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Abstract: In order to solve the fault detection and isolation problem, a diagnostic procedure is 

used. This procedure is composed of two steps: residuals generation followed by their 

evaluation within decision functions. Many ways have been developed to generate residuals. 

Among them, we quote the well known parity space approach and the observer based approach. 

These methods are known to produce structural equivalent residuals. As a consequence, one 

wonders which method to use in order to design a more robust on-line detection system. 

Besides, unknown input observers are known to be helpful, within Generalised Observer 

Schemes, to improve robustness with respect to systems uncertainties. Then, it is important to 

know if this equivalence is still true for residuals based on unknown input observers. So the goal 

of this paper is to give theorems so that answers to the previous interrogations could be given 

and discussed. 

 

Key words: Redundancy, fault detection, fault isolation, observers, unknown input, parity space, 

robustness. 

 

1. INTRODUCTION 

 

Nowadays, fault diagnosis is an important field of 

research because of the increasing complexity of 

processes. Indeed, control systems require failures to be 

detected and isolated and further taken into account in 

order to maintain the performances required. Many 

surveys on design methods for the diagnostic procedure 

were done by Iserman (1976), Frank (1990, 1993), 

Gertler (1991) and Patton (1994). In the past decade, 

the trend has been the development of analytical 

redundancy based methods rather than massive 

redundancy based approaches. These methods generate 

a signal significant of the fault. This signal that contains 

information about the failure, is called a residual. Such 

a residual is defined so that it is statistically close to 

zero when there is no failure and quite differs from this 

value otherwise. It is important to note that all these 

methods require a model of the system behaviour. Such 

a model is submitted to uncertainties like measurement 

noise and parameter (and even structure) variations. 

Depending on the assumptions supposed for the design 

of the detection system, these disturbances can lead to 

false alarms or no detection that degrade the 

performances. This problem is referred in the literature 

(Frank, 1990) as the robustness proprieties of the 

diagnostic procedure with respect to disturbances. 

Robustness is a degree of performance. It is then 

obvious that this degree is the result of a compromise 

between distinct performance criteria such as, for 

instance, both minimal no detection and false alarm 

rates. Among the techniques used for residual 

generation, two groups of techniques are presented: the 

direct generation based on parity space equation and 
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the non direct generation that provides a residual based 

on state estimation. In that case, the simplest residual 

performed is the state estimation error, i.e. the 

comparison between the measured data and its 

estimation. 

In the literature, the reason to prefer one technique 

(direct) to the other (indirect) mostly depends on the 

habit rather than more scientific criteria. As presented 

previously, criteria considering the easier way to 

implement the method and/or the more robust residual 

generated should be worthwhile. The structural 

equivalence of the residual of both methods is well 

known. Indeed, Patton and Chen (1991) recall that 

parity space leads to reliable FDI scheme. They stress 

on the fact that even though their potential robustness 

was studied, less work has been done to show the 

powerful correspondence existing between both 

techniques. Nevertheless, Frank and Wünnenberg 

(1989) and Frank (1990) pointed out that under certain 

conditions both residuals were equivalent within a 

choice of the observer gain to get the same proprieties 

on the estimation error. This result was proved 

afterwards by Magni and Mouyon (1991). Several 

authors as, Frank and Wünnenberg (1989), 

Wünnenberg (1990), Gertler (1991), Staroswiesky 

(1991) and Frank (1993) evidenced that parity space 

approach leads to certain types of observer structures 

and is therefore structurally equivalent. Anyway, no 

results have been given with regard to unknown input 

observers, nor about the robust aspect.  

Parity space
projection matrix

Direct residual

R(t)

UI Observer
Gain

Indirect residual

E(t)

How can we get

R(t) from E(t)

and reciprocal ?

Is E(t)=R(t) possible ?

 

Fig. 1: Problem illustration 

The goal of this paper is illustrated in Fig. 1. Its 

relevance is first, to consider unknown input observer, 

and second, to present the results into the lemma and 

theorem format. Some attention to this case has already 

been made by Nuninger et al. (1996), but at that time 

only one theorem was proved, i.e. if an unknown input 

observer can be found to generate the residual as the 

estimation error, then one can construct the projection 

matrix for the direct approach and get the structure of 

the parity space based dual residual. Here, the 

reciprocal part of this theorem is proved and its 

implications are discussed.  

 

This paper is organised as follows. First, the problem 

formulation is presented. Second, from (Nuninger, et 

al., 1996), both the generation scheme of analytical 

redundancy equations and the indirect residual 

generation procedure, based on unknown input 

observer, are quickly recalled. In the third part, 

theorems and demonstrations are given to get one 

residual from another. Finally, the consequences 

implied by the previous theorems, for the design of a 

robust on-line diagnostic procedure, are discussed.  

 

2. PROBLEM FORMULATION 

 

Let us consider the linear time-invariant system subject 

to disturbances:  

Ý x (t) = Ax(t ) + Bu(t) + Hv(t)  (1.a) 

y(t) = Cx(t) + Du(t) + Fv(t ) (1.b) 

where x ∈R
n
 is the state vector, u ∈R

r
 the control 

input, y ∈R
p
 the measured output vector and v ∈R

q
 

the disturbance vector which components are unknown 

functions of the time. All the matrices are of 

appropriate dimensions and of real constant 

components. Note that this representation can describe 

a great number of systems such as uncertain parameter 

systems or singular systems for instance. Define the 

following assumptions: 

Hypothesis 1: C is a full row rank matrix. 

Hypothesis 2: there is more measurements than 

unknown inputs (p > q). 

Hypothesis 3: H is a full column rank matrix 

Hypothesis 4: F is a full column rank matrix 

Assumption 1 implies that there is no more massive 

redundancy in (1.b). This assumption is not restrictive 

as a singular value decomposition of C can always be 

performed so that massive and analytical redundancy 

are driven apart. Assumption 2 is therefore a sufficient 

condition to provide analytical redundancy. 

Assumptions 3 and 4 are not restrictive either as it only 

means that the unknown inputs have independent 

influence on the state and the output respectively. If this 

is not the case, a simple basis transaction can transform 

the system so that hypothesis 3 or 4 are true. 

 

Consider system (1) that only satisfies hypothesis 1 and 

2. For such a system, reduced equations (3) can always 

be found thanks to a singular value decomposition (2) 

of F. Thanks to the formulation (3), the part 

independent of the unknown inputs has been driven 

apart in the measurement equation.  

F = U
R 0

0 0

 

 
 

 

 
 VT

 (2) 

where U and V are of dimension pxp and qxq 

respectively andm = rank(R) ≤ inf(p, q) = q  (Hyp. 2), 

Ý x (t) = A1x(t) + B1u(t ) + H1y1(t ) + H2 v 2 (t)  (3.a)  

y1(t) = C1x(t) + D1u(t) + v1 (t)  (3.b) 

y 2(t) = C2x(t) + D2u(t)  (3.c) 



where v1 ∈R
m

, v 2 ∈R
q−m

, y1 ∈R
m

, y 2 ∈R
p−m

 and 

the following definition of the matrices an vectors: 

Σ =
R 0

0 I
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T
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v
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y =
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T
D =

D1

D
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 , A1 = A −H1C1 , 

B1 = B− H1D1  and HV = H1 H2( ). 
Remark 1. Within our hypothesis 1 and 2, propriety (4) 

can easily be proved, i.e. there is no direct redundancy 

in (3.c) as any matrix built from rows of C is also a full 

row rank matrix. Under hypothesis 3, (5) is also true. 

Finally, equation (3.b) can provide the estimation of 

some unknown inputs if the system state 

reconstructability is assumed. 

rank
C1

C
2

 

  
 

  
 

 
 

 

 
 = p  (4) 

rank H1 H2[ ]( )= q  (5) 

It is important to note that hypothesis 1, 2 and 3 stand 

for the necessary and sufficient condition for the 

existence of an unknown input observer for system (1): 

rank(CH)=rank(H)=q (Darouach, et al., 1994). 

 

Remark 2. Within assumption 4, the singular value 

decomposition of F leads to (6) with m=rank(R)=q. 

This implies that the dimension of v2 is null. So, v1 is 

defined by V
T
v = v1  and v2 does not appear in the 

equations (3) anymore. As a consequence, the matrix 

H2 does not appear either. Indeed, HV=H1. 

F = U
R

0 (n −q ),q

 

 
 

 

 
 VT

 (6) 

 

2. RESIDUALS GENERATIONS 

2.1. Direct residual generation 

Lemma 1. Consider system (1) of reduced form (3) that 

satisfies hypothesis 1 and 2. Then a parity space, 

defined by the projection matrix : 

Ω(s) = Ω3(s)C 2 (sIn − A1 )
−1

0 (n +q ),m Ω3(s)[ ]  (7.a)  

of dimension (n+q)x(n+p) exists if and only if : 

 (i) Ω3(s)C2 (sIn −A1)
−1

H2 = 0[ ]
(n +q ),( q−m)

 (7.b) 

⇔  (ii) matrix 
sIn − A1 −H2

C
2

0
 

 
 

 

 
 is full column rank 

or under the additive hypothesis 4, if and only if : 

 (iii) the pair (A1,C2) is observable ♦ 

 

Proof. Redundancy equations are simply obtained by 

elimination of the unknown variables, x and v, in 

equation (3). First, the Laplace transform is applied to 

equation (3) in order to separate the known data 

(u and y) from the unknown variables. Second, a 

projection matrix, Ω(s) = Ω1 (s) Ω2(s) Ω3(s)[ ], of 

dimension (n+q)x(n+p) is used to get the redundancy 

equations: 

Ω(s)

B
1

H
1

0

−D1 Im 0

−D
2

0 I
p −m

 

 

 
 

 

 

 
 

u(s)

y 1(s)

y
2
(s)

 

 

 
 

 

 

 
 

= 0[ ]
(n +q ),1

 (8) 

Note that Ω(s) satisfies: 

Ω(s)

sI
n
− A

1
0 −H

2

C1 Im 0

C
2

0 0

 

 

 
 

 

 

 
 

= 0[ ]
(n +q ),( n+q )

 (9) 

which is the constraint on the projection matrix. This 

constraint can be expressed so that the projection 

matrix Ω(s) is defined by (7.a) with the constraint (7.b) 

satisfied by Ω3(s) of dimension (n+q)x(p-m). A solution 

exists if and only if (ii) is true, i.e. : 

  ∀s ∈C,  Re(s) > 0 rank
sIn −A1 −H2

C
2

0
 

 
 

 

 
 = n + q − m  

Under hypothesis 4, a simpler form of (9) is given (cf. 

remark 2) so that constraint (7.b) has not to be satisfied 

anymore. As a consequence, the necessary and 

sufficient condition for the parity space is reduced to 

(iii). In this case any matrix Ω3(s) of dimension 

(n+q)x(p-m) can be chosen.  ♦ 

 

In both cases, Nuninger et al. (1996) demonstrated that 

(8) leads to the simplified form of the direct residual 

r(s):  

r(s) = −Ω3(s) C2(sIn − A1 )
−1

B1 + D2[ ]u(s){
+C

2
(sI

n
− A

1
)−1H

1
y

1
(s) − y

2
(s)}

 (10)  

and that the search of Ω3(s) was reduced to the search 

of the kernel of a binomial matrix. Note that this matrix 

can be chosen of minimal degree. These results are 

based on Gantmacher's theory (Gantmacher, 1977). In 

practice, Ω3(s) is obtained within the use of Maple. It 

should be noted that the residual (10) is sensitive to 

both sensor and actuator faults. 

 

2.2. Indirect residual generation 

On the other hand, implicit redundancy equations can 

be generated as the difference between the measured 

output and the estimated output based on an unknown 

input observer of the state defined by:  

Ý z (t ) = Nz(t) + L1y1 (t ) + L2y 2(t) + Gu(t)  (11.a)  

ˆ x (t) = z(t )− V1y1(t ) −V2 y2 (t) + Mu(t)  (11.b)  

where z(t) is of dimension n and ˆ x (t)  denotes the state 

estimation of size n.  



Lemma 2. Consider system (1) of reduced form (3) that 

satisfies hypothesis 1 and 2. Then the estimation error, 

ε(t) = ˆ x (t)− x(t ) , based on the unknown input observer 

(11) tends asymptotically to zero if and only if the 

following relations are satisfied: 

N stable  (12.a) 

V1 = 0[ ]
n ,m

 (12.b) 

PH 2 = 0[ ]
n ,q−m

 (12.c) 

M = V2D2  (12.d) 

L1 = PH1  (12.e) 

P = In + V2C2  (12.f) 

L2C2 = PA1 −NP  (12.g) 

G = PB1 − L2D2  (12.h)♦ 

Proof. (Nuninger, et al., 1996) Note that the N stability 

problem (12.a) is reduced to an eigenvalue assignment 

problem for the observable pair (PA1,C2) within the use 

of a gain ♦ 

 

Lemma 3. Consider system (1) of reduced form (3) that 

satisfies hypothesis 1, 2 and 3. Then for a square matrix 

P of rank n-(q-m), the unknown input observer (11) 

exists if and only if: 

 (i) the pair (A1,C2) is detectable (observable) 

⇔  (ii) rank
sP − PA1

C
2

 

 
 

 

 
 = n    ∀s∈C,  Re(s) > 0  

⇔  (iii) matrix 
sIn − A1 −H2

C
2

0
 

 
 

 

 
 is full column rank 

⇐ (iv) rank
sIn −A H

C
2

0
 

 
 

 

 
 = n + q   ∀s∈C,  Re(s) > 0♦ 

 

Proof. The necessary and sufficient condition for the 

unknown input observer has already been proved by 

several authors as Kudva (1980), Hou and Muller 

(1992). The equivalence between the three propositions 

was proved by Darouach et al. (1994). The result is 

simply applied to our case and the complete proof is 

therefore omitted because of the number of pages 

required for this paper. Note that (iii) stands for the 

necessary and sufficient condition of existence for the 

parity space under Hyp. 1, 2, 3. ♦ 

 

The indirect residual is given by the output 

reconstruction error:  

e(t ) = y2(t) − ˆ y 2(t) = y 2 (t )−C 2
ˆ x (t) −D2u(t)  (13)  

within the model (3.c) and can be expressed such as:  

e(s) = − C
2
(sI

n
− N)−1G + C

2
M + D

2[ ]u(s)

−C2 (sIn − N)
−1

L1y1(s)

+ I
p−m

+ C
2
V

2
−C

2
(sI

n
− N)−1 L

2[ ]y2
(s)

 (14) 

 

3. STRUCTURAL EQUIVALENCE 

 

Theorem 1. Consider system (1) of reduced form (3) 

that satisfies hypothesis 1, 2 and 3. Consider the 

indirect residual (14) based on the unknown input 

observer (11).  

Then, for any stable matrix T(s), the signal r(s) based 

on the expression: 

r(s) = T(s)e(s)  (15)  

is the direct residual based on the parity space defined 

by the projection matrix Ω(s) (7.a) where Ω3(s) is: 

Ω3(s) = T(s) Ip −m + C2V2 − C2(sIn − N)
−1

L 2[ ] (16)♦ 

 

Proof. First, lemma 3 ensure the existence of the UIO. 

Therefore, from lemma 1, the existence condition of the 

parity space is also satisfied. Second, let choose Ω(s) of 

form (7.a) with the special choice (16) of Ω3(s). This 

choice must respect constraint (7.b). This is simply 

proved using (12.f), (12.h) and (12.c). Finally, it is 

quite simple to rewrite r(s) as (15) basing our 

demonstration on relations (12). For  

more details, see the proof of the theorem in  

(Nuninger, et al., 1996). ♦ 

 

This theorem proves that if one knows an UIO for 

system (1) then, within the choice of a stable matrix 

T(s), it is easy to generate a direct residual r(s) based on 

the indirect residual r(s). Besides, one knows how to 

construct the corresponding parity space. Such 

residuals are called : dual residuals. What about the 

reciprocal ?  

 

Theorem 2. Consider system (1) of reduced form (3) 

that satisfies hypothesis 1 and 2. Consider the direct 

residual (10) based on the parity space (7) where matrix 

Ω3(s) is given of dimension (n+q)x(n+p). 

Choose two matrices : 

- a square stable matrix N of dimension nxn, 

- a constant matrix V20 of dimension nx(q-m). 

Then an UIO of form (11) defined by: 

V2 = −H2 C2H2( )
+

+ V20 I− C2 H2( )
+

C 2 H2( )[ ] (17) 

P defined by (12.f) and L2 by : 

L 2 = K −NV2  (18) 

where K satisfies the pole placement of (PA1,C2): 

PA1 − KC2 = N  (19) 

and the defined matrices M (12.d), G (12.h), L1 (12.e) 

and V1 (12.b) exists if and only if hypothesis 3 is true. 

Besides, the signal e(t) generated by: 

e(s) = ϕ(s)r(s)  (20.a) 

ϕ(s) = C2 sIn − N( )
−1

P sI − A1( )C2

−[ ]T(s) (20.b)  



is the indirect residual based on the previously defined 

unknown input observer if and only if T(s) is a stable 

matrix such that: 

T(s)Ω3(s) = In + p  (21)♦ 

 

Proof. Note that (.)
+

 = (.)
T
[(.)(.)

T
]

-1
 stands for the right 

inverse of the given matrix and 

(.)
-
 = [(.)

T
(.)]

-1
(.)

T
 for the left inverse. The proof is made 

in two steps. First, the existence of the UIO is proved. 

Second, the comparison of both residuals leads to (20) 

within constraint (21).  

 

Step 1: From lemma 1, the UIO exists if and only if 

assumption 3 is true. Under these assumptions, the 

choice of P (12.f) where V2 is imposed by the choice of 

V20 like (17) ensure, from lemma 3, the existence of the 

UIO. Therefore, the observability of the pair (PA1,C2) 

is satisfied. K can then be found within the choice of N. 

L2 satisfies (18) and the remaining



matrices M, G, L1 and V1 are then given by the 

expressions (12.d), (12.h), (12.e) and (12.b). 

 

Step 2: Let us now rewrite e(s) so that expression (10) 

of r(s) appears in (14). Replace M, L1 and G by their 

expressions in equation (14) to get:  

e(s) = −α(s)u(s) −β(s)y1(s) + γ(s)y 2 (s)  (22)  

where:  

α(s) = C2(sIn −N)
−1

PB1 −L 2D2[ ]+ C2V2D2 + D2  

β(s) = C 2(sIn − N)
−1

PH1  

γ (s) = Ip−m + C2V2 −C 2 (sIn − N)
−1

L2[ ] 

Let us now introduce I = C 2C2

−
 where 

C2

− = C2

T
C2 C2

T( )
−1

 which exists and further replace 

V2C2 by its expression (12.f). Within factorisation of 

the term C2 (sIn − N)
−1

, α(s) and γ(s) are expressed by: 

α(s) = C2(sIn −N)
−1

PB1 −L 2D2 + (sIn − N)PC2

−
D2[ ] 

γ (s) = C2(sIn −N)
−1

(sIn − N)PC2

− − L 2[ ] 

The product NP is then replaced by (12.g). After 

factorisation by P(sIn − A1 )  the following expressions 

are obtained: 

α(s) = C2(sIn −N)
−1

P(sIn − A1) (sIn − A1)
−1

B1 + C2

−
D2[ ] 

β(s) = C 2(sIn − N)
−1

P(sIn − A1 )P (sIn − A1)
−1

H1[ ] 
γ (s) = C2(sIn −N)

−1
P(sIn − A1 ) C2

−[ ] 

Finally, define ζ(s) so that (23) is true. Therefore α(s), 

β(s) and γ(s) are given by (24) : 

ζ(s)C 2 = C 2(sIn − N)
−1

P sIn − A1( ) (23) 

α(s) =ζ(s) (sIn − A1)
−1

B1 + D2[ ] (24.a) 

β(s) = ζ(s) C2(sIn −A1)
−1

H1[ ] (24.b) 

γ (s) = ζ(s) (24.c) 

It is obvious, from the comparison of (22) and (10) that: 

e(s) = ζ(s)T(s)r(s)  (25) 

is true if and only if the stable matrix T(s) satisfies 

condition (21). Definition (23) of ζ(s), implies:  

ζ(s) = C2(sIn − N)
−1

P sIn −A1( )C2

−
.  (26) 

From (25), (20.a) is true with ϕ(s) = ζ(s)T(s)  ♦ 

 

Thanks to this theorem, the knowledge of a direct 

residual and the projection matrix that defines the 

corresponding parity space allows, for a special design 

of the UIO, to generate the dual indirect residual quite 

easily. This theorem is the reciprocal of theorem 1 but 

it is important to note that the UIO observer only exists 

if assumption 3 is true. Besides, in that case, T(s) must 

satisfies the stronger constraint (21). 

4. DISCUSSION 

 

From theorems 1 and 2, it is always possible to get a 

dual direct residual of an indirect one but the contrary is 

not always true. Besides, when it is possible, a stronger 

constraint (21) must be satisfied by T(s). The reciprocal 

does not require such a condition as the design of the 

observer is already imposed and a total freedom for the 

choice of Ω3(s) is allowed. Therefore, it is simpler to 

get the direct residual. These results are illustrated in 

Fig. 2 where O stands for a set of solutions within the 

indicated hypothesis and the transfer law '→' are given 

with the constraints. 

No solution

Solutions based on Parity Space Solutions based on UIO

Hyp. 1,2,3

Hyp. 1,2,3, 4

Hyp. 1,2,4

Hyp. 1,2,3,4

Hyp. 1,2,3Theorem 2.5

N, V20  et T(s)Ω 3( s)  =  I

Theorem 2.4

T(s)

 

Fig. 2: Transfer law between direct and indirect 

residuals. 

So one may think that detection systems based on both 

approaches are strictly equivalent under some 

hypothesis. In fact, one can not conclude so easily. 

Indeed, robustness performance of both residuals has to 

be considered, even though the residuals are 

structurally equivalent. First, it is necessary to make a 

proper choice of the observer gain. Indeed, this gain 

should further allow detection and isolation of the faults 

within the residual. From theorem 1, any stable matrix 

T(s) can a priori be chosen. As a consequence the 

residual e(s) generated from (15) can not be a priori 

influenced by certain faults. Therefore, good 

performances of the fault detection and isolation system 

could not a priori be achieved. Nevertheless, from 

theorem 1, it is possible to improve the robustness of 

the indirect residual if a good choice for T(s) is made. 

As a consequence, it seems simpler to directly design 

the fault detection system by the parity space approach 

in order to get a good degree of robustness. This result 

has also been advanced by Frank (1990). From theorem 

2, it is obvious that the design of the UIO is more 

constrained if one wants to apply equation (20.a) 

because of the constraint (21). Anyway, theorem 2 

allows us to design quite easily the observer and get the 



residual however it can be useless for fault detection 

and isolation. These theorems also show that the direct 

approach is a better one, as it is easier to construct the 

parity space taking into account the robustness 

constraints with respect to systems uncertainties. 

Indeed, it is simpler to get structured or fixed direction 

residuals that will increase the degree of robustness. 

Nevertheless, it is important to note that however there 

exists a minimal degree for the projection matrix 

(Nuninger, et al., 1996), in practice the numeric 

implementation is not always possible. Indeed, because 

of inconsistencies, the exact solution Ω3(s) might not be 

found that satisfies the constraint (9). Therefore, sub-

optimal solutions should be performed in order to 

satisfy the independence of some state and unknown 

input components. Of course, this implies a degradation 

of the performance. On the contrary, the observer based 

method can be interesting using a generalised observer 

scheme. 

 

Finally, both theorems can be applied to find, for a 

given residual based on parity space (observer) the 

corresponding design of the unknown input observer 

(parity space) that leads to the same residual: i.e. 

e(s)=r(s). Considering theorem 1, the special choice of 

T(s) equal to the identity matrix is obvious. On the 

contrary, the constraint on N and V20 is harder to 

satisfy. Indeed, theses matrices are defined so that: 

C2 (sIn − N)
−1

P sIn − A1( )C2

−
= Ω 3(s) (27) 

 

With respect to the diagnostic procedure, the given 

theorems prove that an optimal solution does not 

always exists based on UIO whereas a solution can 

always be given based on parity space approach 

(Hyp. 4 true but not Hyp. 3). Therefore, parity space 

approach seems more convenient to achieve a higher 

degree of robustness. Note that this remark does not 

mean that this solution can not be found within UIO 

when such an observer exists. 

 

5. CONCLUSION 

 

This paper has focused the structural equivalence of 

residuals based on two a priori different methods using 

analytical redundancy: parity space and observers. This 

equivalence is well known in the literature but this 

paper considers the case of unknown input observer 

based residuals. This paper is the following of 

(Nuninger, et al., 1996) as the reciprocal theorem is 

given, proving that both residuals can be obtained from 

the other one, within little assumptions, thanks to their 

structural equivalence through a transfer function. The 

relevance of this work is that one can now conclude that 

the parity space approach seems to be the simplest way 

to take into account robustness constraints with respect 

to systems disturbances. Moreover, it is simpler to get 

the direct residual from the one based on the UIO 

(theorem 1) than the reciprocal that requires a more 

restrictive assumption on T(s) (theorem 2). In the 

future, the effect of model uncertainties on the two dual 

residuals should be discussed and compared within the 

structure of T(s), which is in fact a filter between both 

residuals. The aim is to stress on the statistical 

proprieties in order to emphasise which one of the dual 

residuals is the more valuable with respect to 

robustness. It is then obvious that the choice of the 

matrix T(s) is quite important in that matter. 
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