also perform comparisons between the piecewise
convolution approach and the wavelet based approach. We first evaluate the method’s
efficiency on the direct problem:
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• we analyze
∥∥∥H− H̃

∥∥∥ for various operator norms.

• we compare Hu and H̃u for real images u.

We then study the performance of the different methods for deblurring problems. Two
different blur kernels and two images will be considered, see Figures 8 and 9. The images
are rescaled in [0, 1] to ease the visualization of residuals. Due to memory limitations, we
only consider images of size N = 256 × 256. Note that a full matrix of size N2 stored in
double precision weighs around 32 gigabytes.

(a) Mandrill (b) Letters

Figure 8: The two images of size 256× 256 used in these numerical experiments
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(a) (b)

Figure 9: The PSFs associated to the blur kernels. The PSFs in Figure (9a) are Gaussians
with equal variances increasing in the vertical direction. The PSFs in Figure (9b) are
anisotropic Gaussians with covariance matrices that depend on the polar coordinates.

8.1 Computation of the full Θ matrix

Before applying our approximation methods, matrix Θ needs to be computed explicitly.

The coefficients
〈
Hψej,m, ψ

e′
k,n

〉
are approximated by their discrete counterparts. If ψej,m

and ψe
′
k,n denote discrete wavelets, we simply compute the wavelet transform of Hψej,m

and store it into the (j, e,m)-th column of Θ. This computation scheme is summarized in
Algorithm 3. This algorithm corresponds to the use of rectangle methods to evaluate the
dot-products:∫

Ω

∫
Ω
K(x, y)ψej,m(y)ψe

′
k,n(x)dydx ' 1

N2d

∑
x∈X

∑
y∈X

K(x, y)ψej,m(y)ψe
′
k,n(x). (28)

In all our numerical experiments, we used Daubechies wavelets with 10 vanishing mo-
ments decomposed at the fourth level. We made several tests not reported here to find the
best combination. It appears that for the considered operators, using as many vanishing
moments as possible was preferable. Using more than 10 vanishing moments however led
to insignificant performance increase while making the numerical complexity higher.

8.2 Evaluation of
∥∥∥H− H̃

∥∥∥
2→2

with a simple thresholding strategy

In this first numerical experiment, we evaluate
∥∥∥H− H̃

∥∥∥
2→2

where H̃ is obtained by piece-

wise convolutions or sparse approximations in the wavelet domain.
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Algorithm 3: An algorithm to compute Θ

Output:
Θ: the full matrix of H
begin

forall the (j, e,m) do
Compute the wavelet ψej,m using an inverse wavelet transform
Compute the blurred wavelet Hψej,m

Compute
(〈

Hψej,m,ψ
e′
k,n

〉)
k,e′,n

using one forward wavelet transform

Set
(〈

Hψej,m,ψ
e′
k,n

〉)
k,e′,n

in the (j, e,m)-th column of Θ.

end

end

The sparse approximation of the operator is constructed by thresholding the matrix Θ
in order to keep the K largest coefficients. The values K = 2l×N2 with l ∈ {0 . . . 2 log2N}
have been chosen. This way K is a multiple of the number of pixels in the image. The
piecewise convolution approximation is constructed by partitioning the image into 2l × 2l

sub-images where l ∈ {0 . . . log2N}. We also studied the case where sub-images overlap
and linearly interpolated the blur between sub-images as proposed in [32, 23]. The overlap
has been fixed to 50% of the sub-images sizes.

For each sub-image size, and each overlap, the norm
∥∥∥H− H̃

∥∥∥
2→2

is approximated

using a power method [19]. We stop the iterative process when the difference between
the eigenvalues of two successive iterations is smaller than 10−8‖H‖2→2. The number of
operations associated to each type of approximation is computed using theoretical com-
plexities. For sparse matrix-vector product the number of operations is proportional to the
number of non-zero coefficients in the matrix. For piecewise convolutions, the number of
operations is proportional to the number of windows (2l × 2l) multiplied by the cost of a

discrete convolution over a window
(
N
2l

+Nκ
)2

log2

(
N
2l

+Nκ
)
. ∗

Figure 10 shows the results of this experiment. The wavelet based method seems
to perform much better than piecewise convolutions. The total number of operations is
reduced by a factor roughly equal to 100 for a precision of 0.1.

8.3 Numerical comparison of different sparsity patterns.

In this numerical experiment, we obtain a K-sparse matrix ΘK using either a simple

thresholding strategy or Algorithm 1. We evaluate the error
∥∥∥H− H̃

∥∥∥
X→2

defined in (24)

∗We also carried out numerical computations of the operator norm error when images are supposed to
be in Sobolev spaces Hs(Ω) for different s. However, since the results do not differ too much, we do not
present them.
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Figure 10: The operator norms
∥∥∥H− H̃

∥∥∥
2→2

are displayed for the three proposed kernels.

(From left to right, kernels corresponding to Figures 9a and 9b) and with respect to the
number of operations needed to compute H̃u. Plots are diplayed in a semilogx scale.

for both methods. In this experiment, we set σi = 2j(i). It is readily seen from Figure 11
that Algorithm provides a much better error decay for both operators.
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Figure 11: The operator norms
∥∥∥H− H̃

∥∥∥
X→2

are displayed for kernels Figure 9a (left) and

Figure 9b (right); and with respect to the number of operations needed to compute H̃u.
Plots are diplayed in a semilogx scale. Daubechies wavelets with 10 vanishing moments
have been used.

8.4 Quality of matrix vector products for real images

In this experiment, we compare H̃u to Hu, where u is the image in Figure 8b and where
H̃ is obtained either by piecewise convolutions or by sparse wavelet approximations. We
plot the pSNR between the exact blurred image Hu and the blurred image using the
approximated operator H̃u. The two methods are tested with the following choices:

• We only test the piecewise-convolution with overlap since it produces better pSNR.

• Different sparsity patterns are tested. The first one is obtained by thresholding of
Θ. The second one is obtained using Algorithm 1. We test three different diagonal
matrices Σ = diag(σ1, . . . , σN2):

1. Σ contains only ones on its diagonal: σi = 1, ∀i.
2. σ is piecewise constant with a value increasing with respect to the scale of the

wavelet coefficients: σi = 2j(i).

3. σi = 2j(i), and σi = 1
2 for indices i corresponding to the low frequency sub-band.

The third one is obtained using Algorithm 2. The algorithm finds multi-scale neigh-
bourhoods until K = l ×N2 coefficients populate the matrix, with l ∈ {1, . . . , 200}.
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We also performed experiments with σi = 4j(i), which corresponds to the assumption
that images belong to BV (Ω). We do not report the results since they were not good.

The results of this experiment are displayed in Figure 12 for the two kernels from
Figures 9b and 9a. Approximations built with Algorithm 1 and with σi = 2j(i) increase
the pSNR of the blurred image H̃u by almost 10dBs compared to the naive thresholding
approaches. This experiment highlights the relevance of Algorithm 1, used with the second
and third Σ matrices. It allows to construct accurate sparse approximations of operators
when applied to images in BV (Ω).

The piecewise convolution approach performs slightly better than wavelet based meth-
ods for the simple kernel 9a on a small intervall. It corresponds to the partitioning of Ω
in 16 × 16 and 32 × 32 sub-windows (i.e. sub-windows of size 16 × 16 or 8 × 8 pixels).
However, for more complex kernels, wavelet methods perform better.

This experiment also show the qualities and limits of the “blind” Algorithm 2. In this
algorithm, the structure of the approximating matrix in deduced from the upper-bound
(19). Matrices constructed using Algorithm 2 perform similarly to Algorithm 1 (that has
a full knowledge of Θ) up to approximately K = 30×N2 coefficients. Above this number,
the approximation quality increases very slowly. This is probably due to the fact that the
upper-bound (19) is too rough: the operator might be much sparser than what is predicted
by the theory. We will see that in deblurring applications, an approximation made of
K = 30×N2 non zero coefficients is more than enough.

Figure 16 shows the sparsity patterns of matrices obtained with Algorithms 1 and 2 for
K = 30N2 and K = 128N2 coefficients. It is readily seen that the sparsity patterns look
very similar and tend to confirm the soundness of Algorithm 2.

Finally, for kernel Figure 9b, we show blurred images H̃u in Figures 13 and 14 for the
different sparsity patterns. Figure 13 shows the blurred images H̃u obtained with Algo-
rithm 1 and with the three different Σ matrices. Figure 14 displays the blurred images H̃u
obtained with the simple thresholding scheme and Algorithm 2. Finally, Figure 15 pro-
vides a comparison of the piecewise convolution approach and the wavelet based approach
in terms of approximation quality and computing times. The following conclusions can be
drawn from this experiment:

• The residual artefacts appearing in the piecewise convolution and wavelet based ap-
proach are different. They are localized at the interfaces between sub-images for
the piecewise convolution approach while they span the whole image domain for the
wavelet based approach. It is likely that using translation and/or rotation invariant
wavelet would improve substancially the reconstruction.

• The approximation using the third Σ matrix produces the best results and should
be preferred over more simple approaches.

• The sparsity pattern obtained using Algorithm 2 suffers from more artifacts than the
other approaches. The quality is however acceptable from a visual point of view.
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• In our implementation, the piecewise convolution approach (implemented in C) is
outperformed by the wavelet based method (implemented in Matlab with C-mex
files). For instance, for a precision of 45dBs, the wavelet based approach is about 10
times faster. Note that no method is multi-threaded, so that the comparison seems
fair.

• The computing time of 1.21 seconds for the piecewise convolution approach with
a 2 × 2 partition might look awkward since the computing times are significantly
lower for finer partitions. This is because the efficiency of FFT methods depend
greatly on the image size. The time needed to compute an FFT is usually lower for
sizes that have a prime factorization comprising only small primes (e.g. less than
7). This phenomenon explains the fact that the practical complexity of piecewise
convolution algorithms may increase in a chaotic manner with respect to m. In our
numerical experiments we implemented two versions of the piecewise convolution
approach: one based on the FFTW http://www.fftw.org/ and the other based on
Kiss FFT http://sourceforge.net/projects/kissfft/. The latter revealed to
provide lower computing times (probably to the fact that no plan is pre-computed)
and we thus reported computing times using this method.

Figure 12: pSNR of the blurred image using the approximated operators H̃u with respect
to the blurred image using the exact operator Hu. The results have been obtained using
the letters image Figure 8b.
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(a) σi = 1 – pSNR = 33.62dB
(b) σi = 2j(i) – pSNR =
44.38dB

(c) σi = 2j(i), σi = 1/2 –
pSNR = 45.87dB

Figure 13: Blurred images using matrices formed with Algorithm 1 and for the kernel
Figure 9b. K = 30N2 coefficients are kept in the matrices. Algorithm 1 has been applied
with the three different Σ matrices. The blurred images H̃u are shown on top. The
differences Hu−H̃u are also displayed on the bottom. They all have the same color range.
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(a) pSNR = 41.15dB (b) pSNR = 38.25dB

Figure 14: Blurred images using the wavelet based method with two different sparsity
patterns and the kernel in Figure 9b. K = 30N2 coefficients are kept in the matrices.
Matrices are obtained with the simple threshodling (left) and Algorithm 2 (right). The
differences Hu− H̃u are displayed within the same color range.
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Piece. Conv. Difference Algorithm 1 Difference l =

2× 2 31.90 dB 36.66 dB 5

1.21 sec 0.039 sec

4× 4 38.49 dB 45.87 dB 30

0.17 sec 0.040 sec

8× 8 44.51 dB 50.26 dB 50

0.36 sec 0.048 sec

16× 16 53.75 dB 57.79 dB 100

0.39 sec 0.058 sec

Figure 15: Blurred images and the differences Hu− H̃u for the kernel Figure 9b. Results
on the left are obtained using piecewise convolution approximations with 2×2, 4×4, 8×8
and 16 × 16 partitionings all with 50% overlap. Results on the right are obtained using
Algorithm 1 with the third Σ matrix keeping K = lN2 coefficients. The pSNR and the
time needed for the computation for the matrix-vector product are shown. The differences
are displayed within the same color range as Figures 13 and 14
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(a) Algorithm 1 – K = 30N2 (b) Algorithm 2 – K = 30N2

(c) Algorithm 1 – K = 128N2 (d) Algorithm 2 – K = 128N2

Figure 16: The structure of the wavelet matrices of ΘK are displayed for Algorithms 1 and
2 and for K = 30N2 and K = 128N2 coefficients. Algorithm 1 has been applied using the
third Σ matrix.
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8.5 Deblurring problem

In this experiment we compare the methods efficiency in deblurring problems. We assume
the following classical image degradation model

v = Hu + η, η ∼ N
(
0, σ2Id

)
, (29)

where v is the degraded image observed, u is the image to restore, H in the blurring
operator and σ2 is the noise variance. A standard TV-L2 optimization problem is solved
to restore the image u:

Find u∗ ∈ arg min
u∈RNd ,‖H̃u−v‖2

2
≤α
TV (u), (30)

where H̃ is an approximating operator and TV is the isotropic total variation of u. The
optimization problem is solved using the primal-dual algorithm proposed in [7]. We do not
detail the resolution method since it is now well documented in the literature.

An important remark is that the interest of the total variation term is not only used
to regularize the ill-posed inverse problem, but also to handle the errors in the operator
approximation. In practice we found that setting α = (1 + ε)σ2N where ε > 0 is a small
parameter provides good experimental results.

In Figures 17 to 20, we present some deblurring results with or without noise for image
Figure 8a with kernel Figure 9a and for image Figure 8b with kernel 9b. Figure 17 shows
that without noise and the simple kernel 9a, 4 × 4 piecewise convolutions perform better
than wavelet approaches with 30N2. Piecewise convolution achieve better pSNR but are 4
times slower. For equivalent computation times, wavelet approaches should be constructed
with 100N2 coefficients.

In Figures 19 and 20 we can notice that wavelet methods perform better than piecewise
convolution. Also notice that Algorithm 1 is strongly preferable to a simple thresholding
since it reduces deblurring artefacts.

With noise, all methods perfom nearly the same as the exact operator. It suggests
that it is not necessary to construct accurate approximations of the operators in practical
problems. This observation is also supported by the experiment in Figure 21. In this
experiment, we plot the pSNR of the deblurred image in presence of noise with respect to
the number of elements in ΘK . Interestingly, a matrix containing only 20N2 coefficients
leads to deblurred images close to the results obtained with the exact operator. In this
experiment, a total of K = 5N2 coefficients in ΘK is enough to retrieve satisfactory results.
This is a very encouraging result for blind deblurring problems.
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(a) Degraded image
25.04dB

(b) Exact operator
35.38dB – 2 hours

(c) Simple thresholding
31.54dB – 8 sec

(d) Algorithm 1
31.03dB – 8 sec

(e) Piecewise convolutions
33.81dB – 35 sec

Figure 17: Deblurring results for kernel Figure 9a and without noise. Top-left: degraded image.
Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method
and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2
with the third Σ matrix. Bottom: deblurred using a 4 × 4 piecewise convolution algorithm with
50% overlap. For wavelet methods K = 30N2 coefficients are kept in matrices. pSNR are displayed
for each restoration. 35



(a) Degraded image
24.52dB

(b) Exact operator
25.85dB – 2 hours

(c) Simple thresholding
25.83dB – 8sec

(d) Algorithm 1
25.83dB – 8 sec

(e) Piecewise convolutions
25.81dB – 35 sec

Figure 18: Deblurring results for kernel Figure 9a and with σ = 0.02. Top-left: degraded image.
Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method
and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2
with the third Σ matrix. Bottom: deblurred using a 4 × 4 piecewise convolution algorithm with
50% overlap. For wavelet methods K = 30N2 coefficients are kept in matrices. pSNR are displayed
for each restoration. 36



(a) Degraded image
21.85dB

(b) Exact operator
34.53dB – 2 hours

(c) Simple thresholding
30.96dB – 8 sec

(d) Algorithm 1
30.56dB – 8 sec

(e) Piecewise convolutions
28.37dB – 35 sec

Figure 19: Deblurring results for kernel Figure 9b and without noise. Top-left: degraded image.
Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method
and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2
with the third Σ matrix. Bottom: deblurred using a 4 × 4 piecewise convolution algorithm with
50% overlap. For wavelet methods K = 30N2 coefficients are kept in matrices. pSNR are displayed
for each restoration. 37



(a) Degraded image
21.62dB

(b) Exact operator
28.97dB – 2 hours

(c) Simple thresholding
27.89dB – 8 sec

(d) Algorithm 1
28.02dB – 8 sec

(e) Piecewise convolutions
27.12dB – 35 sec

Figure 20: Deblurring results for kernel Figure 9b and with σ = 0.02 noise. Top-left: degraded
image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based
method and a simple thresholding. Middle-right: deblurred by the wavelet based method and
Algorithm 2 with the third Σ matrix. Bottom: deblurred using a 4 × 4 piecewise convolution
algorithm with 50% overlap. For wavelet methods K = 30N2 coefficients are kept in matrices.
pSNR are displayed for each restoration. 38



Figure 21: pSNR of the deblurred image with respect to the number of coefficients in the
matrix divided by N2 for the image Figure 8a and the kernel Figure 9a. The matrix is
constructed using Algorithm 1 with the third Σ matrix with K = lN2 coefficients for l
from 1 to 30. Deblurred imaged using these matrices are compared with the one obtained
with the exact operator.

9 Conclusion

9.1 Brief summary

In this paper, we analyzed the piecewise convolution approach to approximate spatially
varying blur. We showed that it has an O(Nd log(N)ε−d) complexity where ε denotes
the desired accuracy in l2. We then introduced a new method based on sparse wavelet
representation of the operator. We showed that this new technique has a greater adaptivity
to the smoothness of the operator and exhibit anO(Ndε−d/M ) complexity, whereM denotes
the kernel regularity. This method is versatile since it is possible to adapt it to the kind of
images that have to be treated. We showed that much better performance can be obtained
by leveraging the fact that natural signals exhibit some structure in the wavelet domain.
These theoretical results were confirmed by practical experiments on real images. Even
though our conclusions are still preliminary since we tested only small 256 × 256 images,
the wavelet based methods seem to significantly outperform the piecewise convolutions
approaches with or without overlap. Moreover, they seem to provide satisfactory deblurring
results on practical problems with a complexity no greater than 5N2 operations, where N2

denotes the pixels number.

9.2 Outlook

We provided a simple complexity analysis based solely on the global regularity of the kernel
function. It is well known that wavelets are able to adapt locally to the structures of images
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or operators [10]. The method should thus provide an efficient tool for piecewise regular
blurs appearing in computer vision for instance. It could be interesting to evaluate precisely
the complexity of wavelet based approximations for piecewise regular blurs.

An key problem of the wavelet based approach is the need to project the operator
on a wavelet basis. In this paper we performed this operation using the computationally
intensive Algorithm 3. It could be interesting to derive fast projection methods for certain
blur families. A top-down approach has already been proposed in [42]. Moreover, the
proposed method can already be applied to situations where the blur mostly depends on
the instrument: the wavelet representation has to be computed once for all off-line, and
then all deblurring operations can be handled much faster. This situation occurs in satellite
imaging or for some fluorescence microscopes (see e.g. [20, 40, 28]).

Another exciting research perspective is the problem of blind deconvolution. Expressing
the unknown operator as a sparse matrix in the wavelet domain is a good way to improve
the problem identifiability. This is however far from being sufficient since the blind decon-
volution problem has far more unknowns (a full operator and an image) than data (a single
image). Further assumptions should thus be made on the wavelet coefficients regularity,
and we plan to study this problem in a forthcoming work.

Finally let us mention that we observed some artifacts when using the wavelet based
methods with high sparsity levels. This is probably due to their non translation and
rotation invariance. It could be interesting to study sparse approximations in redundant
wavelet bases or other time-frequency bases. It was shown for instance in [6] that curvelets
are near optimal to represent Fourier integral operators.
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[15] L. Denis, E. Thiébaut, F. Soulez, J.-M. Becker, and R. Mourya. Fast approximations
of shift-variant blur. 2014.

[16] J. Deny and J.-L. Lions. Les espaces du type de beppo levi. In Annales de l’institut
Fourier, volume 5, pages 305–370. Institut Fourier, 1954.

41



[17] P. Escande, P. Weiss, and F. Malgouyres. Spatially varying blur recovery. diagonal
approximations in the wavelet domain. Proceedings of ICPRAM, 2013.

[18] H. G. Feichtinger and K. Nowak. A first survey of gabor multipliers. In Advances in
Gabor analysis, pages 99–128. Springer, 2003.

[19] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[20] N. Hajlaoui, C. Chaux, G. Perrin, F. Falzon, and A. Benazza-Benyahia. Satellite
image restoration in the context of a spatially varying point spread function. JOSA
A, 27(6):1473–1481, 2010.

[21] P. C. Hansen, J. G. Nagy, and D. P. O’leary. Deblurring images: matrices, spectra,
and filtering. Siam, 2006.

[22] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf. Fast removal of non-uniform
camera shake. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 463–470. IEEE, 2011.

[23] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient filter flow for space-
variant multiframe blind deconvolution. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 607–614. IEEE, 2010.

[24] T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger. Practical estimation of
rapidly varying channels for ofdm systems. Communications, IEEE Transactions on,
59(11):3040–3048, 2011.

[25] R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducom-
mun, and C. Lorenzo. Deep and clear optical imaging of thick inhomogeneous samples.
PLoS ONE, 7, 04 2012.

[26] J. Kamm and J. G. Nagy. Kronecker product and svd approximations for separable
spatially variant blurs. In SPIE’s International Symposium on Optical Science, En-
gineering, and Instrumentation, pages 358–369. International Society for Optics and
Photonics, 1998.

[27] H. Kirshner, D. Sage, and M. Unser. 3D PSF models for fluorescence microscopy
in ImageJ. In Proceedings of the Twelfth International Conference on Methods and
Applications of Fluorescence Spectroscopy, Imaging and Probes (MAF’11), page 154,
2011.

[28] E. Maalouf, B. Colicchio, and A. Dieterlen. Fluorescence microscopy three-dimensional
depth variant point spread function interpolation using zernike moments. JOSA A,
28:1864–1870, 2011.

42



[29] S. Mallat. A Wavelet Tour of Signal Processing – The Sparse Way. Third Edition.
Academic Press, 2008.

[30] S. R. McNown and B. R. Hunt. Approximate shift-invariance by warping shift-variant
systems. In SPIE’s 1994 International Symposium on Optics, Imaging, and Instru-
mentation, pages 156–167. International Society for Optics and Photonics, 1994.

[31] Y. Meyer. Wavelets and operators, volume 2. Cambridge Univ Press, 1992.

[32] J. G. Nagy and D. P. O’leary. Fast iterative image restoration with a spatially varying
psf. In Optical Science, Engineering and Instrumentation’97, pages 388–399. Interna-
tional Society for Optics and Photonics, 1997.

[33] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially variant blur.
SIAM Journal on Scientific Computing, 19:1063, 1998.

[34] P. Petrushev, A. Cohen, H. Xu, and R. A. DeVore. Nonlinear approximation and the
space bv (r 2). American Journal of Mathematics, 121:587–628, 1999.

[35] C. Preza and J.-A. Conchello. Depth-variant maximum-likelihood restoration for
three-dimensional fluorescence microscopy. JOSA A, 21:1593–1601, 2004.

[36] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992.

[37] A. Sawchuk. Space-variant image motion degradation and restoration. Proceedings of
the IEEE, 60:854–861, 1972.

[38] A. A. Sawchuk. Space-variant image restoration by coordinate transformations. Jour-
nal of the Optical Society of America, 64:138–144, Feb. 1974.

[39] A. Tabernero, J. Portilla, and R. Navarro. Duality of log-polar image representations
in the space and spatial-frequency domains. Signal Processing, IEEE Transactions
on, 47:2469–2479, 1999.

[40] M. Temerinac-Ott, O. Ronneberger, P. Ochs, W. Driever, T. Brox, and H. Burkhardt.
Multiview deblurring for 3-d images from light-sheet-based fluorescence microscopy.
Image Processing, IEEE Transactions on, 21(4):1863–1873, 2012.

[41] J. Wang and B. J. Lucier. Error bounds for finite-difference methods for rudin-osher-
fatemi image smoothing. SIAM Journal on Numerical Analysis, 49:845–868, 2011.

[42] J. Wei, C. A. Bouman, and J. P. Allebach. Fast space-varying convolution using matrix
source coding with applications to camera stray light reduction. IEEE Transactions
on Image Processing, 23:1965–1979, 2014.

43



[43] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin. Gaussian approximations of fluorescence
microscope point-spread function models. Applied Optics, 46:1819–1829, 2007.

A Proof of Lemma 1 and 2

Before proving lemmas 1 and 2, we need additional results.

Lemma 6. The integral operator H̃m can be written as follows

H̃mu =

∫
Ω
K̃(x, y)u(y)dy

where
K̃(x, y) = K (c(x), c(x)− x+ y) (31)

and where c(x) denotes the center of the subregion containing x.

c(x) =
bmxc
m

+
1

2m

1
...
1


Proof. By construction, K̃ should lead to piecewise convolutions. Therefore, we can asso-
ciate a convolution kernel h̃k for each ωk defined for all x ∈ ωk by K̃(x, y) = h̃k(x − y).
Assuming that h̃ corresponds to the kernel K at the center of ωk, we get in each ωk,

K̃(c(x), ·) = K(c(x), ·) ⇔ K(c(x), ·) = h̃k(c(x)− ·).

Hence, h̃k(y) = K(c(x), c(x)− y).

Lemma 7 (Convolution). An integral operator H with a C1(Ω× Ω) kernel K is a convo-
lution if and only if

∀(x, y) ∈ Ω× Ω, ∇xK(x, y) +∇yK(x, y) = 0.

Proof. First suppose that H is a convolution. It means that K(x, y) = k(x− y). A simple
differentiation leads to

∇xK(x, y) +∇yK(x, y) = ∇k(x− y)−∇k(x− y) = 0.

Second, suppose that

∀(x, y) ∈ Ω× Ω, ∇xK(x, y) +∇yK(x, y) = 0.

It implies that K(x+ h, y + h) = K(x, y) for all x, y, h. Therefore, choosing h = −y leads
to

K(x, y) = K(x− y, 0) = k(x− y), ∀x, y.
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Proof of Lemma 1. Since K is L-Lipschitz we get∣∣∣K(x, y)− K̃(x, y)
∣∣∣ = |K(x, y)−K(c(x), c(x)− x+ y)|

= |K(x, y)−K(c(x), y) +K(c(x), y)−K(c(x), c(x)− x+ y)|
≤ |K(x, y)−K(c(x), y)|+ |K(c(x), y)−K(c(x), c(x)− x+ y)|
≤ 2L ‖x− c(x)‖∞ .

To study the spectral norm, we consider a function u with ‖u‖2 = 1.∥∥∥Hu− H̃mu
∥∥∥2

2
=

∫
x∈Ω

(∫
y∈Ω

(
K(x, y)− K̃(x, y)

)
u(y)dy

)2

dx

≤
∫
x∈Ω

(∫
y∈Ω

(
K(x, y)− K̃(x, y)

)2
dy

)(∫
y∈Ω

u2(y)dy

)
dx

=

∫
x∈Ω

∫
y∈Ω

(
K(x, y)− K̃(x, y)

)2
dy dx

≤
∫
x∈Ω

∫
y∈Ω

4L2‖x− c(x)‖2∞dy dx

= 4L2

∫
x∈Ω
‖x− c(x)‖2∞ dx, since |Ω| = 1

≤ 4L2 1

4m2

=
L2

m2
.

Proof of Lemma 2. The idea of the proof is to exhibit a pathological unit vector u ∈ L2(Ω)

such that
∥∥∥Hu− H̃u∥∥∥

2
is of order 1

m .

If H is a C1 kernel that is not a convolution, Lemma 7 ensures that there exists (x0, y0) ∈
Ω × Ω, v ∈ Rd with ‖v‖∞ = 1 and ε > 0 such that

∣∣〈∇xK(x0, y0) +∇yK(x0, y0), v
〉∣∣ ≥

2ε. We assume, without loss of generality, that the sign of the difference is positive,
i.e.

〈
∇xK(x0, y0) +∇yK(x0, y0), v

〉
≥ 2ε. Since K ∈ C1(Ω × Ω), ∇K is continuous and

therefore, there exists h > 0 such that

〈∇xK(x, y) +∇yK(x, y), v〉 ≥ ε, ∀(x, y) ∈ I × J, (32)

with I = x0 + [−h, h]d and J = y0 +
[
−3

2h,
3
2h
]d

.

Now, set J− = y0 + [−h, h]d and u =
1J−√
|J−|

. We have ‖u‖2 = 1 and therefore:

∥∥∥H̃m −H
∥∥∥2

2→2
≥
∥∥∥H̃mu−Hu

∥∥∥2

2
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=

∫
x∈Ω

(∫
y∈Ω

(K̃(x, y)−K(x, y))u(y)dy

)2

dx

≥ 1

|J−|

∫
x∈I

(∫
y∈J−

K̃(x, y)−K(x, y)dy

)2

dx. (33)

We now need to bound the difference K̃(x, y)−K(x, y) from below on I × J−.
Let E = {k ∈ Nd, ωk ⊂ I}. If mh ≥ 1 (i.e. m is large enough) then E is non empty,

and |E| & md. Now, let k ∈ E, x ∈ ωk and y ∈ Ω. By Lemma 6:

K(x, y)− K̃(x, y) = K(x, y)−K(ck, ck − x+ y)

=

∫ 1

t=0

〈
∇K(ck + t(x− ck), ck − x+ y + t(x− ck)),

(
x− ck
x− ck

)〉
dt.

Any x ∈ ωk can written as x = ck + αv + w, where w ∈ span(v)⊥ and ‖αv + w‖∞ ≤ 1
2m .

Thus, for y ∈ J−:

K(x, y)− K̃(x, y) =

∫ 1

t=0

〈
∇K(ck + t(αv + w), y + (t− 1)(αv + w)),

(
αv + w
αv + w

)〉
dt.

Since ωk ⊂ I, ck + t(αv + w) ∈ I, ∀t ∈ [0, 1]. Similarly, since y ∈ J−, ‖αv + w‖∞ ≤ 1
2m

and h ≥ 1/m, point y + (t − 1)(αv + w) ∈ J, ∀t ∈ [0, 1]. Therefore, the whole segment
{(ck + t(αv + w), y + (t− 1)(αv + w)), t ∈ [0, 1]} ⊂ I × J . As a consequence, inequality
(32) holds on all the integration domain and

K(x, y)− K̃(x, y) ≥ αε−M‖w‖∞,

where M = d sup
(x,y)∈Ω×Ω

‖∇K(x, y)‖∞. By setting M ′ = max(M, ε) we still have:

K̃(x, y)−K(x, y) ≥ αε−M ′‖w‖∞. (34)

Now, define Sk =
{
ck + αv + w,α ∈

[
1

4m ,
1

2m −
ε

8M ′m

]
, ‖w‖∞ ≤ ε

8M ′m

}
. By construction,

‖αv + w‖∞ ≤ α + ‖w‖∞ ≤ 1
2m , therefore Sk ⊂ ωk. Moreover, |Sk| ≥ 1

8m( ε
8M ′m)d−1 & 1

md
.

Finally, from bound (34), K(x, y)− K̃(x, y) ≥ ε
8m .

To finish the proof, we go back to inequality (33) and obtain:

‖H̃m −H‖22→2 ≥
1

|J−|

∫
x∈∪k∈ESk

(∫
y∈J−

K̃(x, y)−K(x, y)dy

)2

dx

=
1

|J−|
∑
k∈E

∫
x∈Sk

(∫
y∈J−

K̃(x, y)−K(x, y)dy

)2

dx

&
1

|J−|
∑
k∈E

∫
x∈Sk

(∫
y∈J−

1

m
dy

)2

dx
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&
1

|J−|
md 1

md

(
|J−|
m

)2

&
1

m2
.

B Proof of Theorem 3

Proof of i). The discrete convolutions have to be performed on extended regions of size
(N/m + κN)d in order to correctly handle the boundary conditions. Each convolution
is thus performed on a sub-region with (N/m + κN)d pixels. This can be performed in
O
(
d(N/m+ κN)d log(N/m+ κN)

)
arithmetic operations. Since there are md subregions,

we get the announced result.

Proof of ii). The proof is similar to the one in the continuous setting. The only additional
requirement is that N and m are sufficiently large to partition I and J in at least 2d

subregions.

Proof of iii). This is a simple consequence of complexity bound (13) and the bounds es-

timates provided in equations (14). In order to satisfy
∥∥∥H− H̃m

∥∥∥
2→2
≤ ε, it is sufficient

to set L
2m ≤ ε. The smallest integer ensuring this condition is m = d L2εe. Therefore, the

numerical complexity of the method becomes

dNd

(
1 +

κL

ε

)d
log

(
Nε

L
+ κN

)
.

The asymptotics of this complexity for small ε is dLκNd log(κN)
εd

.

C Proof of Lemma 4

We let ΠM denote the set of polynomials of degree less or equal to M .
Lemma 8 below is a common result in numerical analysis [16] (see also Theorem 3.2.1

in [9]). It ensures that the approximation error of a function by a polynomial of degree M
is bounded by the Sobolev semi-norm WM,p.

Lemma 8 (Polynomial approximation). For 1 ≤ p ≤ +∞, M ∈ N∗ and Ω ⊂ Rd a bounded
domain, the following bound holds

inf
g∈ΠM

‖f − g‖Lp(Ω) ≤ C |f |WM+1,p(Ω) , (35)

where C is a constant that depends on d,M, p and Ω only.
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Moreover, if Ih ⊂ Ω ⊂ Rd is a cube of sidelength h, the following estimate holds

inf
g∈ΠM

‖f − g‖Lp(Ih) ≤ Ch
M+1 |f |WM+1,p(Ih) , (36)

where C is a constant only depending on d,M, p and Ω.

Let m = (m1, . . . ,md). Let Ij,m = supp(ψej,m) and λj,m denote its center. From the
wavelets definition, we get

Ij,m = 2−j(m+ [−c(M)/2, c(M)/2]d)

therefore |Ij,m| = c(M)d · 2−jd and λj,m = 2−jm. We will now prove Lemma 4.

Proof of Lemma 4. Since the mapping (x, y) 7→ K(x, y)ψej,m(y)ψe
′
k,n(x) is bounded, it is

also absolutely integrable on compact domains. Therefore
〈
Hψej,m, ψ

e′
k,n

〉
is well-defined

for all (j,m, k, n). Moreover Fubini’s theorem can be applied and we get〈
Hψej,m, ψ

e′
k,n

〉
=

∫
Ik,n

∫
Ij,m

K(x, y)ψej,m(y)ψe
′
k,n(x)dydx

=

∫
Ij,m

∫
Ik,n

K(x, y)ψej,m(y)ψe
′
k,n(x)dxdy.

To prove the result, we distinguish the cases j ≤ k and j > k. In this proof, we focus
on the case j ≤ k. The other one can be obtained by symmetry, using the facts that〈
Hψej,m, ψ

e′
k,n

〉
=
〈
ψej,m, H

∗ψe
′
k,n

〉
and that H and H∗ are both blurring operators in the

same class.

To exploit the regularity ofK and ψ, note that for all g ∈ ΠM−1,

∫
Ik,n

g(x)ψe
′
k,n(x)dx = 0

since ψ has M vanishing moments. Therefore,〈
Hψej,m, ψ

e′
k,n

〉
=

∫
Ij,m

inf
g∈ΠM−1

∫
Ik,n

(K(x, y)− g(x))ψej,m(y)ψe
′
k,n(x)dxdy,

and ∣∣∣〈Hψej,m, ψe′k,n〉∣∣∣ ≤ ∫
Ij,m

inf
g∈ΠM−1

∫
Ik,n

|K(x, y)− g(x)|
∣∣ψej,m(y)

∣∣ ∣∣∣ψe′k,n(x)
∣∣∣ dxdy

≤
∫
Ij,m

inf
g∈ΠM−1

‖K(·, y)− g‖L∞(Ik,n)

∥∥∥ψe′k,n∥∥∥L1(Ik,n)

∣∣ψej,m(y)
∣∣ dy.

By Lemma 8, inf
g∈ΠM−1

‖K(·, y)− g‖L∞(Ik,n) . 2−kM |K(·, y)|WM,∞(Ik,n) since Ik,n is a cube

of sidelength c(M) · 2−k. We thus obtain∣∣∣〈Hψej,m, ψe′k,n〉∣∣∣ . 2−kM
∥∥∥ψe′k,n∥∥∥L1(Ik,n)

∥∥ψej,m∥∥L1(Ij,m)
ess sup
y∈Ij,m

|K(·, y)|WM,∞(Ik,n)
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. 2−kM2−
dj
2 2−

dk
2 ess sup

y∈Ij,m
|K(·, y)|WM,∞(Ik,n)

since
∥∥∥ψej,m∥∥∥L1

= 2−
dj
2 ‖ψ‖L1 .

Since H ∈ A(M,f)

ess sup
y∈Ij,m

|K(·, y)|WM,∞(Ik,n) = ess sup
y∈Ij,m

∑
|α|=M

ess sup
x∈Ik,n

|∂αxK(x, y)|

≤
∑
|α|=M

ess sup
(x,y)∈Ij,m×Ik,n

f (‖x− y‖∞)

. ess sup
(x,y)∈Ij,m×Ik,n

f (‖x− y‖∞) .

Because f is a non-increasing function, f (‖x− y‖∞) ≤ f (dist (Ij,m, Ik,n)) since dist (Ij,m, Ik,n) =
inf

(x,y)∈Ij,m×Ik,n
‖x− y‖∞. Therefore

∣∣∣〈Hψej,m, ψe′k,n〉∣∣∣ . 2−kM2−
dj
2 2−

dk
2 f (dist (Ij,m, Ik,n))

= 2−(M+ d
2

)|j−k|2−j(M+d)f (dist (Ij,m, Ik,n)) .

The case k < j gives∣∣∣〈Hψej,m, ψe′k,n〉∣∣∣ . 2−(M+ d
2

)|j−k|2−k(M+d)f (dist (Ij,m, Ik,n)) ,

which allows to conclude that∣∣∣〈Hψej,m, ψe′k,n〉∣∣∣ . 2−(M+ d
2

)|j−k|2−min(j,k)(M+d)f (dist (Ij,m, Ik,n)) ,

D Proof of Theorem 5

Let us begin with some preliminary results. Since f is compactly supported on [0, κ] and
bounded by a constant say cf , f(j,m, k, n) = f (dist (Ij,m, Ik,n)) ≤ cf1dist(Ij,m,Ik,n)≤κ.

First notice that

dist (Ij,m, Ik,n) = min

(
0,
∥∥∥2−jm− 2−kn

∥∥∥
∞
− (2−j + 2−k)

c(M)

2

)
.

Therefore, dist (Ij,m, Ik,n) ≤ κ if and only if
∥∥2−jm− 2−kn

∥∥
∞ ≤ (2−j + 2−k)c(M)/2 + κ.

We let Rκj,k = (2−j + 2−k)c(M)/2 + κ.

49



Lemma 9. We define

Ge,e
′

j,k =
{

(m,n) ∈ Tj × Tk |1dist(Ij,m,Ik,n)≤κ = 1
}
,

the cardinal of Ge,e
′

j,k is at least (2j2kRκj,k)
d.

Proof. First from the value of the distance we deduce that

Ge,e
′

j,k =
{

(m,n) ∈ Tj × Tk|
∣∣∣2−jmi − 2−kni

∣∣∣ ≤ Rκj,k, ∀i ∈ {1, . . . , d}
}
.

We define Ge,e
′

j,k,m =
{
n ∈ Tk |(m,n) ∈ Ge,e

′

j,k

}
.

For a fixed (j, k,m, e, e′) the set Ge,e
′

j,k,m is a hyper-cube of sidelength 2kRκj,k.
One can check that for each i ∈ {1, . . . , d}, the number of ni satisfying the condition

is 2kRκj,k. Therefore Ge,e
′

j,k,m has (2kRκj,k)
d coefficients. There are 2jd coefficients at scale j,

hence the number of coefficients in Ge,e
′

j,k is bounded above by (2j2kRκj,k)
d.

Proof of i). First note that the thresholding rule in Theorem 5 is equivalent to zeroing all

coefficients such that min(j, k) ≥ J(η) with J(η) = − log2 η
M+d .

Let us define
G =

⋃
min(j,k)<J(η)

⋃
e,e′∈{0,1}d

Ge,e
′

j,k .

Hence the overall number of non zero coefficients #G in Θη satisfies

#G =

log2(N)−1∑
j=0

log2(N)−1∑
k=0

∑
e,e′∈{0,1}d

#Ge,e
′

j,k 1min(j,k)<J(η)

. (2d − 1)2

log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)

2
(2−j + 2−k) + κ

)d

.
log2(N)−1∑

j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)d

2d
2−dj +

c(M)d

2d
2−dk + κd

)

=

(
c(M)

2

)d log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
kd

+

(
c(M)

2

)d log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
jd
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+

log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
kd2jdκd.

The first sum gives

(
c(M)

2

)d log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
kd

=

(
c(M)

2

)dJ(η)−1∑
j=0

log2(N)−1∑
k=j

2kd +

J(η)−1∑
k=0

2kd
log2(N)−1∑

j=k

1


. J(η)Nd + 2dJ(η) log2(N).

The second sum is handled similarly and the third sum gives

log2(N)−1∑
j=0

log2(N)−1∑
k=0

1min(j,k)<J(η)2
kd2kdκd

= κd
J(η)−1∑
j=0

2jd
log2(N)−1∑

k=j

2kd +

J(η)−1∑
k=0

2kd
log2(N)−1∑

j=k

2jd

. κdNd2dJ(η).

Finally

#G .
− log2(η)

M + d
Nd + η

d
M+d log2(N) + η

d
M+dNd.

For small η the dominating terms are of kind η
d

M+d , hence

#G . η
d

M+dNdκd.

Proof of ii). Since Ψ is an orthogonal wavelet transform∥∥∥H− H̃η

∥∥∥
2→2

= ‖Θ−Θη‖2→2 .

Let ∆η = Θ−Θη. We will make use of the following inequality

‖∆η‖22→2 ≤ ‖∆η‖1→1‖∆η‖∞→∞. (37)
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Since the upper-bound (19) is symmetric,

‖∆η‖1→1 = max
j,m,e

∑
k,n

∣∣∣∆e,e′

j,m,k,n

∣∣∣ and

‖∆η‖∞→∞ = max
k,n,e′

∑
j,m,e

∣∣∣∆e,e′

j,m,k,n

∣∣∣ ,
it suffices to find an upper-bound on ‖∆η‖1→1.

By definition of Θη we get that∑
k,n,e′

∣∣∣∆e,e′

j,m,k,n

∣∣∣ =
∑
k∈S

∑
e′∈{0,1}d

∑
n∈Ge,e

′
j,k,m

∣∣∣θe,e′j,m,k,n

∣∣∣1min(j,k)>J(η)

.
∑
k∈S

∑
e′∈{0,1}d

∑
n∈Ge,e

′
j,k,m

2−(M+ d
2

)|j−k|2−min(j,k)(M+d)fj,m,k,n1min(j,k)>J(η)

.
∑
k∈S

∑
e′∈{0,1}d

∑
n∈Ge,e

′
j,k,m

1min(j,k)>J(η)2
−(M+ d

2
)|j−k|2−min(j,k)(M+d)fj,m,k,n.

because fj,m,k,n ≤ cf1dist(Ij,m,Ik,n) = cf for n ∈ Ge,e
′

j,k,m. Then∑
k,n,e′

∣∣∣∆e,e′

j,m,k,n

∣∣∣ .∑
k∈S

∑
e′∈{0,1}d

2−(M+ d
2

)|j−k|2−min(j,k)(M+d)1min(j,k)>J(η)#G
e,e′

j,k,

.
j−1∑
k=0

(2kRκj,k)
d2(k−j)(M+d/2)2−k(M+d)1k>J(η)

+

log2(N)∑
k=j

(2kRκj,k)
d2(j−k)(M+d/2)2−j(M+d)1j>J(η).

The first sum on k < j is

j−1∑
k=0

(2kRκj,k)
d2(k−j)(M+d/2)2−k(M+d)1k>J(η)

= 2−jM2−jd/2
j−1∑
k=0

(2k/2Rκj,k)
d1k>J(η).

which vanishes if J(η) > j and otherwise is

2−jM2−jd/2
j−1∑

k=J(η)

(2k/2Rκj,k)
d.
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Finally, the first sum on k < j is:

A1 = 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(2k/2Rκj,k)
d.

The second sum on k > j is:

A2 = 1j>J(η)2
−jd/2

log2(N)∑
k=j

(Rκj,k)
d2−k(M−d/2).

Similarly, we bound (Rκj,k)
d .

(
c(M)

2

)d
(2−jd + 2−kd) + κd. Thus

A1 . 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(
2dk/22−jd + 2−dk/2 + 2kd/2κd

)
. 2−jM2−jd/21j>J(η)

(
2−jd2jd/2 + 2−

d
2
J(η) + κd2jd/2

)
= 2−jM1j>J(η)

(
2−jd + 2−

d
2

(J(η)+j) + κd
)
.

And

A2 . 1j>J(η)2
−jd/2

log2(N)∑
k=j

(
2−jd + 2−kd + κd

)
2−k(M−d/2)

. 1j>J(η)2
−jd/2

(
2−jd2−j(M−d/2) + 2−j(M+d/2) + κd2−j(M−d/2)

)
= 1j>J(η)2

−jM
(

2.2−jd + κd
)
.

Hence ∑
k,n,e′

|∆j,m,k,n| . 1j>J(η)2
−jM

(
3.2−jd + 2κd + 2−

d
2

(J(η)+j)
)
.

Therefore

‖∆η‖1→1 . 2−J(η)M
(

3.2−J(η)d + 2κd + 2−dJ(η)
)

= 2−J(η)M
(

5.2−J(η)d + 2κd
)

= 5η + 2κdη
M
M+d

. 2κdη
M
M+d for small η.
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Finally, we can see that there exists a constant CM depending only on M such that

‖∆η‖1→1 ≤ CMκdη
M
M+d and ‖∆η‖∞→∞ ≤ CMκdη

M
M+d .

It suffices to use inequality (37) to conclude.

Proof of iii). This is a direct consequence of point i) and ii).
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