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Abstract

Restoring images degraded by spatially varying blur is a problem encountered in
many disciplines such as astrophysics, computer vision or biomedical imaging. One
of the main challenges to perform this task is to design efficient numerical algorithms
to compute matrix-vector products.

We review the main approaches developped so far and detail their pros and cons.
We then analyze the numerical complexity of the mainstream approach based on
piecewise convolutions. We show that this method provides an ǫ-approximation of
the matrix-vector product in O (N log(N)ǫ−1) operations where N is the number
of pixels. Moreover, we show that this bound cannot be improved even if further
assumptions on the kernel regularity are made.

We then introduce a new method based on a sparse approximation of the blurring
operator in the wavelet domain. This method requires O

(
N log(N)ǫ−1/M

)
operations

to provide ǫ-approximations, where M ≥ 1 is a scalar describing the regularity of the
blur kernel. We then propose variants to further improve the method by exploiting
the fact that both images and operators are sparse in the same wavelet basis.

We finish by numerical experiments to illustrate the practical efficiency of the
proposed algorithms.
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1. Introduction

The problem of image restoration in the presence of spatially varying blur appears
in many domains. Examples of applications in computer vision, biomedical imaging
and astronomy are shown in Figures 1, 2 and 3 respectively. This problem has a
long history that probably started at the beginning of the seventies (see e.g. [1]).
However, despite being present in most imaging systems, it seems to have drawn
little attention in the literature compared to the space invariant models. There
are probably two important facts explaining this phenomenon: i) the difficulty to
estimate the Point Spread Function (PSF) at every point of the image domain and
ii) the difficulty to efficiently compute spatially varying blurs. In this paper, we focus
on problem ii) even though this work might open new perspectives to solve problem
i).

Spatially invariant blurs can be evaluated efficiently since convolution operators
are diagonal in the Fourier domain. This allows to blur images using the fast Fourier
transform (FFT), leading to algorithms with an O(N logN) complexity, where N
denotes the number of pixels of the image. To the best of our knowledge, no such
tool exists in the case of spatially varying blurs. The main result of this paper is to
show that under mild technical assumptions, spatially varying blur operators can be
approximated efficiently by sparse matrices in the wavelet domain. We show that
approximations of the blurred images can be obtained with a precision ǫ in no more
than O

(
N log (N) ǫ−1/M

)
operations, where M ≥ 1 is an integer that describes the

smoothness of the blur kernel. This result is a consequence of the seminal works
[2, 3]. Surprisingly, these have received little attention in the imaging community
despite the success of wavelets in image compression.

The outline of this paper is as follows. We introduce the notation use throughout
the paper in Section 2. We propose an original mathematical description of blurring
operators appearing in image processing in Section 3. We review the main existing
computational strategies and analyse their pros and cons in Section 4. By far, the
most commonly used approach in the literature to spatially blur images consists
in using piecewise convolutions [4, 5, 6]. Since this technique is so widespread, we
propose an original analysis of its theoretical efficiency in Section 5. We introduce
the proposed method, analyze its theoretical efficiency and describe algorithms to
design good sparsity patterns in Section 6. Finally, we perform numerical tests to
analyze the proposed method and compare it to the standard methods based on
piecewise convolutions in Section 8.
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(a) Sharp image (b) Blurred image and the associated PSF

Figure 1: An example in computer vision. Image degraded by spatially varying blur
due to a camera shake. Images are from [7] and used here by courtesy of Michael
Hirsch.

(a) (b)

Figure 2: An example in astronomy. Image degraded by spatially varying blur due
to atmoshpere turbulence http://www.sdss.org/.
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Figure 3: An example in biology. Image of a multicellular tumor spheroid imaged
in 3D using Selective Plane Illumination Microscope (SPIM). Fluorescence beads
(in green) are inserted in the tumor model and allow the observation of the PSF
at different locations. Nuclei are stained in red. On the left-hand-side the 3D PSF
outside of the sample is observed. On the right-hand-side the 3D PSF inside the
sample is observed. This image is from [8] and used here by courtesy of Corinne
Lorenzo et al.
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2. Notation

In this paper, we consider d dimensional images defined on a domain Ω ⊆ R
d.

The space L
2(Ω) will denote the space of squared integrable functions defined on Ω.

The set of compactly supported functions in C∞(Ω) is denoted D(Ω). Its dual space
(the set of distributions) is denoted D′(Ω).

The Sobolev spaces WM,p are defined as the set of functions f ∈ L
p with partial

derivatives up to order M in L
p where p ∈ [1,+∞] and M ∈ N. These spaces,

equipped with the following norm are Banach spaces

‖f‖W M,p = ‖f‖
Lp + |f |W M,p , where, |f |W M,p =

∑

|α|=M

‖∂αf‖
Lp . (1)

Let X and Y denote two metric spaces endowed with their respective norms
‖ · ‖X and ‖ · ‖Y . In all the paper H : X → Y will denote a linear operator and
H∗ its adjoint operator. The subordinate operator norm is defined by ‖H‖X→Y =

sup
x∈X,‖x‖X=1

‖Hx‖Y . The notation ‖H‖p→q corresponds to the case where X and Y are

endowed with the standard L
p and L

q norms. In all the paper, operators acting in a
continuous domain are written in plain text format H. Finite dimensional matrices
are written in bold fonts H. Approximation operators will be denoted H̃ in the
continuous domain or H̃ in the discrete domain.

We define a multi-resolution analysis (MRA) of L
2(Ω) with periodic boundary

conditions as the increasing sequence of closed subspaces {Vj}j∈Z using the conven-
tion

. . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . .

The orthogonal complement of Vj in Vj+1 is denoted by Wj, Vj+1 = Vj ⊕ Wj. We
do not recall the other properties to define a MRA and we refer to [9, 10, 3, 11, 12]
for more details. We denote φ and ψ the scaling and the mother wavelets. The
translated and dilated of the wavelets are defined in the following way

φj,m = 2j/2φ
(
2j · −m

)
,

ψj,m = 2j/2ψ
(
2j · −m

)
.

With this notation Vj = Span {φj,m}m∈Tj
and Wj = Span {ψj,m}m∈Tj

, where Tj =

{0 ≤ m < 2j} denotes the set of all translations. In all the paper, we assume that
{φj,m}m∈Tj

is an orthonormal basis of Vj. Therefore every function f of L2(Ω) can

be uniquely written as

u =
∑

m∈Tl0

〈u, φl0,m〉φl0,m +
∑

j≥l0

∑

m∈Tj

〈u, ψj,m〉ψj,m.
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Or alternatively formulated, using the projection operators on the linear subspaces
of the MRA,

u = Pl0u+
∑

j≥l0

Qju, (2)

where Pj : L2(R) → Vj are the projectors on Vj and Qj : L2(R) → Wj on Wj:

Pju =
∑

m∈Tj

〈u, φj,m〉φj,m,

Qju =
∑

m∈Tj

〈u, ψj,m〉ψj,m.

We further denote Ψ∗ : L
2(Ω) → l2(Z) the wavelet decomposition operator and

Ψ : l2(Z) → L
2(Ω) its associated reconstruction operator. These operators are

defined in the following way:

Ψ∗u =
(

〈u, φl0,m〉m∈Tl0
, 〈u, ψj,m〉j≥l0,m∈Tj

)
,

Ψ
(
{al0,m}m∈Tl0

, {dj,m}j≥l0,m∈Tj

)
=

∑

m∈Tl0

al0,mφl0,m +
∑

j≥l0

∑

m∈Tj

dj,mψj,m.

We say that the mother-wavelet ψ has M vanishing moments if

for all 0 ≤ m < M,
∫

R

tmψ(t)dt = 0.

Furthermore, it will be assumed that the wavelets ψ and all its derivatives up to the
order M belong to L

∞(Ω) ∩ L
2(Ω)

3. Blurring operators and their mathematical properties

3.1. A mathematical description of blurring operators

In this paper, we consider d-dimensional real-valued images defined on a domain
Ω = [0, 1]d, where d denotes the space dimension. We consider a blurring operator
H : L2(Ω) → L

2(Ω) defined for any u ∈ L
2(Ω) by the following integral operator:

∀x ∈ Ω, Hu(x) =
∫

y∈Ω
K(x, y)u(y)dy. (3)

The function K : Ω × Ω → R is a kernel that defines the Point Spread Function
(PSF) K(·, y) at each location y ∈ Ω. The image Hu is the blurred version of u. By
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the Schwartz kernel theorem, a linear operator of kind (3) can basically represent
any linear operator if K is a generalized function. We thus need to determine prop-
erties of K specific to blurring operators that will allow to design efficient numerical
algorithms to approximate the integral (3). In most practical applications, the kernel
satisfies the following properties:

Spatial decay. The PSFs usually have a bounded support (e.g. motion blurs, con-
volution with the ccd sensors support) or at least a fast spatial decay (Airy
pattern, Gaussian blurs,...). This property can be modelled as

|K(x, y)| ≤ C

‖x− y‖α
2

(4)

whenever ‖x− y‖2 is sufficiently large and where α > 0 describes the decay
speed and C is a positive constant. For instance, the 2D Airy disk describing
the PSF due to diffraction of light in a circular aperture satisfies (4) with α = 4
[13].

Boundedness of the operator. Throughout the paper, we will assume that the
operator H : L2(Ω) → L

2(Ω) is bounded. A sufficient condition for this condi-
tion to hold is that K(x, y) be bounded at every point (x, y) ∈ Ω × Ω. In fact
we will see that K(x, y) can be unbounded on the diagonal x = y.

Smoothness. This assumption means that the function x 7→ K(x, y) is smooth for
all y ∈ Ω \ {x}. This hypothesis is usually satisfied since the PSF is the result
of a convolution with the acquisition device impulse response. In most imaging
applications, this impulse response is smooth (e.g. Airy disk) and thus leads to
a regular PSF. From a mathematical point of view, we may thus assume that
K(·, y) is Cm(Ω) for a certain m ≥ 1 and for all y ∈ Ω \ {x}. Since the PSF
decays spatially, we may also assume that:

|∂m
x K(x, y)| ≤ C

‖x− y‖β
2

(5)

for a certain β > 0 and all y 6= x.

In addition to the above properties, which are characteristic of blurring operators,
we will make the following assumption:

Assumption 1 (The PSFs vary smoothly). The function y 7→ K(x, y) is smooth for
all x ∈ Ω. More precisely, we assume that K(x, ·) is Cm(Ω) for a certain m ≥ 1, for
all x ∈ Ω and that ∣∣∣∂m

y K(x, y)
∣∣∣ ≤ C

‖x− y‖γ
2

(6)
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for a certain γ > 0.

From a practical point of view, it means that the PSF does not vary abruptly
on the domain. This hypothesis is not true in all applications. For instance, when
objects move in front of a still background, the PSF can only be considered as
piecewise regular. The PSFs in astronomy under very turbulent atmosphere may
also vary abruptly. This assumption is however necessary to derive efficient numerical
procedures to approximate H. Moreover, it seems reasonable in many settings. For
instance, in fluorescence microscopy, the PSF width (or Strehl ratio) mostly depends
on the optical thickness, i.e. the quantity of matter laser light has to go through,
and this quantity is intrinsically continuous. Even in cases where the PSFs variations
are not smooth (e.g. spatially varying motion blur), the discontinuities locations are
usually known only approximately and it seems important to smooth the transitions
in order to avoid reconstruction artifacts.

Remark 1. A standard assumption in image processing is that the constant func-
tions are preserved by the operator H. This hypothesis ensures that brightness is
preserved on the image domain. In this paper we do not make this assumption and
thus encompass image formation models comprising blur and attenuation. Handling
attenuation is an important problem in domains such as fluroescence microscopy.

3.2. Link with Calderòn-Zygmund operators

The properties we just described allow to classify blurring operators as Calderòn-
Zygmund operators. The latter have the following definition:

Definition 1 (Calderón-Zygmund operators). A continuous linear operatorH :
D(Rd) → D′(Rd) corresponds to a singular operator of regularity M ≥ 1, if its
distribution-kernel, restricted to R

d × R
d \ {x = y} is a function K(x, y) satisfying

the following properties,

|K(x, y)| ≤ C0
1

|x− y|d
,

|∂m
x K(x, y)| +

∣∣∣∂m
y K(x, y)

∣∣∣ ≤ C1
1

|x− y|d+m , for all m ≤ M.

For a test function u ∈ D(Rd), Hu(x) is defined for all x outside the support of
u, by,

for all x /∈ supp f, Hu(x) =
∫

Rd
K(x, y)u(y)dy.

The operator H is called a Calderón-Zygmund operator if it can be extended to
a continuous linear operator from L

2(Rd) → L
2(Rd).
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Calderòn-Zygmund operators initially appeared to generalize the Riesz transform
which plays an important role in harmonic analysis. They also model many physical
phenomena in acoustics or electromagnetism. Calderòn-Zygmund kernels can be
singular on the diagonal of the domain (see e.g. Biot-Savart law). These operators
have been studied extensively. For example, David and Journé [14] studied sufficient
conditions ensuring the boundedness of the operator from L

2(Rd) → L
2(Rd). For

the sake of efficient operator computation, important results have been derived in
different papers [3, 2]. The authors investigated the operator compression in wavelet
bases. We will provide a numerical study of these ideas in Section 6.

Remark 2. Definition 1 might look awkward to non mathematicians. It can be
highly simplified whenK is sufficiently regular. Definition 2 below is probably enough
for most practical problems encountered in imaging.

Definition 2 (Calderón-Zygmund operators - for beginners). An integral op-
erator H : L2(Ω) → L

2(Ω) with a kernel K ∈ CM(Ω × Ω) is a Calderòn-Zygmund
operator of regularity M ≥ 1 if the following properties are satisfied

|K(x, y)| ≤ C0
1

|x− y|d
,

|∂m
x K(x, y)| +

∣∣∣∂m
y K(x, y)

∣∣∣ ≤ C1
1

|x− y|d+m , for all m ≤ M.

4. A brief review of existing approximation methods

Various approaches have been proposed in the literature to approximate numer-
ically the integral operator (3). In this section, we review some of these methods.
The aim of these methods is to reduce the computational burden. We briefly discuss
their pros and cons. In section 5, we will focus and analyze the most commonly used
approach based on piecewise convolutions. We assume for simplicity that Ω = [0, 1]d.
In many situations, K(x, ·) has bounded support and this property can be exploited
to accelerate computations. In the following we define,

κ = sup
x∈Ω

diam (K(x, ·)) , (7)

where diam (K(x, ·)) = sup
x1,x2∈supp K(x,·)

‖x1 − x2‖∞.
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4.1. Direct discretization

The most straightforward approach to compute the matrix-vector product Hu
numerically consists of discretizing (3) using the rectangle rule. This leads to

∀x ∈ X, Hu(x) =
1

Nd

∑

y∈X

K(x, y)u(y), (8)

where X = {k/N}d
k∈{0,...,N} denotes the set of pixels locations (a discretization of Ω).

This approach is simple to implement but costs O(N2d) arithmetic operations. Note
that other quadrature formulas can be used and improve the approximation quality.

By taking into account the spatial decay of the kernel K, one can easily reduce
the complexity to O(κdN2d) where κ ∈]0, 1] is defined in (7).

This method has the advantages of being straightforward to understand and
implement. It is also easily parallelizable. It is thus a suitable method when the
PSF width remains small over the image domain. However, it becomes unusable
whenever the image size and the PSF sizes become large (e.g. medium sized three-
dimensional images).

4.2. Composition of diffeomorphism and convolution

One of the first alternative method proposed to reduce the computational com-
plexity, is based on first applying a diffeomorphism to the image domain [1, 15, 16, 17]
followed by a convolution using FFTs and an inverse diffeomorphism. The diffeo-
morphism is chosen in order to transform the spatially varying blur into an invariant
one.

This approach suffers from two important drawbacks:

• first it was shown that not all spatially varying kernel can be approximated by
this approach [16],

• second, this method requires good interpolation methods and the use of Eu-
clidean grids with small grid size in order to correctly estimate integrals.

4.3. Approximation by separable kernels

This approach was described in [18, 19]. The main idea is to approximate the
kernel K of H by a separable kernel K̃ that reads:

K̃(x, y) =
d∏

k=1

K̃k(xk, yk)

13



where each K̃k : [0, 1] × [0, 1] → R operates in only one direction. With this as-
sumption, the approximation operator H̃ can be decomposed as the product of d
one-dimensional operators H̃(k)

H̃ = H̃(1) ◦ . . . ◦ H̃(d). (9)

with

∀x ∈ Ω, H̃(k)u(x) =
∫

yk∈[0,1]
K̃k(xk, yk)u ((x1, . . . , yk, . . . , xd)) dyk.

The computational complexity of a product H̃u is O(dκNd+1) operations where κ
denotes the PSF extent in pixels. The complexity of a product is thus reduced by
a factor κd−1Nd−1 compared to the standard discretization described in paragraph
4.1.

The separability assumption (9) implies that y 7→ K(·, y) is a separable function,
meaning that the PSFs are separable. Moreover, it implies that x 7→ K(x, ·) is a sep-
arable function, meaning that the PSFs variations are also separable. Unfortunately,
most physically realistic PSFs are not separable (see e.g. Figure 4). Furthermore, the
separability of the PSFs variations is an extremely restrictive assumption. There are
however a few cases where this approximation might be sound. For instance, in 3D
fluorescence microscopy, it is common to approximate the PSFs by anisotropic Gaus-
sians [20], and to assume that the Gaussian variances only vary along one direction
(e.g. the propagation of light direction) [21, 22, 23].

4.4. Diagonal approximations of blurring operator in wavelet or wavelet packet bases
Some works [25, 26] proposed to approximate blurring operators H using op-

erators diagonal in wavelet or wavelet packet bases. This idea consists in defining
an approximation H̃ of kind H̃ = ΨΣΨ∗, where Ψ∗ and Ψ are wavelet (packet)
transforms and Σ is a diagonal matrix. The wavelet transforms might be redundant
in order to ensure translation invariance. This diagonal approximation mimics the
fact that shift-invariant operators are diagonal in the Fourier domain. These ap-
proaches lead to fast O(Nd) algorithms to compute matrix vector products. In [26],
the authors proposed to deblur images using diagonal approximations of the blurring
operators in redundant wavelet packet bases. This approximation was shown to be
fast and efficient in deblurring images when the exact operator was scarcely known
or in high noise levels. It is however too coarse for applications with low noise levels.

4.5. Piecewise convolutions
Probably the most commonly used approach is the piecewise convolution approx-

imation of the kernel [4, 5, 27, 6]. Due to its wide use, we propose a detailed analysis
of the method in the next section.
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Figure 4: An orthogonal view of a Variable Refractive Index Gibson and Lanni PSF
obtained with the PSF Generator [24]

5. An analysis of piecewise convolutions algorithms

The main idea of this approach is to decompose the image domain into subre-
gions and perform a convolution on each subregion. The results are then gathered
together to obtain the blurred image. In its simplest form, this approach consists in
partitioning the domain Ω in squares of equal sizes. More advanced strategies con-
sist in decomposing the domain with overlapping subregions. The blurred image can
then be obtained by using windowing functions that interpolate the kernel between
subregions (see e.g. [4]).

In this section, we analyze this approach from a theoretical point of view: we
derive upper and lower complexity bounds on the approximation error with respect
to the subregions sizes.

5.1. Description of the method

From now on, we work in 1D, i.e. we assume that d = 1. We consider the
simple case where the region Ω is partitioned into non-overlapping subregions. We
decompose the segment Ω = [0, 1] in m subregions of length 1/m. We denote the

subregions ωk =
[

k−1
m
, k

m

]
for k ∈ {1, . . . ,m} (see Figure 5). The operator H is

15



approximated by H̃m defined in the following way,

H̃m =
m∑

k=1

1ωk
H̃(k) (10)

where H̃(k) is a convolution operator representing the spatially invariant blur in
the k-th subregion. The convolution kernel associated to H̃(k) is set to h̃k(y) =
K(ck, ck − y) where ck denotes the center of the set ωk. This choice ensures that
H̃mu(ck) = Hu(ck).

Figure 5: Illustration of the notation. The domain Ω is decomposed in m = 4
subregions of length 1/m. The PSF support has a maximal width κ. The center of
each subregion ωk is denoted ck.

The structure of the approximation operator allows to use Fast Fourier Trans-
forms on each subregion and leads to fast matrix-vector products.

5.2. Theoretical analysis

We first study this approach in the continuous setting. We derive upper and
lower bounds on the approximation error of the method defined as

∥∥∥H − H̃m

∥∥∥
p→q

.

We examine the cases p = q = 2 and p = 1, q = +∞. We assume that the kernel K
is L-Lipschitz, i.e,

∀(x1, y1), (x2, y2) ∈ Ω, |K(x1, y1) −K(x2, y2)| ≤ L ‖(x1, y1) − (x2, y2)‖2 . (11)

Using this assumption, we can derive an upper-bound controlling the approxima-
tion error.
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Lemma 1 (Upper-Bounds). For all L-Lipschitz kernels K, the approximation errors
are bounded above by,

∥∥∥H − H̃m

∥∥∥
1→∞

≤ L

2m

and ∥∥∥H − H̃m

∥∥∥
2→2

≤ L

2m
. (12)

Proof. Proof in Appendix A.

Remark 3. The same kinds of results hold if instead of the global Lipschitz assump-
tion (11), we assume the less stringent

∀(x, y) ∈ Ω × Ω and for all sufficiently small h |K(x+ h, y + h) −K(x, y)| ≤ Lh.

This assumption basically indicates that the kernel K can be considered as a con-
volution locally since convolution kernels satisfy, K(x + h, y + h) = K(x, y) for all
x, y, h.

Lemma 2 indicates that the bounds in Lemma 1 are tight for all C1 kernels that
are not space invariant.

Lemma 2 (Lower-Bounds). Let K be a C1(Ω × Ω) kernel of a space varying integral
operator. Then there exists constants c1 > 0 and c2 > 0 such that,

∥∥∥H − H̃m

∥∥∥
1→∞

≥ c1

m

and ∥∥∥H − H̃m

∥∥∥
2→2

≥ c2

m
. (13)

Proof. Proof in Appendix A.

5.3. Numerical complexity

In this paragraph, we assume that the image consists of N ∈ N pixels. The PSF
width in the discrete setting is thus approximately equal to κN . We let H̃m denote
the discrete piecewise convolution approximation of H. It is defined similarly to (10).

The complexity results of the piecewise convolution approach in the discrete set-
ting is summarized in the following theorem:

Theorem 3. Let K denote a Lipschitz kernel that is not a convolution. Let H denote
the discretized operator defined in equation (8). Let H̃m denote the discrete piecewise
convolution approximation of H. The following results hold:
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i) A product H̃mu implemented with FFTs with u ∈ R
N is performed in

(N + κNm) log
(
N

m
+ κN

)
operations. (14)

ii) For sufficiently large m and N with m < N , there exists constants 0 ≤ c1 ≤ c2
such that ∥∥∥H − H̃m

∥∥∥
2→2

≤ c2

m
(15)

and ∥∥∥H − H̃m

∥∥∥
2→2

≥ c1

m
. (16)

iii) For sufficiently large N ∈ N and sufficiently small ǫ > 0, the number of opera-
tions required to obtain ‖H − H̃m‖2→2 ≤ ǫ is proportional to

LκN log(κN)

ǫ
. (17)

One cannot hope to improve this complexity result due to Lemma 2. In particular,
the method efficiency is insensitive to higher degrees of regularity of the kernel.
In the next section, we propose an original approach and analyze its complexity.
We show that it provides ǫ-approximation of the blurring operator in O(Nǫ−1/M)
operations, where the scalar M describes the kernel regularity. The main advantage
of this alternative method is that it can automatically handle the kernel regularity
to provide improved complexity bounds.

Remark 4. Many authors proposed to decompose the domain into overlapping sub-
regions and use linear interpolations of PSF on the overlapping domains. We do not
analyze this technique in this paper. It is not clear yet whether it would improve
the complexity result (17). Our numerical experiments do not show a significant
improvement between piecewise convolutions with or without overlap.

6. Wavelet representation of the blurring operator

In this section, we show that blurring operators can be well approximated by
sparse representations in the wavelet domain. Since H is a linear operator in a
Hilbert space, it can be written as H = ΨΘΨ∗, where Θ : l2(Z) → l2(Z) is the (infi-
nite dimensional) matrix representation of the blur operator in the wavelet domain.
Matrix Θ is characterized by the coefficients:

θj,m,k,n = 〈Hψj,m, ψk,n〉 , ∀j,m, k, n ∈ Z. (18)
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In their seminal papers [3, 28, 2], Y. Meyer, R. Coifman, G. Beylkin and V.
Rokhlin prove that the coefficients of Θ decrease fastly away from its diagonal. A
natural approach to obtain fast numerical algorithms to approximate H thus consists
in thresholding Θ to obtain a sparse matrix S.

This section is organized as follows: first we discuss the interest of approximating
H in a wavelet basis rather than using the standard discretization described in para-
graph 4.1. Second, we provide various theoretical results concerning the number of
coefficients necessary to obtain an ǫ-approximation of H in different metrics. A key
step to control the approximation quality is the selection of the coefficients in the
matrix Θ that should be kept. We conclude the section by proposing an algorithm
to select the most relevant coefficients for images belonging to functional spaces such
as that of bounded variation functions.

6.1. Discretization of the operator by projection

The proposed method relies on a discretization of H different from that of para-
graph 4.1. The main idea is to use a projection on a finite dimensional linear sub-
space VN = Span(ψ1, . . . , ψN) of L2(Ω) where (ψ1, ψ2, . . .) is an orthonormal basis of
L

2(Ω). We define a projected operator HN by HNu = PVN
HPVN

u. We can associate
an N ×N matrix Θ to this operator defined by Θ = (〈Hψi, ψj〉)1≤i,j≤N .

It is very common in image processing to assume that natural images belong to
functional spaces containing functions with some degree of regularity. For instance,
images are well represented by bounded variation functions [29] (even though this
assumption is only partially true [30]) or by functions belonging to fractional Sobolev
spaces [31]. This hypothesis can be expressed by assuming that

‖u− PVN
u‖2 = O(N−α) (19)

for a certain α > 0. For instance, in 1D, if (ψ1, ψ2, . . .) is a wavelet or a Fourier
basis and u ∈ H1(Ω) then α = 2. For u ∈ BV (Ω) (the space of bounded variation
functions), α = 1 in 1D and α = 1/2 in 2D [10, 32].

Moreover, if we assume that H is a regularizing operator, meaning that ‖Hu −
PVN

Hu‖2 = O(N−β) with β ≥ α for all u satisfying (19), then we have:

‖Hu−HNu‖2

= ‖Hu− PVN
H(u+ PVN

u− u)‖2

≤ ‖Hu− PVN
Hu‖2 + ‖PVN

u− u‖2

= O(N−α).

This simple analysis shows that under mild assumptions, the Galerkin approxi-
mation of the operator converges and that the convergence rate can be controlled.
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The situation is not as easy for standard discretization using finite elements for in-
stance (see e.g. [33, 34] where a value α = 1/6 is obtained in 2D for BV functions,
while the simple analysis above leads to α = 1/2).

6.2. Discretization by projection on a wavelet basis

The representation of H in a wavelet basis can be seen as a set of operators acting
on the linear subspaces of the multi-resolution analysis. Indeed, u and Hu can be
decomposed as (2), so that

H = Pl0HPl0 +
∑

j≥l0

Pl0HQj +
∑

k≥l0

QkHPl0 +
∑

j≥l0

∑

k≥l0

QkHQj.

Therefore, H is fully characterized by the following family of operators

{Pl0HPl0 , QjHPl0 , Pl0HQk, QjHQk}j,k≥l0
. (20)

To simplify the discussion, we set l0 = 0 and thus assume that every u ∈ L
2([0, 1])

can be decomposed as

u = 〈u, φ0〉φ0 +
+∞∑

j=0

2j−1∑

m=0

〈u, ψj,m〉ψj,m.

In order to get a representation of the operator in a finite dimensional setting,
we truncate the wavelet representation at scale J . This way, we obtain an operator
H acting on a space of dimension N , where N = 1 +

∑J
j=0 2j denotes the numbers

of wavelets kept to represent signals. It can be written in the following convenient
form:

H = ΨΘΨ∗ (21)

where Ψ : RN → L
2([0, 1]) is defined by:

Ψx = x0φ0 +
J∑

j=0

2j−1∑

m=0

xj,mψj,m

and Θ is an N × N matrix which corresponds to a truncated version (also called
finite section) of the matrix θ defined in (18).
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6.3. Theoretical guarantees with sparse approximations

Sparse approximations of integral operators have been studied theoretically in
[2, 3]. To the best of our knowledge, this approach was never applied to the approxi-
mation of spatially varying blur operators. This is surprizing since image processing
is perhaps the domain where wavelets were the most successful. One exception is
[25], where the authors show that wavelets can be useful to approximate foveation
operators. This study was however limited to diagonal approximations which are too
coarse to properly deblur images [26].

Let us recall a typical result that motivates the proposed approach. We stick to
the one-dimensional case for the ease of exposition.

Lemma 4 (Decay of θj,m,k,n – [2, 3]). Assume that H belongs to the Calderón-
Zygmund class (see Definition 1). Assume that K belongs to WM,∞(Ω×Ω). Assume
that the mother wavelet is compactly supported with M vanishing moments.

Then, the coefficients of the operator Θ satisfy the following inequality:

|θj,m,k,n| ≤ γj,m,k,n (22)

where

γj,m,k,n = CM2−(M+ 1

2)|j−k|

(
2−k + 2−j

2−k + 2−j + |2−jm− 2−kn|

)M+1

. (23)

and CM is a constant that depends on the kernel regularity M , but not on j, k,m, n.

Proof. See Appendix C.

Remark 5. The hypothesis K ∈ WM,∞(Ω × Ω) is by no means necessary. We
made this assumption in order to make the proof arguments as simple as possible.
In particular, the operator can have a singularity on its diagonal and have a near
arbitrary Hölder regularity [28]. We refer to the pionneering book [28] and subsequent
works [35, 36] for more refinements.

Lemma (22) basically indicates that the coefficients of Θ decrease away from its
diagonal. A more precise analysis (see Appendix D) allows to show the following
proposition.

Proposition 1. Matrix Θ contains no more than O
(
Nη− 1

M+1

)
coefficients above η.

Said differently, Θ can be approximated by a matrix Θη satisfying ‖Θ − Θη‖1→∞ ≤ η

using only O
(
Nη− 1

M+1

)
coefficients. This is a first result showing that blur operators

can be highly compressed in the wavelet domain and that wavelets are capable of
capturing the kernel regularity automatically.

The following theorem provides complexity results regarding the spectral norm
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Theorem 5. Let Θη be the matrix obtained by zeroing all coefficients in Θ such that

(
2−j + 2−k

2−j + 2−k + |2−jm− 2−kn|

)M+1

≤ η.

Let H̃η = ΨΘηΨ∗ denote the resulting operator. The following results hold:

i) The number of non zero coefficients in Θη is bounded above by

C ′
MN log2(N) η− 1

M+1 (24)

where C ′
M > 0 depends only on M .

ii) The approximation H̃η satisfies
∥∥∥H − H̃η

∥∥∥
2→2

. η
M

M+1 .

iii) The number of coefficients needed to satisfy
∥∥∥H − H̃η

∥∥∥
2→2

≤ ǫ is therefore

bounded above by
C ′′

MN log2(N) ǫ− 1

M (25)

where C ′′
M > 0 depends only on M .

Proof. See Appendix E.

Remark 6. We presented a simple thresholding strategy that provides a good idea
of the approximation abilities of the method. However, it is possible to use different
thresholding strategies to discard the log2(N) term. The matrix is then compressed

to O(Nǫ− 1

M ) coefficients while still satisfying
∥∥∥H − H̃η

∥∥∥
2→2

. ǫ. See for instance

[36] for more advanced techniques. We do not present those schemes as controlling
the spectral norm might not be really relevant in image processing.

Remark 7. There are a few differences making the wavelet approach more attractive
than piecewise convolutions from a theoretical point of view:

• A discretization in the wavelet domain provides better theoretical guarantees
than the standard quadrature rules.

• A comparison between the upper-bound (25) and the bound (17) is instructive.
In the piecewise convolution approach, there is no hope to obtain a better
approximation rate than O

(
1
m

)
(see Proposition 13). For the wavelet approach,

the situation is different: the method is capable of handling automatically the
degree of smoothness of the integral kernel K since there is a dependency in
ǫ− 1

M where M is the smoothness level of the integral operator.

22



• We will see in the next section that the method is quite versatile since different
sparsity patterns can be chosen depending on the knowledge of the blur kernel
and on the regularity of the signals that are to be processed.

• The method can also handle more general singular operators as was shown in
the seminal papers [3, 28, 2].

7. How to define sparsity patterns?

The choice of a sparsity pattern is of great importance to obtain good numerical
results. For instance, a simple thresholding of Θ leads to sub-optimal and somewhat
disappointing results. In this section, we propose algorithms to find good sparsity
patterns. We study the case where Θ is known completely and the case where only
an upper-bound such as (22) is available.

7.1. Problem formalization

Let H be the N × N matrix defined in equation (21). We wish to approximate
H by a matrix H̃K of kind ΨSKΨ∗ where SK is a matrix with at most K non zero
coefficients. Let SK denote the space of N × N matrices with at most K non zeros
coefficients. The problem we address in this paragraph reads

min
SK∈SK

‖H − H̃K‖X→2

= min
SK∈SK

max
‖u‖X≤1

‖Hu− ΨSKΨ∗u‖2.

The solution of this problem provides the best K-sparse matrix SK , in the sense that
no other choice provides a better SNR uniformly on the unit ball {u ∈ R

N , ‖u‖X ≤
1}.

The norm ‖·‖X should be chosen depending on the type of images that have to be
blurred. For instance, it is well-known that natural images are highly compressible in
the wavelet domain. Therefore, a natural choice could be to set ‖u‖X = ‖Ψ∗u‖1. This
choice will ensure a good reconstruction of images that have a wavelet decomposition
with a low ℓ1-norm.

Another very common assumption in image processing is that images have a
bounded total variation. Functions in BV (Ω) can be characterized by their wavelet
coefficients [32]. For instance, if u ∈ BV ([0, 1]), then

|〈u, φ0〉| +
+∞∑

j=0

2j−1∑

m=0

2j |〈u, ψj,m〉| < +∞ (26)
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for all wavelet bases. This result motivated us to consider norms defined by

‖u‖X = ‖ΣΨ∗u‖1

where Σ = diag(σ1, . . . , σN) is a diagonal matrix. Depending on the regularity level
of the images considered, different diagonal coefficients can be used. For instance, for
BV images in 1D, one could set σi = 2j(i) where j(i) is the scale of the i-th wavelet,
owing to (26).

We can now take advantage of the fact that images and operators are sparse in
the same wavelet basis. Let z = Ψ∗u and ∆ = Θ−SK . Since we consider orthogonal
wavelet transforms:

∥∥∥H − H̃K

∥∥∥
X→2

= max
‖u‖X≤1

‖Ψ(Θ − SK)Ψ∗u‖2

= max
‖Σz‖

1
≤1

‖(Θ − SK)z‖2

= max
‖z‖

1
≤1

∥∥∥∆Σ−1z
∥∥∥

2
.

By letting ∆i denote the i-th column of ∆, we finally get the following simple ex-
pression for the operator norm:

∥∥∥H − H̃
∥∥∥

X→2
= max

1≤i≤N

1

σi

‖∆i‖2 . (27)

Our goal is thus to find the solution of:

min
SK∈SK

max
1≤i≤N

1

σi

‖∆i‖2 . (28)

7.2. An algorithm when Θ is known

Finding the minimizer of problem (28) can be achieved using a simple greedy
algorithm: the matrix Sk+1 is obtained by adding the largest coefficient of the column
∆i with largest Euclidean norm to Sk. This procedure can be implemented efficiently
by using quick sort algorithms. The complete procedure is described in Algorithm 1.
The overall complexity of this algorithm is O(N2 log(N)). The most computationally
intensive step is the sorting procedure in the initialisation. The loop on k can be
accelerated by first sorting the set (γj)1≤j≤N , but the algorithm’s complexity remains
essentially unchanged.
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Algorithm 1: An algorithm to find the minimizer of (28).

Input:
Θ: N ×N matrix;
Σ: Diagonal matrix;
K: the number of elements in the thresholded matrix;
Output:
SK : Matrix minimizing (28)
Initialization:
Set SK = 0 ∈ R

N×N ;
Sort the coefficients of each column Θj of Θ in decreasing order;
The sorted columns ΘS

j and index set Ij satisfy ΘS
j (i) = Θj(Ij(i));

Compute the norms γj =
‖Θj‖2

2

σ2
j

;

Define O = (1, . . . , 1) ∈ R
N ;

O(j) is the index of the largest coefficient in ΘS
j not yet added to SK ;

begin
for k = 1 to K do

Find l = arg max
j=1...N

γj ;

Update γl = γl −
(

ΘS
l (O(l))

σl

)2

;

Set O(l) = O(l) + 1 ;
Set SK(Il(O(l)), l) = Θ(Il(O(l)), l) ;

end

end
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7.3. An algorithm when Θ is unknown

In the previous paragraph, we assumed that the full matrix Θ was known. There
are at least two reasons that make this assumption irrelevant. First, computing Θ is
very computationally intensive and it is not even possible to store this matrix in RAM
for medium sized images (e.g. 512 × 512). Second, in blind deblurring problems, the
operator H needs to be inferred from the data and adding priors on the sparsity
pattern of SK might be an efficient choice to improve the problem identifiability.

When Θ is unknown, we may take advantage of equation (22) to define sparsity
patterns. A naive approach would consist in applying Algorithm (1) directly on the
upper enveloppe Γ = (γj,m,k,n)j,m,k,n. However, this matrix cannot be stored and this
approach is applicable only for small images. In order to reduce the computational
burden, one may take advantage of the special structure of the upper-bound: equa-
tion (22) indicates that the coefficients θj,m,k,n can be discarded for sufficiently large

|j−k| and
∣∣∣2−jm− 2−kn

∣∣∣. The quantity |2−jm−2−kn| ∈ [0, 1] measures the shift be-

tween wavelets at different scales. Equation (22) thus means that for a given wavelet
ψj,m, only its spatial neighbours in neighbouring scales have significant correlation
coefficients 〈Hψj,m, ψk,n〉. We may thus construct sparsity patterns using the notion
of multiscale neighbourhoods defined below.

Definition 3 (Multiscale shift). The multiscale shift s ∈ Z between two wavelets
ψj,m and ψk,m is defined by

s =
⌊ n

2max(k−j,0)

⌋
−
⌊ m

2max(j−k,0)

⌋
. (29)

The divisions by 2max(k−j,0) and 2max(j−k,0) allow to rescale the shifts at the coarsest
level.

Definition 4 (Multiscale neighborhood). Let NNN denote the set of all neighbor-
hood relationships, i.e. the set of all possible couples of type (scale, (scale,shift)).
A multiscale neigborhood N is an element of the powerset P(NNN ). Given a multi-
scale neigborhood N , two wavelets ψj,m and ψk,n will be said to be N -neighbors if
(j, (k, s)) ∈ N where s is defined in equation (29).

This definition is illustrated in Figure 6.
The problem of finding a sparsity pattern is now reduced to finding a good mul-

tiscale neighborhood. In what follows, we let NNN (j) denote the set of all possible
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scales

Figure 6: Illustration of a multiscale neighborhood on a 1D sig-
nal. In this example, the neighborhood at scale 1 is N (1) =
{(−1, 0), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1), (2, 0)}. Notice that the two
red wavelets at scale 2 are neighbors of the orange wavelet at scale 1 and that this
relationship is described through only one shift.

neighborhood relationships at scale j. Let N ∈ P(NNN ) denote a multiscale neighbor-
hood. We define the matrix SN as follows:

SN (j,m, k, n) =

{
θj,m,k,n if ψj,m is an N -neighbor of ψk,n

0 otherwise.

Equation (22) indicates that

|θj,m,k,n| ≤ u(j, k, s)

with

u(j, k, s) = CM2−(M+ 1

2)|j−k|

(
2−k + 2−j

2−k + 2−j + 2− min(j,k) |s|

)M+1

.

and where s is defined in (29). Let U be the matrix defined by U(j,m, k, n) =
u(j, k, s). Finding a good sparsity pattern can now be achieved by solving the fol-
lowing problem:

min
N ∈P(NNN ),|N |=K

max
1≤i≤N

1

σi

‖(U − SN )i‖2 (30)

where (U − SN )i denotes the i-th column of (U − SN ).
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In what follows, we assume that σi only depends on the scale j(i) of the i-th
wavelet. Similarly to the previous section, finding the optimal sparsity pattern can
be performed using a greedy algorithm. A multiscale neighborhood is constructed
by iteratively adding the couple (scale, (scale,shift)) that minimizes a residual. This
technique is described in Algorithm 2.

Algorithm 2: An algorithm to find the minimizer of (30).

Input:
u: Upper-bound ;
Σ: Diagonal matrix;
K: the number of elements of the neighborhood;
Output:
N : multiscale neighborhood minimizing (30)
Initialization:
Set N = ∅;

Compute the norms γk =
‖Uk‖2

2

σ2
k

;

begin
for k = 1 to K do

Find j∗ = arg max
j=1...N

γj ;

(The column with largest norm)
Find (k∗, s∗) = arg max

(k,s)∈NNN (j∗)
u2(j∗, k, s)2max(j∗−k,0) ;

(The best scale and shift for this column is (k∗, s∗))
(The number of elements in the neighborhood relationship (j∗, (k, s)) is
2max(j∗−k,0))
Update N = N ∪ {(j∗, (k∗, s∗))} ;
Set γk = γk − u2(j∗, k∗, s∗) · 2max(j∗−k,0)

end

end

Note that the norms γk only depend on the scale j(k), so that the initialisation
step only requires O(N log2(N)) operations. Similarly to Algorithm 1, this algorithm
can be accelerated by first sorting the elements of u(j, k, s) in decreasing order. The
overall complexity for this algorithm is O(N log(N)2) operations.

7.4. The algorithm in higher dimension

The algorithm described in the previous section can be also be applied in 2D
with minor modifications. For each node of the wavelet decomposition quadtree, a
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neighbourhood is defined. It describes which correlation coefficients shall be pre-
served to generate the sparsity pattern. This principle is illustrated on Figure 7a. In
this example, we consider a wavelet transform of depth 2. A neighbourhood N (i) is
associated to each sub-band. For instance N (1) can be represented as follows:

N (1) =




0 0 0 0 0 0 0 0
l l l l l h v d
0 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0




∣∣∣∣∣∣∣∣∣

scale
oriention
vertical translation
horizontal translation

where l stands for the low frequency wavelet, h, v, d for the horizontal, vertical and
diagonal orientations respectively. Figure 7b illustrates the neighbourhood N (1) for
a given wavelet at the center of the image.

(a) (b)

Figure 7: Illustration of the neighbourhood N (1) in the case of a wavelet transform
of depth 2. (7a) The quadtree corresponding to a wavelet transform of depth 2. (7b)
An illustration of the neighbourhood N (1) in the wavelet coefficients representation.
In black, the given wavelet at the center of the image, and in red all the preserved
neighbouring wavelets.

The same algorithm as that described in the previous section can be used if
an upper-bound u of kind |θj1,o1,m1,j2,o2,m2

| ≤ u(j1, o1, j2, o2, s) provided. In this
equation o1 and o2 are parameters describing the wavelet orientation and s is the
2-dimensional shift between wavelets at different scale. Using arguments similar to
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those of Appendix C, it is possible to obtain the following upper-bound:

|θj1,o1,m1,j2,o2,m2
| ≤ CM2−(M+ d

2 )|j−k|

(
2−k + 2−j

2−k + 2−j + |2−jm− 2−kn|

)M+d

. (31)

8. Numerical experiments

In this section we perform various numerical experiments in order to evaluate
the practical efficiency of wavelet based methods. We also perform comparisons
between the piecewise convolution approach and the wavelet based approach. We
first evaluate the method’s efficiency on the direct problem:

• we analyze
∥∥∥H − H̃

∥∥∥ for various operator norms.

• we compare Hu and H̃u for real images u.

We then study the performance of the different methods for deblurring problems.
Two different blur kernels and two images will be considered, see Figures 8 and 9.
The images are rescaled in [0, 1] to ease the visualization of residuals. Due to memory
limitations, we only consider images of size N = 256 × 256. Note that a full matrix
of size N2 stored in double precision weighs around 32 gigabytes.

(a) Mandrill (b) Letters

Figure 8: The two images of size 256 × 256 used in these numerical experiments
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(a) (b)

Figure 9: The PSFs associated to the blur kernels. The PSFs in Figure (9a) are
Gaussians with equal variances increasing in the vertical direction. The PSFs in
Figure (9b) are anisotropic Gaussians with covariance matrices that depend on the
polar coordinates.

8.1. Computation of the full Θ matrix

Before applying our approximation methods, matrix Θ needs to be computed
explicitly. The coefficients 〈Hψj,m, ψk,n〉 are approximated by their discrete counter-
part. If ψj,m and ψk,n denote discrete wavelets (we apologize for the slight abuse of
notation), we simply compute the wavelet transform of Hψj,m and store it into the
(j,m)-th column of Θ. This computation scheme is summarized in Algorithm 3. This
algorithm corresponds to the use of rectangle methods to evaluate the dot-products:

∫

Ω

∫

Ω
K(x, y)ψj,m(y)ψk,n(x)dydx ≃ 1

N2d

∑

x∈X

∑

y∈X

K(x, y)ψj,m(y)ψk,n(x). (32)

In all our numerical experiments, we used Daubechies wavelets with 10 vanishing
moments decomposed at the fourth level. We made several tests not reported here
to find the best combination. It appears that for the considered operators, using
as many vanishing moments as possible was preferable. Using more than 10 van-
ishing moments however led to insignificant performance increase while making the
numerical complexity higher.

8.2. Evaluation of
∥∥∥H − H̃

∥∥∥
2→2

with a simple thresholding strategy

In this first numerical experiment, we evaluate
∥∥∥H − H̃

∥∥∥
2→2

where H̃ is obtained

by piecewise convolutions or sparse approximations in the wavelet domain.
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Algorithm 3: An algorithm to compute Θ

Output:
Θ: the full matrix of H
begin

forall the (j,m) do
Compute the wavelet ψj,m using an inverse wavelet transform
Compute the blurred wavelet Hψj,m

Compute (〈Hψj,m, ψk,n〉)k,n using one forward wavelet transform
Set (〈Hψj,m, ψk,n〉)k,n in the (j,m)-th column of Θ.

end

end

The sparse approximation of the operator is constructed by thresholding the
matrix Θ in order to keep the K largest coefficients. The values K = 2l × N2 with
l ∈ {0 . . . 2 log2 N} have been chosen. This wayK is a multiple of the number of pixels
in the image. The piecewise convolution approximation is constructed by partitioning
the image into 2l × 2l sub-images where l ∈ {0 . . . log2 N}. We also studied the case
where sub-images overlap and linearly interpolated the blur between sub-images as
proposed in [4, 6]. The overlap has been fixed to 50% of the sub-images sizes.

For each sub-image size, and each overlap, the norm
∥∥∥H − H̃

∥∥∥
2→2

is approxi-

mated using a power method [37]. We stop the iterative process when the difference
between the eigenvalues of two successive iterations is smaller than 10−8‖H‖2→2.
The number of operations associated to each type of approximation is computed
using theoretical complexities. For sparse matrix-vector product the number of op-
erations is proportional to the number of non-zero coefficients in the matrix. For
piecewise convolutions, the number of operations is proportional to the number of
windows (2l × 2l) multiplied by the cost of a discrete convolution over a window(

N
2l +Nκ

)2
log2

(
N
2l +Nκ

)
. 1

Figure 10 shows the results of this experiment. The wavelet based method seems
to perform much better than piecewise convolutions. The total number of operations
is reduced by a factor roughly equal to 100 for a precision of 0.1.

1We also carried out numerical computations of the operator norm error when images are sup-
posed to be in Sobolev spaces Hs(Ω) for different s. However, since the results do not differ too
much, we do not present them.
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Figure 10: The operator norms
∥∥∥H − H̃

∥∥∥
2→2

are displayed for the three proposed

kernels. (From left to right, kernels corresponding to Figures 9a and 9b) and with
respect to the number of operations needed to compute H̃u. Plots are diplayed in a
semilogx scale.

8.3. Numerical comparison of different sparsity patterns.

In this numerical experiment, we obtain a K-sparse matrix ΘK using either a
simple thresholding strategy or Algorithm 1. We evaluate the error

∥∥∥H − H̃
∥∥∥

X→2

defined in (27) for both methods. In this experiment, we set σi = 2j(i). It is readily
seen from Figure 11 that Algorithm provides a much better error decay for both
operators.

8.4. Quality of matrix vector products for real images

In this experiment, we compare H̃u to Hu, where u is the image in Figure 8b and
where H̃ is obtained either by piecewise convolutions or by sparse wavelet approx-
imations. We plot the pSNR between the exact blurred image Hu and the blurred
image using the approximated operator H̃u. The two methods are tested with the
following choices:

• We only test the piecewise-convolution with overlap since it produces better
pSNR.

• Different sparsity patterns are tested. The first one is obtained by thresholding
of Θ. The second one is obtained using Algorithm 1. We test three different
diagonal matrices Σ = diag(σ1, . . . , σN2):
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Figure 11: The operator norms
∥∥∥H − H̃

∥∥∥
X→2

are displayed for kernels Figure 9a

(left) and Figure 9b (right); and with respect to the number of operations needed to
compute H̃u. Plots are diplayed in a semilogx scale. Daubechies wavelets with 10
vanishing moments have been used.

1. Σ contains only ones on its diagonal: σi = 1, ∀i.
2. σ is piecewise constant with a value increasing with respect to the scale

of the wavelet coefficients: σi = 2j(i).

3. σi = 2j(i), and σi = 1
2

for indices i corresponding to the low frequency
sub-band.

The third one is obtained using Algorithm 2. The algorithm finds multi-scale
neighbourhoods until K = l × N2 coefficients populate the matrix, with l ∈
{1, . . . , 200}.

The results of this experiment are displayed in Figure 12 for the two kernels
from Figures 9b and 9a. Approximations built with Algorithm 1 and with σi = 2j(i)

increase the pSNR of the blurred image H̃u by almost 10dBs compared to the naive
thresholding approaches. This experiment highlights the relevance of Algorithm 1,
used with the second and third Σ matrices. It allows to construct accurate sparse
approximations of operators when applied to images in BV (Ω).

The piecewise convolution approach performs slightly better than wavelet based
methods for the simple kernel 9a on a small intervall. It corresponds to the parti-
tioning of Ω in 16 × 16 and 32 × 32 sub-windows (i.e. sub-windows of size 16 × 16 or
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8 × 8 pixels). However, for more complex kernels, wavelet methods perform better.
This experiment also show the qualities and limits of the “blind” Algorithm 2.

In this algorithm, the structure of the approximating matrix in deduced from the
upper-bound (31). Matrices constructed using Algorithm 2 perform similarly to
Algorithm 1 (that has a full knowledge of Θ) up to approximately K = 30 × N2

coefficients. Above this number, the approximation quality increases very slowly.
This is probably due to the fact that the upper-bound (31) is too rough: the operator
might be much sparser than what is predicted by the theory. We will see that in
deblurring applications, an approximation made of K = 30×N2 non zero coefficients
is more than enough.

Figure 16 shows the sparsity patterns of matrices obtained with Algorithms 1
and 2 for K = 30N2 and K = 128N2 coefficients. It is readily seen that the sparsity
patterns look very similar and tend to confirm the soundness of Algorithm 2.

Finally, for kernel Figure 9b, we show blurred images H̃u in Figures 13 and 14
for the different sparsity patterns. Figure 13 shows the blurred images H̃u obtained
with Algorithm 1 and with the three different Σ matrices. Figure 14 displays the
blurred images H̃u obtained with the simple thresholding scheme and Algorithm 2.
Finally, Figure 15 provides a comparison of the piecewise convolution approach and
the wavelet based approach in terms of approximation quality and computing times.
The following conclusions can be drawn from this experiment:

• The residual artefacts appearing in the piecewise convolution and wavelet based
approach are different. They are localized at the interfaces between sub-images
for the piecewise convolution approach while they span the whole image do-
main for the wavelet based approach. It is likely that using translation and/or
rotation invariant wavelet would improve substancially the reconstruction.

• The approximation using the third Σ matrix dedicated to BV images produces
the best results and should be preferred over more simple approaches.

• The sparsity pattern obtained using Algorithm 2 suffers from more artifacts
than the other approaches. The quality is however acceptable from a visual
point of view.

• In our implementation, the piecewise convolution approach (implemented in C)
is largely outperformed by the wavelet based method (implemented in Matlab
with C-mex files). For instance, for a precision of 45dBs, the wavelet based
approach is about 10 times faster. Note that no method is multi-threaded, so
that the comparison seems fair.
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Figure 12: pSNR of the blurred image using the approximated operators H̃u with
respect to the blurred image using the exact operator Hu. The results have been
obtained using the letters image Figure 8b.

8.5. Deblurring problem

In this experiment we compare the methods efficiency in deblurring problems.
We assume the following classical image degradation model

v = Hu+ η, η ∼ N
(
0, σ2Id

)
, (33)

where v is the degraded image observed, u is the image to restore, H in the blurring
operator and σ2 is the noise variance. A standard TV-L2 optimization problem is
solved to restore the image u:

Find u∗ ∈ arg min
u∈RNd

,‖H̃u−v‖2

2
≤α

TV (u), (34)

where H̃ is an approximating operator and TV is the isotropic total variation of
u. The optimization problem is solved using the primal-dual algorithm proposed in
[38]. We do not detail the resolution method since it is now well documented in the
literature.

An important remark is that the interest of the total variation term is not only
used to regularize the ill-posed inverse problem, but also to handle the errors in the
operator approximation. In practice we found that setting α = (1 + ǫ)σ2N where
ǫ > 0 is a small parameter provides good experimental results.
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(a) σi = 1 – pSNR =
33.62dB

(b) σi = 2j(i) – pSNR =
44.38dB

(c) σi = 2j(i), σi = 1/2 –
pSNR = 45.87dB

Figure 13: Blurred images using matrices formed with Algorithm 1 and for the kernel
Figure 9b. K = 30N2 coefficients are kept in the matrices. Algorithm 1 has been
applied with the three different Σ matrices. The blurred images H̃u are shown on
top. The differences Hu − H̃u are also displayed on the bottom. They all have the
same color range.
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(a) pSNR = 41.15dB (b) pSNR = 38.25dB

Figure 14: Blurred images using the wavelet based method with two different sparsity
patterns and the kernel in Figure 9b. K = 30N2 coefficients are kept in the matrices.
Matrices are obtained with the simple threshodling (left) and Algorithm 2 (right).
The differences Hu− H̃u are displayed within the same color range.
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Piece. Conv. Difference Algorithm 1 Difference l =
2 × 2 31.90 dB 36.66 dB 5

1.21 sec 0.039s
4 × 4 38.49 dB 45.87 dB 30

0.17 sec 0.040s
8 × 8 44.51 dB 50.26 dB 50

0.36 sec 0.048s
16 × 16 53.75 dB 57.79 dB 100

0.39 sec 0.058s

Figure 15: Blurred images and the differences Hu − H̃u for the kernel Figure 9b.
Results on the left are obtained using piecewise convolution approximations with
2 × 2, 4 × 4, 8 × 8 and 16 × 16 partitionings all with 50% overlap. Results on the
right are obtained using Algorithm 1 with the third Σ matrix keeping K = lN2

coefficients. The pSNR and the time needed for the computation for the matrix-
vector product are shown. The differences are displayed within the same color range
as Figures 13 and 14
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(a) Algorithm 1 – K = 30N2 (b) Algorithm 2 – K = 30N2

(c) Algorithm 1 – K = 128N2 (d) Algorithm 2 – K = 128N2

Figure 16: The structure of the wavelet matrices of ΘK are displayed for Algorithms
1 and 2 and for K = 30N2 and K = 128N2 coefficients. Algorithm 1 has been
applied using the third Σ matrix.
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In Figures 17 to 20, we present some deblurring results with or without noise for
image Figure 8a with kernel Figure 9a and for image Figure 8b with kernel 9b. Figure
17 shows that without noise and the simple kernel 9a, 4 × 4 piecewise convolutions
perform better than wavelet approaches with 30N2. Piecewise convolution achieve
better pSNR but are 4 times slower. For equivalent computation times, wavelet
approaches should be constructed with 100N2 coefficients.

In Figures 19 and 20 we can notice that wavelet methods perform better than
piecewise convolution. For this experiment they are roughly 10 times faster. Also
notice that Algorithm 1 is strongly preferable to a simple thresholding since it reduces
deblurring artefacts.

With noise, all methods perfom nearly the same as the exact operator. It suggests
that it is not necessary to construct accurate approximations of the operators in
practical problems. This observation is also supported by the experiment in Figure
21. In this experiment, we plot the pSNR of the deblurred image in presence of noise
with respect to the number of elements in ΘK . Interestingly, a matrix containing
only 20N2 coefficients leads to deblurred images close to the results obtained with
the exact operator. In this experiment, a total of K = 5N2 coefficients in ΘK is
enough to retrieve satisfactory results. This is a very encouraging result for blind
deblurring problems.

9. Conclusion

9.1. Brief summary

In this paper, we analyzed standard approaches to efficiently approximate spa-
tially varying blur. We showed that the standard piecewise convolution approach has
an O(N log(N)ǫ−1) complexity where ǫ denotes the desired accuracy in l2. Wavelet
based methods have a greater adaptivity to the smoothness of the operator and ex-
hibit an O(N log(N)ǫ−1/M) complexity, where M denotes the kernel regularity. This
method is versatile since it is possible to adapt it to the kind of images that have to
be treated. We showed that much better performance can be obtained by leveraging
the fact that natural signals exhibit some structure in the wavelet domain. These
theoretical results were confirmed by practical experiments on real images. Even
though our conclusions are still preliminary since we tested only small 256 × 256
images, the wavelet based methods seem to significantly outperform the piecewise
convolutions approaches with or without overlap. Moreover, they seem to provide
satisfactory deblurring results on practical problems with a complexity no greater
than 5N2 operations, where N2 denotes the pixels number.
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(a) Degraded image (b) Exact operator – 35.38dB

(c) Simple thresholding – 31.54dB (d) Algorithm 1 – 31.03dB

(e) Piecewise convolutions – 33.81dB

Figure 17: Deblurring results for kernel Figure 9a and without noise. Top-left: degraded
image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the
wavelet based method and a simple thresholding. Middle-right: deblurred by the wavelet
based method and Algorithm 2 with the third Σ matrix. Bottom: deblurred using a
4 × 4 piecewise convolution algorithm with 50% overlap. For wavelet methods K = 30N2

coefficients are kept in matrices. pSNR are displayed for each restoration.
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(a) Degraded image (b) Exact operator – 25.85dB

(c) Simple thresholding – 25.83dB (d) Algorithm 1 – 25.83dB

(e) Piecewise convolutions – 25.81dB

Figure 18: Deblurring results for kernel Figure 9a and with σ = 0.02. Top-left: degraded
image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the
wavelet based method and a simple thresholding. Middle-right: deblurred by the wavelet
based method and Algorithm 2 with the third Σ matrix. Bottom: deblurred using a
4 × 4 piecewise convolution algorithm with 50% overlap. For wavelet methods K = 30N2

coefficients are kept in matrices. pSNR are displayed for each restoration.
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(a) Degraded image (b) Exact operator – 34.53dB

(c) Simple thresholding – 30.96dB (d) Algorithm 1 – 30.56dB

(e) Piecewise convolutions – 28.37dB

Figure 19: Deblurring results for kernel Figure 9b and without noise. Top-left: degraded
image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the
wavelet based method and a simple thresholding. Middle-right: deblurred by the wavelet
based method and Algorithm 2 with the third Σ matrix. Bottom: deblurred using a
4 × 4 piecewise convolution algorithm with 50% overlap. For wavelet methods K = 30N2

coefficients are kept in matrices. pSNR are displayed for each restoration.
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(a) Degraded image (b) Exact operator – 28.97dB

(c) Simple thresholding – 27.89dB (d) Algorithm 1 – 28.02dB

(e) Piecewise convolutions – 27.12dB

Figure 20: Deblurring results for kernel Figure 9b and with σ = 0.02 noise. Top-left:
degraded image. Top-right: deblurred using the exact operator. Middle-left: deblurred
by the wavelet based method and a simple thresholding. Middle-right: deblurred by the
wavelet based method and Algorithm 2 with the third Σ matrix. Bottom: deblurred using
a 4×4 piecewise convolution algorithm with 50% overlap. For wavelet methods K = 30N2

coefficients are kept in matrices. pSNR are displayed for each restoration.
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Figure 21: pSNR of the deblurred image with respect to the number of coefficients
in the matrix divided by N2 for the image Figure 8a and the kernel Figure 9a. The
matrix is constructed using Algorithm 1 with the third Σ matrix with K = lN2

coefficients for l from 1 to 30. Deblurred imaged using these matrices are compared
with the one obtained with the exact operator.
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9.2. Outlook

We provided a simple complexity analysis based solely on the global regularity of
the kernel function. It is well known that wavelets are able to adapt locally to the
structures of images or operators [39]. The method should thus provide an efficient
tool for piecewise regular blurs appearing in computer vision for instance. It could
be interesting to evaluate precisely the complexity of wavelet based approximations
for piecewise regular blurs.

An important problem of the wavelet based approach is the need to project
the operator on a wavelet basis. In this paper we performed this operation using
the computationally intensive Algorithm 3. It could be interesting to derive fast
projection methods for certain blur families.

Another exciting research perspective is the problem of blind deconvolution. Ex-
pressing the unknown operator as a sparse matrix in the wavelet domain is a good
way to improve the problem identifiability. This is however far from being sufficient
since the blind deconvolution problem has far more unknowns (a full operator and an
image) than data (a single image). Further assumptions should thus be made on the
wavelet coefficients regularity, and we plan to study this problem in a forthcoming
work.

Finally let us mention that we observed some artifacts when using the wavelet
based methods with high sparsity levels. This is probably due to their non translation
and rotation invariance. It could be interesting to study sparse approximations in
redundant wavelet bases or curvelet bases. It was shown for instance in [40] that
curvelets are near optimal to represent Fourier integral operators.
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Appendix A. Proof of Lemma 1 and 2

Before proving lemmas 1 and 2, we need additional results.

Lemma 6. The integral operator H̃m can be written as follows

H̃mu =
∫

Ω
K̃(x, y)u(y)dy

with
K̃(x, y) = K (c(x), c(x) − x+ y)

and where c(x) denotes the center of the subregion containing x.

c(x) =
⌊mx⌋
m

+
1

2m
.

Proof. By construction, K̃ should lead to piecewise convolutions. Therefore, we can
associate a convolution kernel h̃k for each ωk defined for all x ∈ ωk by K̃(x, y) =
h̃k(x − y). Assuming that h̃ corresponds to the kernel K at the center of ωk we get
in each ωk,

K̃(c(x), ·) = K(c(x), ·) ⇔ K(c(x), ·) = h̃k(c(x) − ·).

Hence, h̃k(y) = K(c(x), c(x) − y).

Lemma 7 (Convolution). An integral operator H with a C1(Ω,Ω) kernel K is a
convolution iff

∀(x, y) ∈ Ω × Ω,

〈
∇K(x, y),

(
1
1

)〉
= 0.

Proof. First suppose that H is a convolution. It means that K(x, y) = k(x − y). A
simple differentiation leads to

∂xK(x, y) + ∂yK(x, y) = k′(x− y) − k′(x− y) = 0.

Second, suppose that

∀(x, y) ∈ Ω × Ω,

〈
∇K(x, y),

(
1
1

)〉
= 0.

It means that K(x + h, y + h) = K(x, y) for all x, y, h. Therefore, choosing h = −y
leads to

K(x, y) = K(x− y, 0) = k(x− y), ∀x, y.
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Proof of Lemma 1. First we study
∣∣∣K(x, y) − K̃(x, y)

∣∣∣. Since K is L-Lipschitz (see

(11)) we get

∣∣∣K(x, y) − K̃(x, y)
∣∣∣ = |K(x, y) −K(c(x), c(x) − x+ y)| ≤

√
2L |x− c(x)| .

∥∥∥H − H̃m

∥∥∥
1→∞

= sup
x∈Ω

sup
y∈Ω

∣∣∣K(x, y) − K̃(x, y)
∣∣∣

≤ sup
x∈Ω

√
2L |x− c(x)|

≤ L√
2m

To study the spectral norm, we consider a function u with unit Euclidean norm.

∥∥∥Hu− H̃mu
∥∥∥

2

2
=
∫

x∈Ω

(∫

y∈Ω

(
K(x, y) − K̃(x, y)

)
u(y)dy

)2

dx

≤
∫

x∈Ω

(∫

y∈Ω

(
K(x, y) − K̃(x, y)

)2
dy
)(∫

y∈Ω
u2(y)dy

)
dx

≤
∫

x∈Ω

∫

y∈Ω

(
K(x, y) − K̃(x, y)

)2
dydx

≤
∫

x∈Ω

∫

y∈Ω
2L2 |x− c(x)|2 dydx

= 2L2
∫

x∈Ω
|x− c(x)|2 dx, since |Ω| = 1

= 2L2
m∑

k=1

∫ k
m

k−1

m

|x− c(x)|2 dx

≤ 2L2
m∑

k=1

1

4m2

1

m

≤ L2

2m2
.

Proof of Lemma 2. If H is a C1 kernel that is not a convolution then, Lemma 7

ensures that there exists (x0, y0) ∈ Ω×Ω such that

〈
∇K(x0, y0),

(
1
1

)〉
6= 0. Since K

is C1, there exists h > 0 and ǫ > 0 such that ∀(x, y) ∈ I×J := [x0, x0 +h]×[y0, y0 +h]
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either

〈
∇K(x, y),

(
1
1

)〉
> ǫ or

〈
∇K(x, y),

(
1
1

)〉
< −ǫ. We assume without loss of

generality that the first inequality holds. We define

Im =
m⋃

k=1

[
k

m
− 1

4m
,
k

m

]
∩ I.

Assuming that ⌊mh⌋ ≥ 2, ensures that I is partitioned in at least two subregions
and that 2h

11
≤ |Im| ≤ h

4
. In order to prove (13), we exhibit a pathological vector u

with unit Euclidean norm:

u =
1J√
h
.

We first bound
∥∥∥H − H̃m

∥∥∥
2

from below as follows:

∥∥∥H − H̃m

∥∥∥
2

2
≥
∥∥∥Hu− H̃mu

∥∥∥
2

2

≥
∫

x∈Im

(
Hu− H̃mu

)2
(x)dx

=
∫

x∈Im

(∫

y∈Ω
K(x, y) −K(c(x), c(x) − x+ y)u(y)

)2

dx

=
∫

x∈Im

1

h

(∫

y∈J
K(x, y) −K(c(x), c(x) − x+ y)

)2

dx

Since

K(x2, y2) = K(x1, y1) +
∫ 1

t=0

〈
∇K(x1 + t(x2 − x1), y1 + t(y2 − y1)),

(
x2 − x1

y2 − y1

)〉
dt

we get:

K(x, y) −K(c(x), c(x) − x+ y)

=
∫ 1

t=0

〈
∇K (c(x) + t(x− c(x)), c(x) − x+ y + t(x− c(x))) ,

(
x− c(x)
x− c(x)

)〉
dt

= (x− c(x))
∫ 1

t=0

〈
∇K (a+ th, b+ th)) ,

(
1
1

)〉
dt
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with h = x−c(x), a = c(x), b = c(x)−x+y. Since

〈
∇K (a+ th, b+ th) ,

(
1
1

)〉
> ǫ,

we have:

(∫

y∈J
K(x, y) −K(c(x), c(x) − x+ y)

)2

≥ (x− c(x))2 ǫ2h2

On Im, (x− c(x))2 ≥ 1
16m2 . Thus

(∫

y∈J
K(x, y) −K(c(x), c(x) − x+ y)

)2

≥ 1

16

ǫ2h2

m2
.

A lower bound of the error can be derived as follows:

∥∥∥Hu− H̃mu
∥∥∥

2

2
≥ 1

16

ǫ2h

m2
|Im|

≥ 2

11

1

16

ǫ2h2

m2

Similarly, choosing v = 1
h
1J , we get

∥∥∥Hv − H̃mv
∥∥∥

∞
= sup

x∈Im

∣∣∣Hv − H̃mv
∣∣∣

= sup
x∈Im

1

h

∣∣∣∣
∫

y∈J
K(x, y) − K̃(x, y)dy

∣∣∣∣

≥ 1

4m
.

Appendix B. Proof of Theorem 3

Proof of i). The discrete convolutions have to be performed on extended regions of
size N/m + κN in order to correctly handle the boundary conditions. Each con-
volution is thus performed on a sub-region with N/m + κN pixels. This can be
performed in O ((N/m+ κN) log(N/m+ κN)) arithmetic operations. Since there
are m subwindows, we get the announced result.

Proof of ii). The proof of this fact is similar to the one in the continuous setting.
The only additional requirement is that N and m are sufficiently large to partition
I and J in at least two subregions.
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Proof of iii). This is a simple consequence of complexity bound (14) and the bounds

estimates provided in equations (15) and (16). In order to satisfy
∥∥∥H − H̃m

∥∥∥
2→2

≤ ǫ,

it is necessary and sufficient to set L
2m

≤ ǫ. The smallest integer ensuring this
condition is m = ⌈ L

2ǫ
⌉. Therefore, the numerical complexity of the method becomes

N
(

1 +
κL

ǫ

)
log

(
Nǫ

L
+ κN

)
.

The asymptotics of this complexity for small ǫ is

LκN log(κN)

ǫ
.

Appendix C. Proof of Lemma 4

We let ΠM denote the set of polynomials of degree less or equal to M .
Lemma 8 below is a common result in numerical analysis [41] (see also Theorem

3.2.1 in [35]). It ensures that the approximation error of a function by a polynomial
of degree M is bounded by the Sobolev semi-norm WM,p.

Lemma 8 (Polynomial approximation). For 1 ≤ p ≤ +∞, M ∈ N
∗ and Ω ⊂ R

d a
bounded domain, the following bound holds

inf
g∈ΠM

‖f − g‖
Lp(Ω) ≤ C |f |W M+1,p(Ω) , (C.1)

where C is a constant that depends on d,M, p and Ω only.
Moreover, if Ih ⊂ Ω ⊂ R

d is a cube of sidelength h, the following estimate holds

inf
g∈ΠM

‖f − g‖
Lp(Ih) ≤ ChM+1 |f |W M+1,p(Ih) , (C.2)

where C is a constant only depending on d,M, p and Ω.

Let Ij,m denote the support of the wavelet ψj,m and λj,m denote its center. From
the wavelets definition, we get

Ij,m = [2−j(m− 1), 2−j(m+ 1)]

therefore |Ij,m| = 2 ·2−j and λj,m = 2−jm. We will now prove Lemma 4 in the simple
case where K ∈ WM,∞ for the ease of exposition. This assumption ensures that K
is non singular on its diagonal.
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Proof of Lemma 4. Since the mapping (x, y) 7→ K(x, y)ψj,m(y)ψk,n(x) is bounded, it
is also absolutely integrable on compact domains. Therefore 〈Hψj,m, ψk,n〉 is well-
defined for all (j,m, k, n). Moreover Fubini’s theorem can be applied and we get

〈Hψj,m, ψk,n〉 =
∫

Ik,n

∫

Ij,m

K(x, y)ψj,m(y)ψk,n(x)dydx

=
∫

Ij,m

∫

Ik,n

K(x, y)ψj,m(y)ψk,n(x)dxdy.

To prove the result, we distinguish the cases j ≤ k and j > k. In this proof, we
focus on the case j ≤ k. The other one can be obtained by symmetry, using the facts
that 〈Hψj,m, ψk,n〉 = 〈ψj,m, H

∗ψk,n〉 and that H and H∗ are both Calderòn-Zygmund
operators in the same class.

To exploit the regularity ofK and ψ, note that for all g ∈ ΠM−1,
∫

Ik,n

g(x)ψk,n(x)dx =

0 since ψ has M vanishing moments. Therefore,

〈Hψj,m, ψk,n〉 =
∫

Ij,m

inf
g∈ΠM−1

∫

Ik,n

(K(x, y) − g(x))ψj,m(y)ψk,n(x)dxdy,

and

|〈Hψj,m, ψk,n〉| ≤
∫

Ij,m

inf
g∈ΠM−1

∫

Ik,n

|K(x, y) − g(x)| |ψj,m(y)| |ψk,n(x)| dxdy

≤
∫

Ij,m

inf
g∈ΠM−1

‖K(·, y) − g‖
L∞(Ik,n) ‖ψk,n‖

L1(Ik,n) |ψj,m(y)| dy.

By Lemma 8, inf
g∈ΠM−1

‖K(·, y) − g‖
L∞(Ik,n) . 2−kM |K(·, y)|W M,∞(Ik,n) since Ik,n is a

cube of sidelength 2 · 2−k. We thus obtain

|〈Hψj,m, ψk,n〉| . 2−kM ‖ψk,n‖
L1(Ik,n) ‖ψj,m‖

L1(Ij,m) ess sup
y∈Ij,m

|K(·, y)|W M,∞(Ik,n)

. 2−kM2− dj
2 2− dk

2 ess sup
y∈Ij,m

|K(·, y)|W M,∞(Ik,n) (C.3)

since ‖ψj,m‖
L1 = 2− dj

2 ‖ψ‖
L1 . To conclude the proof, we distinguish the cases where

ψj,m and ψk,n have supports distant from more than 2 · 2−j or not.

Case 1: |λj,m − λk,n| ≥ 4 · 2−j. This is a sufficient condition for the supports to be dis-
joints. More precisely, ∀x ∈ Ik,n and ∀y ∈ Ij,m, we get |x− y| ≥ 2 ·2−j. Indeed,
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|x− λk,n| ≤ 2−k ≤ 2−j ≤ 1
4

|λj,m − λk,n| and |y − λj,m| ≤ 2−j ≤ 1
4

|λj,m − λk,n|.
Hence, by triangle inequality,

|λj,m − λk,n| = |(λj,m − y) + (x− λk,n) + (y − x)|
≤ |λj,m − y| + |λk,n − x| + |x− y|

≤ 1

2
|λj,m − λk,n| + |x− y| ,

so that |x− y| ≥ 1
2

|λj,m − λk,n| ≥ 2 · 2−j. We can end the proof as follows

ess sup
y∈Ij,m

|K(·, y)|W M,∞(Ik,n) . ess sup
|x−y|≥ 1

2 |λj,m−λk,n|
1

|x− y|M+d [check def]

≤
(

2

|λj,m − λk,n|

)M+d

.

This inequality is tighter than the one given in equation (22). Indeed:

2

|λj,m − λk,n| ≤ 2 · (1 + 2j−k)

|λj,m − λk,n| ≤ 4 · (1 + 2j−k)

2−j + 2−k + |λj,m − λk,n| .

Combining this upper-bound with (C.3), we obtain

|〈Hψj,m, ψk,n〉| . 2(j−k)(M+d/2)

(
2−j + 2−k

2−j + 2−k + |λj,m − λk,n|

)M+d

.

Case 2: |λj,m − λk,n| ≤ 4 · 2−j. In that case, the support may intersect and we get

2−j + 2−k

2−j + 2−k + |λj,m − λk,n| ≥ 2−j

2 · 2−j + 4 · 2−j
≥ 1

6
.

Therefore it suffices to prove that |〈Hψj,m, ψk,n〉| . 2(j−k)( d
2

+M). Since K ∈
WM,∞,

ess sup
y∈Ij,m

|K(·, y)|W M,∞(Ik,n) < +∞

and we get

|〈Hψj,m, ψk,n〉| . 2− dj
2 2− dk

2 2−kM ≤ 2− dj
2 2− dk

2 2−kM2jM , since j ≥ 0.
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Appendix D. Proof of Proposition 1

Proof of Proposition 1. Let S = {0 . . . , log2(N)} denote the set of admissible scales
and Tj = {0, . . . , 2j − 1} denote the set of admissible shifts at scale j. Let Nη denote
the total number of coefficients in Θ above a threshold η ≥ 0. This number is given
by

Nη =
log2(N)∑

i=0

log2(N)∑

j=0

# {m ∈ Tj, n ∈ Tk, |θj,m,k,n| ≤ η} .

From Lemma 4, we get that |θj,m,k,n| ≤ CM2−(M+ 1

2)|j−k|

(
ωj,k

ωj,k + |2−jm− 2−kn|

)M+1

with ωj,k = 2−j + 2−k. From this upper-bound, we infer that

# {m ∈ Tj, n ∈ Tk, |θj,m,k,n| ≤ η} ≤ #Gj,k

where
Gj,k = {m ∈ Tj, n ∈ Tk,

∣∣∣2−jm− 2−kn
∣∣∣ ≥ Bη

j,k}
and

Bη
j,k = ωj,k

[(
η

CM

)− 1

M+1

2−(M+1/2

M+1 )|j−k| − 1

]
.

In the following we will denote aM =
(

M+1/2
M+1

)
. The cardinal of Gj,k can be

evaluated by noting that

(m,n) ∈ Gj,k ⇔ −Bη
j,k ≤ 2−kn ≤ Bη

j,k and n ∈ Tk

Thus for fixed m, j and k, there are at most 2k+1Bη
j,k indices belonging to Gj,k and

#Gj,k ≤ 2j2k+1Bη
j,k. We can finish the proof as follows

Nη .
log2(N)∑

j=0

log2(N)∑

k=0

2j2kBη
j,k

.

(
η

CM

)− 1

M+1
log2(N)∑

j=0

log2(N)∑

k=j

2j2k(2−j + 2−k)2aM (j−k)

=
(
η

CM

)− 1

M+1




log2(N)∑

j=0

log2(N)∑

k=j

2k2aM (j−k) +
log2(N)∑

j=0

log2(N)∑

k=j

2j2aM (j−k)




=
(
η

CM

)− 1

M+1




log2(N)∑

j=0

2jaM

log2(N)∑

k=j

2k(1−aM ) +
log2(N)∑

j=0

2j(1+aM )
log2(N)∑

k=j

2−kaM
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.

(
η

CM

)− 1

M+1




log2(N)∑

j=0

2jaMN1−aM +
log2(N)∑

j=0

2j(1+aM )2−jaM




=
(
η

CM

)− 1

M+1




log2(N)∑

j=0

2jaM

log2(N)∑

j=0

2jN1−aM




.

(
η

CM

)− 1

M+1
(
N +N1−aMNaM

)

.

(
η

CM

)− 1

M+1

N.

We used the fact that aM =
(

M+1/2
M+1

)
< 1.

Appendix E. Proof of Theorem 5

Proof of i). The notations in this proof are the same as in Appendix D. First note
that the thresholding rule in Theorem 5 is equivalent to zeroing all coefficients such

that
∣∣∣2−jm− 2−kn

∣∣∣ ≥ Cη
j,k with Cη

j,k := ωj,k

(
η− 1

M+1 − 1
)
.

Let us define

G =
{
(j,m, k, n) ∈ S × Tj × S × Tk,

∣∣∣2−jm− 2−kn
∣∣∣ ≤ Cη

j,k

}
.

and
Gj,k :=

{
m ∈ Tj, n ∈ Tk,

∣∣∣2−jm− 2−kn
∣∣∣ ≤ Cη

j,k

}
.

Using an elementary argument described in Appendix D, we get that the number
of coefficients in Gj,k is proportional to 2j2kBη

j,k. Hence the overall number of non
zero coefficients #G in Θη satisfies

#G .
log2(N)∑

j=0

log2(N)∑

k=j

2j2kBη
j,k

. η− 1

M+1

log2(N)∑

j=0

log2(N)∑

k=j

2j2k(2−j + 2−k)

= η− 1

M+1




log2(N)∑

j=0

log2(N)∑

k=j

2k +
log2(N)∑

j=0

log2(N)∑

k=j

2j




. η− 1

M+1




log2(N)∑

j=0

N +
log2(N)∑

j=0

2j log2(N)




60



. η− 1

M+1N log2(N).

Proof of ii). Since Ψ is an orthogonal wavelet transform

∥∥∥H − H̃η

∥∥∥
2→2

= ‖Θ − Θη‖2→2 .

Let ∆η = Θ − Θη. We will make use of the following inequality

‖∆η‖2
2→2 ≤ ‖∆η‖1→1‖∆η‖∞→∞ (E.1)

Since the upper-bound (23) is symmetric and ‖∆η‖1→1 = max
j,m

∑

k,n

|∆j,m,k,n| and

‖∆η‖∞→∞ = max
k,n

∑

j,m

|∆j,m,k,n|, it suffices to find an upper-bound on ‖∆η‖1→1.

By definition of Θη we get that
∑

k,n

|∆j,m,k,n| =
∑

k∈S

∑

n
s.t.(m,n)∈Gj,k

|θj,m,k,n|. We split

the cases k ≥ j and k < j. We begin with the case k ≥ j and we note δ = k− j. We
have

|θj,m,k,n| ≤ CM2−(M+ 1

2)δ

(
ωj,k

ωj,k + |2−jm− 2−kn|

)M+1

= CM2−(M+ 1

2)δ

(
1 + 2−δ

1 + 2−δ + |m− 2−δn|

)M+1

.

The first sum on n is then bounded above by

∑

n
s.t.(m,n)∈Gj,k

|θj,m,k,n| ≤ CM2−(M+ 1

2)δ
∑

n
s.t.(m,n)∈Gj,k

(
1 + 2−δ

1 + 2−δ + |m− 2−δn|

)M+1

≤ 2CM2−(M+ 1

2)δ
∑

n>2δ(m+2jCη
j,k

)

(
1 + 2−δ

1 + 2−δ −m+ 2−δn

)M+1

.

We can end up as follows

∑

n
s.t.(m,n)∈Gj,k

|θj,m,k,n|
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. 2−(M+ 1

2)δ(1 + 2−δ)M+1
∫

x≥2δ(m+2jCη
j,k

)

(
1

1 + 2−δ −m+ 2−δx

)M+1

dx

≤ 2−(M− 1

2)δ(1 + 2−δ)M+1 1

M

(
1

1 + 2−δ + 2jCη
j,k

)M

= 2−(M− 1

2)δ(1 + 2−δ)M+1 1

M


 1

1 + 2−δ + (1 + 2−δ)
(
η− 1

M+1 − 1
)




M

≤ 2−(M− 1

2)δ(1 + 2−δ)η
M

M+1 . 2−(M− 1

2)δη
M

M+1 .

By summing on k ≥ j we get

log2 N∑

k=j

∑

n
s.t.(m,n)∈Gj,k

|θj,m,k,n| ≤
log2(N)∑

k=j

CM2−(M− 1

2)δη
M

M+1 . η
M

M+1

Finally, we can see that there exists a constant CM depending only on M such
that

‖∆η‖1→1 ≤ CMη
M

M+1 and ‖∆η‖∞→∞ ≤ CMη
M

M+1 .

It suffices to use inequality (E.1) to conclude.

Proof of iii). This is a direct consequence of point i) and ii).
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