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Abstract: Networks are very useful tools to decipher complex regu-

latory relationships between genes in an organism. Most work address

this issue in the context of i.i.d., treated vs. control or time-series sam-

ples. However, many data sets include expression obtained for the same

cell type of an organism, but in several conditions. We introduce a novel

method for inferring networks from samples obtained in various but re-

lated experimental conditions. This approach is based on a double pe-

nalization: a first penalty aims at controlling the global sparsity of the

∗ Corresponding author: nathalie.villa@univ-paris1.fr.
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solution whilst a second penalty is used to make condition-specific net-

works consistent with a consensual network. This “consensual network”

is introduced to represent the dependency structure between genes,

which is shared by all conditions. We show that different “consensus”

penalty can be used, some integrating prior (e.g., bibliographic) know-

ledge and others that are adapted along the optimization scheme. In

all situations, the proposed double penalty can be expressed in terms of

a LASSO problem and hence, solved using standard approaches which

address quadratic problems with L1-regularization. This approach is

combined with a bootstrap approach and is made available in the R

package therese 1. Our proposal is illustrated on simulated datasets

and compared with independent estimations and alternative methods.

It is also applied to a real dataset to emphasize the differences in reg-

ulatory networks before and after a low-calorie diet.

Keywords: network inference; Gaussian graphical model; regulation

network; LASSO

1 Introduction

The recent development of high-throughput techniques produces huge datasets

where thousand of gene expressions are simultaneously measured. However, the

number of observations is comparatively very small, and those are often measured

in a variety of experimental conditions. One of the big challenges of modern Sys-

tems Biology is to understand the influence of controlled experimental conditions

1therese can be downloaded on R-Forge, from http://therese-pkg.r-forge.r-project.

org/.
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on the functioning of living organisms. This question is usually addressed by

searching for the differences between gene expressions pertaining to the conditions

(hence for “differentially expressed genes”). A more comprehensive look at the

roles of the genes of an organism can be obtained by deciphering the interactions

of these genes with each other; finding which regulation pathways are modified by

a given experimental condition gives an interesting insight on the influence of the

condition on the living system as a whole.

One of the most popular approach to understand the complex relationships exist-

ing between the expression of a large set of genes is to infer a co-expression network

from a transcriptomic dataset. In such a model, nodes of the network represent the

genes and an edge is meant to stand for a regulatory link between the two nodes

it connects. A large number of different methods have been proposed to infer such

networks: using correlations (“relevance network”, [4]), Bayesian networks [19, 20],

Gaussian Graphical Model [7, 21]... When observations are collected in different

conditions, a naive approach would be to independently infer a network for each

condition and to compare them. However, this method is not suited to highlight

specific differences and shared motifs of regulation phenomenons. Moreover, since

the number of observations is often too small, inferring networks independently

(assuming that a common functioning exists in most scenarii) leads to emphasize

irrelevant differences. Several proposals have already been made to overcome this

issue: [5, 6, 17] use a modified Gaussian graphical model and [13] proceeds with

two steps with a clustering prior to the inference. The proposal developed in this

paper is close to that of [5, 6, 17]: a Gaussian graphical model is used and two

interpretable penalties are added to the likelihood. The first penalty aims at in-

ferring sparse solutions; the second penalty is used to make networks obtained in
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different conditions consistent with a consensual network. The “consensual net-

work” is introduced to represent high-level dependencies between genes, i.e., a

common functioning of the living organism under study, in most situations. It

can either include prior (e.g., bibliographic) knowledge or be expressed from the

condition-specific networks. Finally, the estimation is made more robust by using

a bootstrap approach.

The paper is organized as follows: Section 2 describes the double penalty ap-

proach. Section 3 explains our proposal for estimating the networks with a boot-

strap strategy. Finally, Section 4 provides experimental results on simulations.

2 cLasso

In the Gaussian graphical model (GGM) framework, the classical objective is to

estimate the graph of conditional dependencies between p variables (usually mod-

eling gene expressions), (Xj)j=1,...,p, from n i.i.d. observations of the variables,

namely (Xij)i=1,...,n, ∀ j ∈ {1, . . . , p}. Each p-dimensional vector Xi. is assumed

to be the realization of a Gaussian random variable N (0, Σ). In this framework,

non-zero entries of the concentration matrix K = Σ−1 exactly encode actual edges

(between genes) in the conditional dependency graph. In the present section,

we describe how this framework can be extended to the case where observations

are obtained from different samples, each sample being measured in a given (but

related) experimental condition.

4



2.1 Inferring multiple networks with GGM

Now assuming that the p gene expressions are measured from k samples, each

corresponding to a specific experimental condition, the following model can be

set: (Xc
j )j=1,...,p, c=1,...,k are k Gaussian p-dimensional vector, N (0, Σc). A total

of n observations are available: (X1
ij)i=1,...,n1, j=1,...,p . . . (Xk

ij)i=1,...,nk, j=1,...,p, with

∑
c nc = n and, for all c and all i, (Xc

ij)j=1,...,p are i.i.d. observations of N (0, Σc).

In the following, our goal is twofold:

• inferring k sparse graphs that model gene regulations in the k conditions;

• finding one consensual graph that models a “shared” functioning between

conditions.

The GGM framework is used for the inference. As previously explained, the

concentration matrices Kc = (Σc)−1 need be estimated and the entries of these ma-

trices exactly measure conditional dependencies between variables (Xc
j )j through

partial correlation coefficients, sc
jj′ = Cor

(
Xc

j , Xc
j′|(Xc

l )l 6=j, j′

)
because of the rela-

tion sc
jj′ = − K

c
jj′√

K
c
jj

K
c
j′j′

[26].

These quantities can be estimated by considering the following (k × p) linear

regression problems [16]: ∀ c = 1, . . . , k, ∀ j = 1 . . . , p,

Xc
j = Xc

\jβ
c
j + ǫc

j, (1)

where Xc
\j is the matrix Xc =

(
Xc

ij

)
i=1,...,nc, j=1,...,p

deprived from its j-th column

Xc
j, βc

j = (βc
jj′)j′ 6=j is a (p − 1)-dimensional vector and ǫc

j is a Gaussian centered

error. In the Gaussian framework, it can be shown that the coefficients of the

linear model are related to the previous quantities by βc
jj′ = −K

c
jj′

K
c
jj

.
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The k×p linear models of Equation (1) can be jointly estimated by maximizing

a pseudo-likelihood:

L(K|X) =
k∑

c=1

p∑

j=1

nc∑

i=1

logP
(
Xc

ij|Xc
i,\j, Kc

j

)
. (2)

[5] proved that maximizing the pseudo-likelihood of Equation (2) over matrices

(Kc)c is equivalent to minimizing the following p quantities simultaneously:

∀ j = 1, . . . , p,
1

2
βT

j Σ̂\j\jβj + βT
j Σ̂j\j. (3)

The p problem of Equation (3) are (p− 1)× k-dimensional quadratic optimization

problems and we specify:

• ∀ c = 1, . . . , k, βc
j = (βc

jj′)j′ 6=j ∈ R
p−1, where βc

jj′ = (Kc)−1
jj Kc

jj′ ;

• βj =
(
β1

j , . . . , βk
j

)T ∈ R
k(p−1);

• Σ̂\j\j is the block diagonal matrix Σ̂\j\j = Diag
(
Σ̂1

\j\j, . . . , Σ̂k
\j\j

)
, having

dimensions k(p− 1)× k(p− 1);

• Σ̂j\j is the k(p− 1)-dimensional vector,
(
Σ̂1

j\j, . . . , Σ̂k
j\j

)
.

However, this approach leads to matrices without non-zero entries. Moreover,

when (nc)c are not larger than p, the estimation of (βj)j becomes trickier and

pseudo-inverse methods lead to highly unstable results. Using the additional as-

sumption that conditional dependency graphs are indeed sparse, a standard ap-

proach is to add a L1-penalization to the likelihood of Equation (2) (“Graphical

LASSO”, see [9]) or, alternatively, to consider p independent L1-penalized problems
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derived from those of Equation (3), see [5, 16]. The latter, more direct approach,

has been reported to be more accurate in terms of edge detection in [25].

2.2 Using a “consensus” penalty

In the previous section, the conditional dependency graphs are obtained from each

sample independently. The assumption that the graphs issued from the different

experimental conditions should be somehow alike, is not integrated into the model.

Especially in the case where the sample sizes are low, such an assumption should

help to predict edges more accurately. Various techniques exist to address this

issue: [5] proposed to replace the covariance matrices Σ̂c by mixing it with the

covariance matrices corresponding to the other conditions. Alternatively, some

authors suggest to penalize the pseudo-likelihood by a penalty that can explicitly

deal with the similarity between condition-specific graphs via different strategies:

• [5] proposed two kinds of Group-LASSO type penalties:

P ((Kc)c) =
∑

ij

√∑
c(K

c
ij)

2 (Group-LASSO) and P ((Kc)c) =

∑
ij

[√∑
c(K

c
ij)

2
+ +

√∑
c(K

c
ij)

2
−

]
(sign-coherent Group-LASSO or “Co-

operative LASSO”). The group-LASSO penalty globally controls sparsity

and inferred edges are common to all conditions. The sign coherent option of

their penalization scheme offers the possibility to enforce an edge to encode

either an activating or repressing process but not both: it provides strongly

similar networks between conditions and has been proven to be efficient in

case of experimental conditions leading to small changes in the regulations.

However, for some particular applications (e.g., certain forms of cancer that

lead to a complete re-organization of the living system), the assumption that

7



the relations between two genes is always a repressing/enhancing relation is

not biologically desirable;

• [6] used the penalty P ((Kc)c) =
∑

c 6=c′ ‖Kc−Kc′‖1, where ‖.‖1 is the standard

L1-norm, which commands a strong similarity across conditions. This ap-

proach would lead to very similar condition-specific network, allowing only a

few differences. Unlike the Cooperative Lasso approach described above, no

special sign-coherent assumption is required but this method is more suited

when condition-specific networks are not supposed to be very different;

• [17] introduced the penalty P ((Kc)c) =
∑

c 6=c′

∑p
j=1

∑
j ‖Kc

j − Kc′

j ‖2, where

‖.‖2 is the standard L2-norm and Kj is the j-th column of K. Hence, this

approach encourages the support of Kc −Kc′

to be the union of a given set

of columns. Hence, this penalty only provides some flexibility to a few nodes

to differ among conditions while all the other nodes have the same pattern

of interactions.

The main idea of our proposal, we coined cLasso, is similar to the latter ap-

proaches, but using a softer penalization scheme than group-Lasso type penalties.

This choice aims at better estimating the edges that are not similar and also do not

need to assume a particular origin for the differences between conditions. The k

inferred graphs, Gc, are forced towards a “consensual” graph: the resulting graphs

are different from each others, but these differences can be controlled. This idea is

tackled by using a penalized ML framework in which two penalties are introduced:

• the first one is a sparse penalization which controls the number of edges in

every graph Gc;
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• the second one is a L2 penalization that aims at limiting the differences

between the (Kc)c=1,...,k.

More precisely, ∀ j = 1, . . . , p, a consensual regression coefficient, βcons
j , is in-

troduced, that can be defined from the sample-dependent coefficients βc
j or can

be fixed by a user, including, in particular, prior biological knowledge. This co-

efficient represents a kind of “global” solution, that is condition-independent. It

is used by replacing the minimization problems described in Equation (3) by the

following double-penalized minimization problems:

1

2
βT

j Σ̂\j\jβj + βT
j Σ̂j\j + λ‖βj‖1 + µ

k∑

c=1

∥∥∥βcons
j − βc

j

∥∥∥
2

2
. (4)

In Equation (4), βcons
j is used to model the “consensus”. In the following section,

different types of consensus are described, and the practical computation of the

solution is derived from the different cases. All described solutions lead to the

optimization of quadratic problems penalized by the L1-norm.

Contrary to the other approaches presented above, the second penalty of Equa-

tion (4) is a soft one, that does not control drastically the number of different edges

between conditions but rather limits them. It is thus advisable in the case where

the number of differences is not too low and where the user really wants to see

the differences across the conditions. Also, contrary to [6, 17], our proposal does

not rely on a penalty which complexity increases quadratically with the number of

conditions (this might be a problem if the number of conditions is high). Finally,

as explained in Section 2.3.1, the definition of a consensus network can integrate

prior knowledge that can help estimating the network with an increased accuracy.

Remark 1 As shown in Section 3.1, any choice for βcons
j that leads to obtain a
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minimization problem that can be expressed as:

convex part + λ‖βj‖1

is a valid consensus choice that can be solved using a common framework. In

particular, this includes any consensus that is expressed as a linear combination

of the estimated coefficients βc
j (Section 2.3.2) or (fixed) a priori consensus (Sec-

tion 2.3.1).

2.3 Consensus choices

2.3.1 A fixed consensus

When a prior information is known on the network (e.g., a bibliographic network),

a natural choice is to use it for βcons. In this case, βcons is fixed in advance and

does not depend on (βc
j )j: it does not need to be estimated. However, if no prior

information is available, the network estimated from all the samples considered as

a whole or any combination of networks obtained with independent estimations

can be used for consensus and considered as a (fixed) a priori information network.

Proposition 1 Using a fixed βcons
j , Equation (4) is equivalent to minimizing the

following standard quadratic problem with L1-penalty:

1

2
βT

j B1(µ)βj + βT
j B2(µ) + λ‖βj‖1, (5)

where B1(µ) = Σ̂\j\j + 2µIk(p−1), with Ik(p−1) the k(p − 1)-identity matrix and

B2(µ) = Σ̂j\j − 2µIk(p−1)β
cons
j with βcons

j a k(p− 1) vector that only depends on

the prior βcons
j .
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Proof (and exact values for B1 and B2): The L2-penalty of Equation (4) can

be re-written as:

k∑

c=1

∥∥∥βcons
j − βc

j

∥∥∥
2

2
=

k∑

c=1

(
(βc

j )T βc
j − 2(βc

j )T βcons
j + ‖βcons

j ‖2
2

)

Noticing that ‖βcons
j ‖2

2 is a fixed value that does not depend on the estimated

coefficients βc
j , it follows that minimizing Equation (4) is equivalent to minimizing:

1

2
βT

j

(
Σ̂\j\j + 2µIk(p−1)

)
βj + βT

j

(
Σ̂j\j − 2µIk(p−1)β

cons
j

)
+ λ‖βj‖1,

where βcons
j is the vector

(
(βcons

j )T , . . . , (βcons
j )T

)T
. �

2.3.2 An averaged consensus

When no prior information is given, an intuitive and convenient choice for the

consensus is to simply average the estimators over the different samples: βcons
j =

∑k
c=1

nc

n
βc

j . In this case, βcons
j is a linear combination of the (βc

j )c, which is an in-

teresting feature, as explained in Proposition 2. Notice that the choice of averaging

the coefficients βc
j is almost equivalent in terms of networks (i.e., in terms of non-

zero entries) as having a consensus which is the union of the condition-dependent

networks.

Proposition 2 Using βcons
j =

∑k
c=1

nc

n
βc

j , Equation (4) can be re-written as the

following standard quadratic problem with L1-penalty:

1

2
βT

j Sj(µ)βj + βT
j Σ̂j\j + λ‖βj‖1 (6)
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where Sj(µ) = Σ̂\j\j + 2µAT A where A is a k(p − 1) × k(p − 1)-matrix that does

not depend on j.

Proof (and exact value for A): If, ∀ c = 1, . . . , k, Uc = nc

n
Ip−1 (with Ip−1 the

unit matrix having dimension p− 1) and Vc =
(
1− nc

n

)
Ip−1, then

βc
j − βcons

j = Acβj ,

where Ac is the (p − 1) × k(p − 1)-matrix [−U1, . . . ,−Uc−1, Vc,−Uc+1, ...,−Up].

Then,
k∑

c=1

∥∥∥βcons
j − βc

j

∥∥∥
2

2
=

k∑

c=1

βT
j AT

c Acβj

and thus, setting

A =




A1

...

Ak




,

implies that
k∑

c=1

∥∥∥βcons
j − βc

j

∥∥∥
2

2
= βT

j AT Aβj

which concludes the proof. �

Remark 2 Because the term βT
j AT Aβj is a quadratic term in β, the formulation

of the minimization problem given in Equation (4) is not a direct penalization of

the ML optimization. More specifically, minimizing Equation (4) is equivalent to

minimizing the following penalized ML:

L(K|X)− λ‖K‖1 −
µ

n

k∑

c=1

∥∥∥(Dc)−1/2
(
Kcons,c −Kc

)∥∥∥
2

2
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where

• ‖K‖1 =
∑k

c=1 ‖Kc‖1 =
∑k

c=1

∑p
j,j′=1 |Kc

jj′|;

• Dc = Diag(Kc
11, Kc

22, . . . , Kc
pp);

• Kcons,c
j\j =

∑k
t=1

nt

n

K
c
jj

K
t
jj

Kt
j\j.

Note that, as explained in [5], estimating (Kc
jj)j is not relevant to unveil the graph

structure so, in practice, these values are set equal to Σ̂−1
jj . Hence, from the ML

point of view, there is no definition of a consensual concentration matrix since this

quantity depends on the sample (the average is weighted differently depending on

the sample).

In practice, in every task, the variables are previously scaled and Kc
jj are all set

equal to one, which leads to the following equivalent formulation of the optimization

problem

L(K|X)− λ‖K‖1 −
µ

n

k∑

c=1

∥∥∥Kcons −Kc
∥∥∥

2

2
,

where Kcons
j\j =

∑k
t=1

nt

n
Kt

j\j.

Remark 3 The penalty of [17] can be re-written as:

∑

c 6=c′

‖Kc
j −Kcons

j + Kcons
j −Kc′

j ‖2 =

∑

c 6=c′

(
‖Kc

j −Kcons
j ‖2 + ‖Kc′

j −Kcons
j ‖2 + 2〈Kc

j −Kcons
j , Kcons

j −Kc′

j 〉
)

=

(k − 1)
k∑

c=1

‖Kc
j −Kcons

j ‖2 + 2
∑

c 6=c′

〈Kc
j −Kcons

j , Kc′

j −Kcons
j 〉

Then, in the case of the averaged consensus, an edge (j, j′) is in the consensus

network if and only if it is in at least one of the condition-specific networks. In
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particular, for k = 2, K1
jj′ − Kcons

jj′ 6= 0 means that (j, j′) is an edge in the

consensual network and is not an edge in the network specific to condition 1. It

is thus also an edge in the network specific to condition 2 (as there is only two

conditions). In conclusion, when k = 2, 〈K2
j −Kcons

j , K1
j −Kcons

j 〉 = 0 and thus

the consensus penalty is very similar to the penalty proposed in [17]. However,

for k > 2, the situation might be more complicated: a condition-specific edge can

be specific to more than one condition and thus the equality 〈Kc
j −Kcons

j , Kc′

j −

Kcons
j 〉 = 0 is no more guaranteed for the averaged consensus. Conversely, nullity

of the scalar product (and thus the equivalence between the consensus penalty and

the penalty proposed by [17]) would be obtained, for instance, if an edge that is

specific to a condition is present in only one of the condition-specific networks.

This property does not seem to be desirable on a biological point of view.

3 Computational aspects

This section will provide computational details on the cLasso methods. First, the

method used to solve the optimization problems introduced above is described and

then, a bootstrap approach is introduced to help decreasing the false positive rate

and to help increasing the prediction accuracy when dealing with small sample

size problem.

3.1 cLasso optimization

The cLasso problem is solved by minimizing the p sub-problems of Equations (5)

and (6). The objective function of all the problems that can be decomposed into:

a convex part C(βj) = 1
2
βT

j Q1
j(µ)βj +βT

j Q2
j(µ), convex in (βj)j and that does not

14



depend on λ;

a norm penalty P(βj) =
∑

c
1

nc
‖βj‖1 that is non differentiable at 0, with respect

to βj.

The non differentiability of P shrinks the LASSO estimate toward 0 and potentially

sets βjl = 0 for several indexes l, as explained in [22]. In [22], the LASSO opti-

mization problem is solved by a quadratic programming method, which is used to

perform the estimation of the (βjl)l together with a variable selection. Since then,

several authors have proposed more efficient approaches to solve the LASSO op-

timization problem: [11] developed the so-called “shooting algorithm” that starts

from an unconstrained least-square solution and uses a coordinate descent. Un-

fortunately, this algorithm is not applicable in the case of sparse problems as soon

as n < p. Others proposed to use differentiable approximations of P , such as

[14] that takes advantage of the approximation ‖β‖1 ≃
∑

j

√
β2

j + ǫ. Finally, [18]

uses a method that is efficient for medium-size problems and suited to the case

n < p. We used a similar strategy, which is close to the one described in [5]: it is

based on a greedy update of an “active set” that progressively gathers together all

non-zeros coefficients of the different sub-problems. At each step of the algorithm,

the coefficients are estimated only for the variables that are included in the active

set.

More precisely, for a fixed value of λ, starting from a vector βA
j of non-zero

coefficients on the active set A, the method first solves the so-called “master prob-

lem” given by Equations (5) or (6), which is differentiable, because, by defini-

tion, the coefficients of βA
j are not null. This is done by using the sub-gradient

∂βj
[C(βj) + λP(βj)]. Then, the set of active variables is updated by adding the

15



variables that violate the most the first-order optimality condition. The algorithm

stops when

• for all l ∈ A, βjl 6= 0 and

[
∂βj

[C(βj) + λP(βj)]
]

l
=

[
Q1

j(µ)βj +Q2
j(µ)

]
l
+ λ sign(βjl) = 0

• for all l ∈ A, βjl = 0 and

∣∣∣
[
Q1

j(µ)βj +Q2
j(µ)

]
l

∣∣∣ ≤ λ

Further details on the method can be found in [5], that uses the same optimization

scheme for the so-called “intertwined LASSO” method.

Finally, the method is applied to a whole set of λ values, starting from largest

(i.e., from the one that yields to the strongest constrain) and using the optimal

βj as a prior for solving the problem with the next smaller λ. This method is

implemented in the R package therese, that can be downloaded from http://

therese-pkg.r-forge.r-project.org/.

3.2 Bootstrapped cLasso

As demonstrated in [2], the LASSO converges to the selection of all the variables

included in the true model (true positives) with probability one but asymptotically

selects all other variables (false positives), with a strictly positive probability. In

practice, this means that using the LASSO algorithm yields to a rather high num-

ber of false positive edges in the network estimation. To overcome this difficulty,

[2] proposes the so-called “Bolasso” method, that combines LASSO performed on
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bootstrap samples. Bootstrapping [8] is a resampling technique that consists in

creating new samples of the same size as the original by sampling randomly with

replacement from the original dataset. Its aim is to estimate the sampling distribu-

tion of almost any statistics and thus to estimate the accuracy for these statistics.

In Bolasso, LASSO is run on a large number of bootstrap samples and the inter-

section of the variables selected in every bootstrap sample are finally kept. It is

proved that this approach is a consistent model selection method.

Hence, in order to improve the false positive rate of the approach described

above, we use a similar methodology, only taking into account the fact that the

typical sample size in transcriptomic experiments is far from being close to the

asymptotic case. More precisely, instead of intersecting the edges selected in every

bootstrap sample, the number of times an edge is selected by all computations

run on each bootstrap sample is used as a quality measure of the edge. Only the

most frequently selected edges, those that are selected more than a given number

denoted by T2 ∈ {1, . . . , Nboot}, are finally included in the estimated network.

In practice, for every bootstrap sample, Equation (5) or Equation (6) is solved

for a list of several values of λ and a fixed value for µ, using the method described

in Section 3.1. A given value of λ, depending on the bootstrap sample, is retained

which corresponds to the first time in the path (i.e., to the largest λ) for which the

number of estimated edges is larger than a target value, T1. T1 is fixed to a rather

high value to avoid missing relevant edges. The complete procedure is described

in Algorithm 1.

The impact of T1 and T2 is discussed further in the simulations of Section 4.1.2.
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Algorithm 1 Bootstrap cLasso
1: require:

list of genes {1, . . . , p};
list of individuals {1, . . . , n}
individuals’ sample number c1, . . . , cn with ci ∈ {1, . . . , k}
gene expressions X (dimension n× p)

parameters µ ∈ R (L2-regularization parameter) and T1, T2 ∈ N (number of
edges selected)

2: initialize: ∀ c ∈ {1, . . . , k}, ∀ j, j′ ∈ {1, . . . , p}, N c(j, j′)← 0
3: for b = 1→ P do
4: Sample at random with replacement in {1, . . . , n} return bootstrap sample

Bb

5: Use Bb to solve Equation (6) or Equation (5) for a full set of λ values
return (βc,λ,b

j )j,c,λ

6: Find λmax := arg maxλ

{(∑
j,j′,c Iβc,λ,b

j
6=0

)
> T1

}
return (βc,b

j )j,c :=

(βc,λmax,b
j )j,c

7: for all j, j′ ∈ {1, . . . , p} do
8: if β

c,b
j,j′ 6= 0 then

9: N c(j, j′)← N c(j, j′) + 1
10: end if
11: end for
12: end for
13: return List of edges for sample c: {(j, j′) : N c(j, j′) > T2}

4 Application

The simulations described in this section have been performed using R version 3.0

and the packages glasso2, SIMoNe3 and JGL4. Bootstrap was performed using a

parallel implementation with the package doMC.

2http://cran.r-project.org/web/packages/glasso/index.html
3http://stat.genopole.cnrs.fr/logiciels/simone
4http://cran.r-project.org/web/packages/JGL/index.html
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4.1 Simulated data

The method is first illustrated on simulated data. These experiments use one

of the graphs provided at http://www.comp-sys-bio.org/AGN/data.html and

created by Pedro Mendes (Virginia Bioinformatics Institute and State University;

see [12]). More precisely, the graph “scale-free Century 007” 5 was used to test

the method. This network has 100 nodes (corresponding genes) and 200 edges

(corresponding to gene interactions): the density of the (undirected) network is

thus approximately equal to 4%. The term “scale free” indicates that the network

has been generated from a preferential attachment model, as described in [3].

Additionally, the edges of the network are colored: half are “red” and half are

“blue”, which will differentiate a positive from a negative correlation between two

variables.

4.1.1 Data generation

Several artificial expression datasets were generated from the graph described

above. More precisely,

• k child networks were created by randomly rewiring a given ratio r of the

edges of the original network. Hence, two child networks have approximately

100(1 − 2r)% of shared edges. Loops and multiple edges were forbidden

during the rewiring process but the color of the edges was preserved. Each

of these k networks is used to model one experimental condition;

• nc expression data were then generated from a Gaussian multivariate variable

with a covariance matrix Σ for which the conditional dependency structure

5http://www.comp-sys-bio.org/AGN/Century/index.html
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corresponded to one of the child network. In addition, the edge colors were

used to define the sign of the partial correlation: blue edges corresponded to a

negative partial correlation (mimicking inhibition) and red edges (mimicking

activation) to a positive one.

Several experiments were designed with various values for k (2, 4 or 5), r (varied

between 5%, 10% and 20%) and the respective sample sizes n1, . . . , nk: 2 × 20,

2 × 30, 2 × 50, 5 × 20 and 4 × 30. Only small sample sizes (no less than 50

observations) were used to fit realistic experimental conditions in which only a few

observations per condition are generally available. The resulting child networks

had no more than 40% of different edges.

Figure 1 illustrates the generation process on an example: the “scale free Century

007” graph is displayed as well as two of its children, obtained by rewiring 5% of

the edges.

4.1.2 Bootstrap analysis

In this section, we investigate the effect of T1 and T2 on the performance of the al-

gorithm. This analysis is made using the results obtained from the expression data

generated with 5% of rewired edges, 2 conditions, each containing 20 observations.

For this network, 100 bootstrap samples were extracted: this number is low

compared to standard recommendations but, for one hand, the approach is com-

putationally expensive and, for the other hand, a previous work [1] showed that the

benefit of bootstrapping was achieved with the combination of 30 to 40 bootstrap

samples. Also, several values of T1 and µ have been tested: T1 ∈ {250, 300, 500}

and µ ∈ {0.1, 1}. The performance of the different parameters are compared by
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Figure 1: The “scale free Century 007” graph and two resulting child networks,
obtained with 5% of rewired edges. Green dotted edges are shared edges
whereas red solid ones are condition specific edges. The vertex posi-
tions result from a force-directed placement algorithm as in [10] and are
common to all three networks so that the edges can easily be compared.

means of the F statistics:

F = 2× precision× recall

precision + recall
,

where the precision is the ratio of retrieved edges that are in the true network (true
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positive edges among positive edges) and the recall is the ratio of true edges that

are retrieved by the method (true positive edges among the edges in the original

network). F is the harmonic mean of the precision and of the recall and computes

a trade-off between the two quantities.

For each condition and each pair of parameters {T1, µ}, the F statistics were

calculated along the precision/recall values obtained for different values of values

of T2 (bootstrap estimation). Then, the pairs of parameters {T1, µ} were com-

pared based on the averaged F over the conditions: the “best pair” of parameters

is the one that maximizes the maximum averaged F along the path of T2 values,

the maximum F being used as a way to find the best compromise between pre-

cision/recall. According to this method, the best pair {T1, µ} for the expression

data described above was {500, 1}, as shown in the level plot of Figure 2

Figure 2: Maximum F along the path of T2 values for different parameters µ and
T1
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When the value of T1 is set to a rather high value, 500 (which is much larger than

the true number of edges), and when µ is equal to 1, Figure 3 gives an indication on

the influence of T2 on the density of the inferred networks. The histogram displays

the distribution of the number of times a given edge is chosen by the algorithm

over the 100 bootstrap samples. Notice that only a few edges are very frequently

selected by the bootstrap method, whereas the targeted density of 4% is obtained

by keeping edges that are selected only about 40 times (i.e., 40% of the bootstrap

samples).

Figure 3: Distribution of the number of times an edge is selected over 100 bootstrap
samples for the first condition (left) and Evolution of the density versus
T2 for the 2 conditions (right). T1 = 500, µ = 1

Figure 4 displays the precision/recall curve. Two points are emphasized on this

figure: they correspond to the maximum F on the curve. The maximum F are

obtained by keeping edges that are selected at least 40/45 times (approximately)

over the 100 bootstrap samples and correspond to a precision about 25% and a

recall about 30%. These points give inferred networks with a resulting density

slightly lower that the true network density (2.5-3.5% instead of 4%). This illus-
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Figure 4: Precision/Recall curve (with varying T2) for the total number of edges of
the true child networks compared to the corresponding inferred network.
T1 = 500, µ = 1 (each curve correspond to one of the k = 2 child
networks.

trates the fact that, if there is a prior knowledge on a targeted density, a good

strategy could be to choose T2 so that resulting networks fit this targeted density.

When the value of T1 is equal to a smaller value (250 which is larger than the true

number of edges), the evolution of the density versus T2 and the precision/recall

curve are given in Figure 5. The conclusions are very similar except, of course, that

for a given value of T2, the densities of the resulting networks are lower. Otherwise,

the distributions of the number of times a given edges is selected by the algorithm

in the bootstrap samples are quite similar and the best F value is also obtained

for networks that have densities slightly slower than the true density.
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Figure 5: Evolution of the density versus T2 for the 2 conditions (left) and Pre-
cision/Recall curve (with varying T2) for the total number of edges of
the true child networks compared to the corresponding inferred network.
T1 = 250, µ = 1

However, as shown in Figure 2, T2 is a less important parameter for the method

performance, as compared to µ. Optimal parameters, according to the maximum F

statistics, are given in Table 1 for all simulations. As expected, µ needs be smaller

in the case where the two conditions correspond to more different networks (i.e.,

when the number of rewired edges is larger) but generally, using a rather high value

for T1 is the strategy that provides the best results. The effect of the bootstrap

on the performance is shown in the last column of this table, which contains

the percentage of increase of the corresponding maximum F compared to the

direct approach. Bootstrap only improves the performances when the percentage

of rewired edges is moderate (lower than 10%) or when there are many different

conditions. The counter-performance of bootstrapping could be explained by the

fact that it enforces the joint effect and thus fails to estimate edges specific to

the condition, that are less numerous in those cases. Additionally, this might
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be a very high-dimension issue [23]: when the n
p

ratio allows us to draw model

inference but is at the limit of producing reasonably accurate estimates, the use of

a bootstrap procedure produces a set of highly unstable estimates, which lead to

fewer robust estimated edges. As a consequence, the model estimate might focus

on those edges which are supported by many conditions and does not detect finer

pattern of dependencies in the data.

µ T1 % of improvement
of bootstrapping

network sizes rewired edges: 5%
20-20 1 500 28.80
30-30 1 300 20.15
50-50 1 300 13.44
20-20-20-20-20 1 500 83.75
30-30-30-30 0.1 500 42.67
network sizes rewired edges: 10%
20-20 0.1 250 18.35
30-30 0.1 500 16.17
50-50 1 250 4.23
20-20-20-20-20 0.1 500 55.48
30-30-30-30 0.1 250 29.56
network sizes rewired edges: 20%
20-20 0.1 300 -17.86
30-30 1 500 -7.97
50-50 0.1 300 -7.83
20-20-20-20-20 0.1 500 10.27
30-30-30-30 1 500 13.48

Table 1: Best parameters of the bootstrap cLasso for each simulation according to
the maximum F along the path of T2 values, and percentage of increase of
the best F value compared to the direct (i.e., un-bootstrapped) approach.
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4.1.3 Performance comparison

In this section, cLasso is compared to alternative methods for inferring graphs

from expression data. More precisely, for each expression dataset described in Sec-

tion 4.1.1, the following methods are applied to infer the k conditional dependency

networks corresponding to the k different conditions:

• the graphical Lasso method, as described in [9] and hereafter denoted by

gLasso: the k networks corresponding to the k different conditions are

inferred independently. Hence, the comparison with this method aims at

showing the effect of jointly inferring the networks instead of independently;

• the intertwined Lasso, the cooperative Lasso and the group Lasso methods,

as described in [5] and hereafter denoted by iLasso, coopLasso and grou-

pLasso, respectively. These methods are used to provide a comparison with

other joint inference methods. Also notice that the data generation provides

sign-coherent networks (i.e., the different child networks are very likely to

have the same sign for partial correlations corresponding to shared edges),

which should favor the cooperative Lasso method;

• the fused graphical Lasso, as described in [6], denoted by fgLasso. After a

few tests, the second regularization parameter, which controls the similarity

accross conditions, was set to the value 0.1 for all simulations;

• the consensus Lasso method, as described in Section 2. The two choices of

consensus described in Section 2.3 are tested with, for a priori network:

– the mother network (i.e., the true network used to generate the child

networks, which is never known in practice but is the closest thing we
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have in this simulation from a bibliographic network),

– or, for comparing a naive two-step approach with the averaged consen-

sus described in Section 2.3.2, a network which is the mean over the

conditions of independent estimations (i.e., estimations obtained with

µ = 0).

These methods are denoted by cLasso (m) (for the averaged consensus

method described in Section 2.3.2), cLasso (p) (for the method using the

true prior) and cLasso (2) (for the naive two-step approach that uses a

mean over conditions of independant estimations). Notice that the method

using as a prior the mother network is clearly favored in this comparison,

since even if the child networks are not identical to the mother network,

they are very related to it. The comparison with this method should be used

to understand what is the effect of integrating true prior knowledge in the

estimation. µ was set equal to 1.

For each method, the inference is performed for a whole path of λ values and the

corresponding precision and recall are calculated for each value of λ. A bootstrap

version with 100 bootstrap samples of each of these methods is also implemented

with T1 = 500. The number of times a given edge in a given condition is selected

is then used to calculate precision/recall values for different values of T2.

Precisions are recalls are calculated by comparing the estimated condition-

specific networks with the children networks they are generated from. We do

not compare directly the consensus network with the mother network because we

are interested in testing the ability of the method to estimate the common edges as

well as the condition-specific edges. The F statistics is used as a way to compare
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the different methods, as in Section 4.1.2. First, averaged F , over the different

conditions, are calculated along the precision/recall values obtained for different

values of λ (direct estimation) or for different values of T2 (bootstrap estimation).

Then, the maximum of these values (for recall and precision values larger than 0.05,

to avoid extremely bad values of the precision or of the recall) is used as a way to

compare the performance of the different methods. The results are given in Ta-

bles 2 (direct estimation) and 3 (bootstrap estimation), for each of the 6 methods

described above (the best-case scenario for the bootstrapped cLasso corresponds

to the parameters already listed in Table 1).
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Method gLasso iLasso groupLasso coopLasso fgLasso cLasso (m) cLasso (p) cLasso (2)
network sizes rewired edges: 5%
20-20 0.19 0.27 0.23 0.28 0.26 0.22 0.84 0.21
30-30 0.28 0.35 0.32 0.35 0.32 0.31 0.86 0.30
50-50 0.36 0.47 0.48 0.49 0.47 0.43 0.88 0.40
20-20-20-20-20 0.19 0.34 0.34 0.41 0.43 0.23 0.84 0.23
30-30-30-30 0.30 0.46 0.48 0.51 0.55 0.36 0.88 0.35
network sizes rewired edges: 10%
20-20 0.19 0.24 0.22 0.26 0.22 0.23 0.78 0.21
30-30 0.27 0.35 0.33 0.35 0.34 0.31 0.81 0.29
50-50 0.41 0.48 0.45 0.46 0.49 0.45 0.82 0.41
20-20-20-20-20 0.20 0.30 0.24 0.36 0.35 0.23 0.74 0.23
30-30-30-30 0.28 0.39 0.35 0.40 0.45 0.31 0.79 0.32
network sizes rewired edges: 20%
20-20 0.21 0.22 0.19 0.21 0.21 0.23 0.58 0.21
30-30 0.28 0.31 0.27 0.31 0.30 0.31 0.67 0.33
50-50 0.42 0.43 0.41 0.44 0.45 0.43 0.68 0.40
20-20-20-20-20 0.20 0.26 0.22 0.25 0.26 0.22 0.63 0.23
30-30-30-30 0.27 0.35 0.28 0.35 0.35 0.29 0.63 0.31

Table 2: Summary of the performance for the different method in terms of the maximum value of the F statistics.
The best method for each couple of percentage of rewired edges and network sizes, is emphasized with bold
face.
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Method gLasso iLasso groupLasso coopLasso fgLasso cLasso (m) cLasso (p) cLasso (2)
network sizes rewired edges: 5%
20-20 0.26 0.27 0.28 0.29 0.29 0.29 0.85 0.28
30-30 0.31 0.34 0.36 0.34 0.36 0.37 0.86 0.35
50-50 0.46 0.48 0.48 0.47 0.48 0.49 0.88 0.47
20-20-20-20-20 0.38 0.34 0.44 0.43 0.44 0.43 0.89 0.41
30-30-30-30 0.48 0.44 0.51 0.53 0.53 0.51 0.89 0.51
network sizes rewired edges: 10%
20-20 0.25 0.23 0.25 0.27 0.27 0.25 0.79 0.27
30-30 0.33 0.36 0.35 0.36 0.38 0.35 0.80 0.34
50-50 0.45 0.47 0.46 0.44 0.48 0.46 0.82 0.43
20-20-20-20-20 0.32 0.30 0.36 0.34 0.36 0.35 0.78 0.35
30-30-30-30 0.36 0.38 0.39 0.41 0.42 0.40 0.80 0.38
network sizes rewired edges: 20%
20-20 0.17 0.22 0.17 0.18 0.21 0.18 0.59 0.18
30-30 0.27 0.31 0.27 0.28 0.27 0.29 0.67 0.28
50-50 0.37 0.43 0.38 0.37 0.41 0.39 0.66 0.37
20-20-20-20-20 0.20 0.23 0.25 0.23 0.26 0.24 0.66 0.24
30-30-30-30 0.30 0.31 0.32 0.32 0.32 0.33 0.63 0.31

Table 3: Summary of the performance for the different method (bootstrap version) in terms of the maximum value
of the F statistics. The best method for each couple of percentage of rewired edges and network sizes, is
emphasized with bold face.
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Several conclusions can be drawn from these results. For a moderate ratio of

rewired edges (smaller than 10%), bootstrapping improves the performances of all

methods, except for iLasso (also, the increase is very limited for the coopLasso

method). The increase is particularly interesting when the sample size is small

and/or the number of samples is high. On the contrary, when the ratio of rewired

edges is equal to 20%, bootstrapping only improves the performances of cLasso

with prior, and, only for 4-5 samples having the smallest sizes, of gLasso, grou-

pLasso and cLasso (m).

As expected, the overall performance is strongly increased when a relevant prior

is added (the best F is often 3 times larger), which shows that this strategy should

probably be used when such an information is available. When this is not the case,

fgLasso often obtains the best results. Otherwise, coopLasso, bootstrap cLasso

or iLasso also have good performances. Bootstrap cLasso (m) seems to be useful

in the case of a moderate number of rewired edges and when the sample size is

smaller. The naive two-step approach, which requires two estimations instead of

one, often leads to deteriorated performances as compared to cLasso (m) which

is twice faster. Finally, direct iLasso is advised for the largest number of rewired

edges and coopLasso is to be preferred when the number of rewired edges is small

but the sample size larger.

Computational times needed6 for the different estimations are very different:

• the time needed to estimate one of the condition-specific networks with glasso

(independent estimations with graphical LASSO as described in [9]) is ap-

proximately equal to 1 second for 25 values of λ (to be multiplied by the

6Computational times are reported for a 4-core laptop, Intel(R) Core(TM) i5-3360M CPU @
2.80GHz, RAM 8Go DDR3, with OS Kubuntu Linux 12.04.
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number of conditions);

• the time needed to estimate 5 joined networks with simone (implementing

the methods described in [5]; the time is reported for “cooperative LASSO”)

is approximately equal to 1 minute 30 seconds for 100 values of λ;

• the time needed to estimate 2 joined network with JGL (implementing the

methods described in [6]; the time is reported for “fused LASSO”) is ap-

proximately equal to for 25 values of λ and the time needed to estimate 5

joined networks with this method is approximately equal to 2 hours 30 min-

utes. Notice that the path of λ has been performed manually as this package

is the only one that does not propose a regularization path for the sparse

parameter;

• finally, the time needed to estimate 5 joined networks with therese is ap-

proximately equal to 2 minutes 30 seconds for 100 values of λ (and a little

bit less than twice this value for the naive two-step approach).

4.2 Real data: effect of a diet on regulatory network

As an application to a real biological data set, we analyzed gene expression data

described in [24]. More precisely, the expression of 221 genes are used. These were

obtained for 204 obese women before and after a 8-week low-calorie die (LCD) with

the objective of more than 8% weight loss. Considering the two time steps of the

analysis as two different conditions, we used the bootstrapped cLasso approach

with µ = 1 and T1 = 1000 (that corresponded to a targeted density of approxi-

mately 4%). The choice of a rather high regularization parameter µ was directed
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by the will to emphasize only a few different edges between the two conditions

and hence to focus on the most relevant differences between the two conditions.

Notice that the possibility to monitor µ allows to infer networks that are more or

less consensual, depending on what your prior is. The choice for T1 was directed

by the fact that we wanted to obtain very sparse networks, easily readable for

the biologist, which, in the case of approximately 200 nodes, requires to have a

very low density. 100 bootstrap samples where used to estimate the edges by the

cLasso approach.

Figure 6: Distribution of the number of times an edge is selected over 100 bootstrap
samples for the expression data before the diet.
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The distribution of the number of times an edge is selected for expression data

after the diet was very similar to what was found before the diet. Hence, in order

to favor a high precision (at the cost of maybe a low recall), only the edges that

appeared in at least 80 bootstrap samples were selected. This yielded to networks

having respectively 316 and 315 edges (with a density about 1.3%). These networks

had 292 edges in common (i.e., approximately 90% of the total number of inferred

edges).

The histogram of the number of times a given edge is selected over the 100

bootstrap sample is given in Figure 6 (for the network corresponding to gene

expression data before the diet). It has to be noted that pairs of variables that

were never selected over the 100 bootstrap samples have been removed from the

histogram (it corresponded to approximately 70% of the 221×220 potential edges).
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Figure 7: Networks inferred by bootstrapped cLasso: before (left) and after low-

calorie diet (right). Blue edges are shared edges and pink edges are

condition specific edges. Some gene names are given, that are commented

in the text.

Other shared edges are highly probable, such as the one between AZGP1 and

GPD1L which are two known biomarkers of the metabolic syndrome [24]. However,

quite interestingly, at least one condition specific edge is also expected: the genes

PCK2 and CIDEA are the best biomarkers, among this set of genes, for the weight
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loss, and the main difference between the two conditions is indeed the weight loss

[24].

The resulting networks are displayed in Figure 7. They have approximately

92% of their edges in common. The full biological validation of such a network

is unrealistic (because of the very limited knowledge available in this area) but

some of the interactions make sense. For instance, some regulatory relationships

shared between the two conditions are already known, such as the relation between

FADS1 and FADS2, which encode two desaturase enzymes from the same cluster

gene with similar regulation by dietary composition [15].

5 Conclusion

We have proposed the cLasso method, which is used for jointly inferring networks

in the case of multiple and dependent expression data. This method relies on the

definition of a consensual solution, which in our case, is simply the mean between

the different conditions. The different networks are forced toward this consensus

by a L2-penalty whilst the sparsity of the solution is handled by an additional L1

penalty. The solution proposed in this paper can be reformulated as a LASSO

problem similar to the ones described in [16, 5] and the method is implemented

in the R package therese. Experiments were conducted, using a bootstrapped

approach based on the cLasso method and showed that this method is reliable.

Future work should address the issue of unbalanced sample sizes between con-

ditions, and of the choice of µ: a naive selection based on out-of-bag MSE has

been proven inefficient so far for selecting the best value. However, this parameter

can also be useful for the biologist to include prior knowledge about how similar
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the condition-specific networks should be: using different µ provide a family of

solutions with different fractions of common edges, among which the biologist is

free to choose.
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