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A B S T R A C T

Analysis of the evolution in solar heated drying kilns in recent decades shows that there have been a

series of modifications to optimize their thermal and drying efficiency.

Using an analysis method based on product design, we report on existing solar timber kilns. The

different dryers and their component units are studied, developments are noted, focusing on changing

trends in technological systems. As a result of this analysis we suggest some future adaptations.
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1. Introduction

Since the 1960s, several types of solar kiln have been studied

and improved on, and we find kilns ranging from very simple

systems, with only a small capacity, to automated dryers with an

integrated energy storage system.

There are many works which provide a classification of solar

kilns [1], dividing them into solar kilns of the agricultural

greenhouse type and solar kilns with an external collector. The

aeraulics of the dryer consist of natural convection or forced

convection.

We suggest a classification system for timber kilns, according to

the arrangement of the main components (collector and timber

stack), and we observe three typical groups.

In order to analyze the kilns, describe their respective means of

functioning and draw conclusions as to foreseeable changes that

might be introduced, we first define a methodology. An organic

approach is used to demonstrate each of the units in the system

and their relationship with the environment. The following

elements can be found: drying unit, heating unit, storage unit

and finally a control unit. Interaction components link these units

together.

Analysis of the changes observed was according to the eight

laws of technological system evolution from the TRIZ theory [2].

This analysis was carried out on the system as a whole but also on

the heating unit (solar collector). Lastly, a new concept is suggested

which brings together the most interesting arrangement and the

most efficient and economic heating unit which incorporates the

changes that will improve drying quality. This kiln has been

designed, modeled, simulated and optimized in the context of

studies for a doctoral thesis.

2. Analysis methodology

2.1. Organic approach

Analysis of the ‘‘solar timber kiln’’ system consists of exploring

the different existing designs, both on the market and described in

the literature. Our description of the system is based on an

approach used in the structure analysis of a design problem, the

organic approach [3].

Using the organic approach, a system can be decomposed

structurally. It is represented using a tool from functional analysis,

the technical organigram (TO) [4], which produces a technical

description of the system to be designed, broken down into

functional units. In order to take into consideration influences of

the system’s environment, the TO is extended to the surroundings

in the extended Technical Organigram (eTO) [5]. The units are

linked together by interaction components, which transmit flows

of energy, matter and information. These may be manufactured

components (bolts, screws, rivets, pipes, cables, electrical wires,

connectors, etc.) or linking components (weld, glue, etc.).

Observation of technical systems shows that, over time, they

become standardized (by moving down through the system levels

of the TO), they become fewer in number then they disappear (the

units combine together in a mass).

2.2. Laws of evolution for technological systems

The degree of development of any system is analyzed according

to two major lines of change, first, the evolution of the

environment surrounding the product (external environments)

and second, the evolution of its components.

To describe the findings observed in the case of solar timber

kilns, we used the eight laws or trends of evolution for

technological systems derived from the TRIZ theory [2]. Each kiln

was given a score for each law on an analysis grid and this

information was represented on a radar plot which determines the

degree of evolution of the system. These laws are as follows:

Law 1. Completeness of parts

Law 2. Energy conductivity

Law 3. Coordination of rhythms

Law 4. Increase in level of improvement

Law 5. Non-uniform development of entities

Law 6. Transition towards a supersystem

Law 7. Transition from macro-level to micro-level

Law 8. Increase in dynamism and level of controllability

In order to carry out the incriminated action, energy must be

transformed, transmitted and used. Law 1 defines the existence of

four entities within the system (Fig. 1), each of which must

participate minimally in the carrying out of the action.

It is sometimes difficult to express this law; Nadeau and Pailhes

[5] recommend following the functional flow associated with the

carrying out of the action and using a functional block diagram

(FBD) [3]. With the FBD, relations between the functions and the

components of a system can be demonstrated [4].

According to law 2, the system must allow the free passage of

energy between all entities as the action is carried out (energy may

be transmitted with or without contact). Energy transmission

should be as efficient as possible and there must be maximum

control of anyheat loss in the systemandalso the correct energyuse.

Law 3 states that frequencies, vibrations, periodicity between

all entities of the system must be coherent as the action is carried

out.

We now analyze the level of improvement in the system. Law 4

states that all systems at first have a tendency to evolve, increasing

in complexity in order to increase performance and improve its

functioning. Next, they tend to become more simplified, while

retaining their functioning level and operating safety.

Each entity evolves in its own way and an entity which reaches

its point of decline blocks the evolution of the entire system. Law 5

concerns this non-uniform development between entities which

causes technical and physical contradictions to be generated. For a

system to be able to evolve correctly there are two solutions that

we can envisage: the elimination of contradictions and the uniform

development of the entities concerned.

Laws 6 and 7 define the possibilities of moving towards the

lower (micro-level) or higher levels of a system, as shown in the

eTO (in association with the external surroundings). The environ-

ment of the product (external surroundings) influences possible

changes. The evolution of these surroundings depends on

functional criteria, on technological obstacles that must be

overcome, on economic, sociological and even political constraints.

The last law (law 8) concerns the increased dynamism and level

of controllability: entities in the system evolve from static to

dynamic behaviors in order to increase their controllability, thus

uncontrollable entities become controllable and compatible one

with another.

Fig. 1. Entities present in a system according to the law of completeness of parts

(law 1).
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3. State of the art of the ‘‘solar kiln’’ system

3.1. Organic approach

Simpson [6] has studied solar timber kilns and suggests a

classification according to the level of complexity of their control

system. The simplest is an insulated kiln like an agricultural

greenhouse, with natural air circulation. The next group consists of

agricultural greenhouses used in small or medium-sized busi-

nesses. Semi-automatic dryers to improve thermal efficiencymake

up the third group. Lastly, the fourth and most complex group

consists of automated solar kilns equipped with systems such as

thermostats, humidostats, dampers to control air flows, reversible

ventilators and a complementary energy source. This last group

requires considerable investment.

To analyze these solar drying systems, and in accordance with

the method described, we identify the arrangement of the main

components of a solar kiln on level 1 of the extended technical

organigram in Fig. 2.

We define a solar kiln as a system consisting of two main units:

a drying unit (dryer chamber, b) and a heating unit (solar collector,

c). There may also be an energy storage tank (stk) and a control

unit. During the functioning of a system, functional flows circulate

between the units; these are flows of energy, matter and

information. In the case of a kiln, this is the flow of drying air

(energy and matter). The information flow is linked with the kiln’s

control parameters.

In order to ensure the flow of the drying air, the units must

interact. We therefore identify the interaction components: air

ducts (free and forced convection) and fans (forced convection).

The functioning of the system is very much influenced by the

surroundings, such as the position of the sun, variations in

temperature and humidity relative to the air outside (meteorol-

ogy) and also the availability of electrical power to operate the

fans.

The respective positions of the units define the different

arrangements possible and to represent the kiln we use the icons

from Fig. 2.

3.2. Global analysis of the state of the art

As a result of our research, we observed various changes in the

units of the ‘‘solar kiln’’ system.

Concerning the heating unit, the most remarkable improvement

was the efficiency of the collectors. Later, we present a specific

analysis of changes observed in solar collectors in Section 4.

Concerning the drying unit, the main points to note are:

- reduction in heat loss (insulated walls). The use of primitive

building materials with no insulation (plastic sheet, wood) has

evolved towards brick and well-insulated concrete [7,8]. In

particular, the Australian company Solar Dryers Australia,

produces kilns with aluminum alloy-clad walls with internal

insulation,

- optimization of the aeraulics (reduced losses of charge and

speeds have become uniform) thanks to the position of the fan

interaction component during aspiration,

- use of automatic control devices inside the chamber for

humidity, air change and the solar collector by-pass when there

is insufficient sunshine [7].

Three typical arrangements can be seen, and these have been

classified according to the arrangement of themain components of

the kiln, i.e. the drying unit (pile of timber), the heating unit and

the storage unit, when this is present. Fig. 3 summarizes the main

arrangements that are found.

The three groups in the solar kiln classification demonstrate the

lengths to which researchers and designers of solar timber kilns

have gone to try and find a self-sufficient solar kiln system which

can function both day and night.

Arrangement 1 is the one which first inspired the development

of the solar kiln [9]. This arrangement was later taken up by many

constructors but overall it has never evolvedmuch. However, aswe

shall see, the development suggested by the Australians who have

integrated the collector into the drying chamber represents a very

interesting solution [10].

We observe that the group of kilns that has been studiedmost is

the one that corresponds to arrangement 2, as separating the units

makes the solar kilns more flexible.

The third group consists of kilns that include an energy-storage

unit. There are two kilns in this group: the first one that we found

used water as the heat-transfer fluid for storage, and the second

incorporated a bed of stones placed below the kiln, heated directly

by the air in the chamber.

From the positions of the interaction components it is possible to

differentiate the kilns and demonstrate changes that have occurred.

Fig. 2. Technical organigram (eTO) of the kiln.

Fig. 3. Classification of solar kilns according to arrangement of main units.
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3.3. Solar kiln with integrated collector (arrangement 1)

The solar kiln with the integrated collector is a system in which

the units are all part of one and the same construction (Fig. 4),

where the solar collector is always placed above the stack to be

dried or directly on the chamber roof. This is the oldest [9], but also

the one that has been used most often over the years as it is

compact and easy to build [8–18,25,61–63,69,70]. Apart from

improvements in the collector, the main development concerns

the positioning of the fans and the direction of aspiration, thus we

have two typical sub-groups:

- one where air is drawn in from the collector and discharged

towards the stack (good air distribution in the collector) [11–18],

- one where air is drawn in from the stack and discharged towards

the collector (good air distribution in the stack) [18].

In order to recover as much solar energy as possible by tracking

the sun throughout the day (favorable latitude), Haque [10]

suggests a solar collector that surrounds the drying chamber. The

drying chamber has two roles, first, it functions as the transparent

cover of the absorber and second, a layer of air between the inside

and outside walls reduces heat loss from the dryer.

3.4. Solar kiln with lateral semi-integrated collector (arrangement 2)

In the semi-integrated kiln the units are separate, linked only by

the interaction components, the air ducts and the fan (Fig. 5).

Several authors have suggested this arrangement. At first, of

course, kilns used natural air circulation [19], but subsequent

changes have introduced a fan to increase drying efficiency.

The positioning of the fan, the interaction component, differs in

each model. For example, some authors [20,21,64] put the fan

between the chamber and the collector (lower part), others put it

above the timber stack [65–68]. To improve evacuation, one idea is

to place the fan between two timber stacks [22]. The aim of the

different innovations observed is:

- to improve outflow [7,64],

- to make it possible to by-pass the collector at night [7,19,22,64].

Placing the fan before or after circulation through the timber

stack, depending on the construction of the kiln, ensures that there

is good air circulation in the stack. Traditionally, it is more efficient

to place it in the after position, drawing air from the system we

want to control, and moreover, spending on electricity is reduced.

Building independent drying and heating units represents an

advantage for the evolution of each as any changes made to one do

not affect the development of the other.

3.5. Solar kiln with storage (arrangement 3)

This arrangement represents a modification to arrangement 2

by incorporating energy storage. We find two variations for this

type of arrangement.

The first kiln has a battery of liquid-based collectors (Fig. 6)

[23]. These collectors use the ‘‘pipe’’ interaction component to link

them to a water storage unit; this water then warms the air by

means of an exchanger in the drying unit.

The other solution involves a solar kiln with a bed of stones

under the timber stack. Air flows from the collector across the

stones and then passes into the timber stack. Obviously, the energy

supplied to thewood during the daytimewill be determined by the

accumulation capacity of the bed of stones. This solution has not

been used much due to the somewhat cumbersome nature of the

bed of stones [24–26,65,66].

Fig. 4. Solar kilns with integrated collector (arrangement 1).

Fig. 5. Solar kilns with semi-integrated collector (arrangement 2).
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By storing energy it is possible tomaintain a temperature that is

virtually uniform or to control the temperature in the chamber.

This will have direct consequences on the quality of the product as

once the heating can be made constant then the system can be

controlled.

Using liquid-based collectors to store the energy and to heat the

chamber affects the efficiency of the system as two water–air

transfers are required (both during the daytime and at night),

between the collector and the storage tank and between the

storage tank and the chamber.

Initial investment is considerable (cost of producing the storage

tank and cost of the land). This system should therefore be judged

according to different criteria, in particular the cost of ownership

and of improving the quality of the products.

3.6. Development trends in solar kilns for drying timber

Weuse the development trends described toproduce an analysis

of the existing situation and to imagine future developments.

To carry out the action ‘‘drying the timber’’, solar energy is

transformed, transmitted and used in the system. To this end,

according to the law of completeness of parts (law 1) we identify a

motor entity (the collector in the heating unit transforms energy

from solar radiation into heat energy in the form of hot air), a

transmission entity (ducts transmit the hot air), an operator (the

drying chamber where the hot air dries the timber) and a control

entity (Fig. 7).

Quality control of the product is now carried out by monitoring

humidity and controlling the flowof drying air via control variables

(VP). The different entities then improve their efficiency.

In accordance with the next two laws (law 2: energy

conductivity and law 3: coordination of rhythms), we note that

insulation in the kilns has got better and better. The insulating

materials derive from resources available in the local environment.

The notion of rhythm can be found in arrangement 3 where the

alternating day/night rhythm is taken into account. The use of

strategically placed fans which in most cases draw in air in front of

the timber stacks serves a similar purpose.

Next, the degree of improvement as defined by law 4. The

appearance of controls produces aeraulics that are more complex

to manage and the integration of storage. The quality of the

product in the chamber is monitored by the humidity control and

the aeraulics control.

Concerning law 5, with arrangement 1 the drying chamber

dictates the dimensions of the solar collector, while switching to

arrangement 2 allows for dimensions that are adapted to energy

needs and the volume of wood to be dried.

Laws 6 and 7 define the possibilities of shifting to a micro-level

and associating the systemwith the surroundings.We observe that

with a detailed knowledge of the materials and the associated

transfer phenomena the kilns can be better run, automatic controls

are possible and thus control of the drying process and the quality

of the dried product are improved. Developments in arrangement 1

[10] mean that the kiln is integrated into its environment and thus

reduces the surface area required; this integration solution follows

along the lines of law 7.

The last law (law 8) concerns the increase in dynamism and in

the level of controllability: the flexibility of arrangement 2, making

nocturnal energy available by integrating separate heat storage,

gives possibilities of dynamic adaptation, and the presence of the

storage unit, vents and adjustable fansmeans that the drying ducts

can be monitored and controlled.

4. State of evolution of the heating unit

4.1. Organic approach

According to the global system (eTO N1, Fig. 1), the heating unit

at level 2 is a flat-plate solar collector in the kilns. This is a specific

type of heat exchanger which transforms solar radiation energy

into heat [27]. The design of the collector will depend on the

amount of energy required by the system to be heated and on the

heat-transfer fluid available, thus we move from simple flat

collectors to evacuated collectors and solar concentrators. Solar

collectors generally consist of: a transparent cover, a blackened

metal absorber, one or several pipes and insulation. To describe

this system, we use the extended technical organigram showing

level 2 (eTO N2) in Fig. 8 [3].

In the case of collectors, we found no interaction components

between the system units. At the interface with the absorber, the

fluid recovers energy by convection. This energy is transmitted

directly to the operator or stored.

The heat-transfer fluid is an environment that is external to the

system, it may be chosen according to how much heat is needed.

Several fluids are used, such as air, water and thermal fluids

(sensible heat) or substanceswhich change phase (latent heat). The

heat recovered from the absorber will depend on the physical

properties of the fluid. By using phase change fluids it is possible to

improve transfers at the absorber/fluid interface, and thus have

better energy recovery.

The collectors of sensible heat that are normally used can be

classified into two groups: air-type collectors and liquid-type

collectors [28].

According to several authors, the design of solar collectors

enables us to classify them into different groups, according to the

Fig. 6. Solar kiln with storage (arrangement 3).

Fig. 7. All the parts applied to the solar kiln.
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arrangement of the components [29,30] or to the presence or

absence of the transparent cover [31,32].

The first collectors studied consisted of a metal absorber,

insulating material [34] and an optional transparent cover. The

development that followed made it essential that a single or

double transparent cover be used above the absorber in order to

reduce heat loss at the front [33].

In our analysis, we study three groups of solar collectors: air-

based collectors, liquid-based collectors and evacuated tube

collectors. We define developments they have undergone accord-

ing to the laws of evolution for technological systems.

Air-based solar collectors are usually built to be used directly

for drying. The air is heated directly as it passes through the

collector.

The group of liquid-based solar collectors, intended mainly for

heating domestic water, has rapidly improved in efficiency. This is

because special materials are used thus improving the optical

properties of the components (transparent cover and absorber).

Lastly, the third group concerns a special type of collector, the

evacuated tube solar collector. This generally consists of a

transparent glass tube, a selective absorber and one or several

pipes. The absorber is placed inside the tube then the air is

removed from the tube or it is filled with an inert gas; in this way,

losses by convection between the absorber and the glass wall are

minimized [35].

The law of completeness of parts was used to structure our

analysis of the action ‘‘heat a fluid by solar energy’’, the main

function of a solar collector. The entities that make up this system

can be seen in Fig. 9. A motor entity represented by the selective

unit (the transparent cover, the confined air or the vacuum

between the cover and the absorber, the surface of the absorber); a

transmission entity (the absorber) and an operator entity (the

absorber/heat-transfer fluid interface). The control unit, if it exists,

enables the collector to be turned in order to track the sun.

The three groups differ in their motor entity (selective unit) and

operation entity (absorber/heat-transfer fluid interface) (Fig. 10).

4.2. Evolution of the selective unit

An efficient cover should minimize absorption and reflection

from solar radiation so that as much energy as possible reaches the

absorber.

Various materials (glass, plastic) have been used to produce

transparent covers. The first covers made out of plastic brought

costs down, but also reduced the lifetime of the product. Next,

plastic covers reinforced with fiber glass lengthened the lifetime

but without improving the performance of the collector. Lastly,

glass was used which combined efficiency and a longer life for the

cover. Heat losseswere reduced still further by using a double layer

of glass, but this proved to be no longer necessary after the

appearance of special types of glass (white low-iron anti-reflection

glass) which reduce glare and increase solar energy transmission

[35,36].

The second element in the selective unit is the air confined

between the cover and the absorber. The effects of convection

should be limited to minimize losses from the front. Innovations

have emerged, replacing air by an inert gas or a vacuum (only for

liquid-based collectors due to the mechanical properties of the

tubes).

4.3. Evolution of the absorber

The absorber participates in energy transformation via its

surface, transmitting thermal energy by conduction and ensuring

that the heat-transfer fluid is heated by convective heat transfer at

its interface with the fluid.

4.3.1. Energy transformation

The transformation of radiant energy necessitates various

modifications to the optical properties of the absorber. Selective

coatings are used to reduce emission from heat radiation

wavelengths. The performance of the present absorbers has been

improved by the use of these selective coatings, e.g. chromium

alloys, black chromium, plasma coatings, Physical Vapor Deposi-

tion (PVD) coatings, ceramics with a metal oxide base (CERMET),

etc. [35].

The landscape has changed considerably over time, and nowwe

mainly see collectors which consist of a blackened metal or plastic

plate (EPDM) in which the fluid to be heated is circulating, and

which then break up into tube-shaped segments as shown in

Fig. 11 [31,33,37,38].

Among solar air collectors, we also see different arrangements

of the absorber such as: glued to the insulating material

[29,30,39,40], placed between two air passage-ways [39] or

between the glass and the air passage [30,41,42]. The different

arrangements of the absorber component thus demonstrate the

evolution of the air-based collector. This gradual evolution towards

better efficiency is shown in Fig. 12.

Fig. 8. Extended technical organigram of flat-plate solar collector (eTO).

Fig. 10. Classification of existing solar collectors.

Fig. 9. Law of completeness of parts applied to solar collectors. Fig. 11. The first types of solar absorber.
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In the same way, we find various forms of absorber in liquid

solar collectors (Fig. 13-A).

4.3.2. Energy transmission

Several types of material were used during the 1980s, such as:

steel, stainless steel, aluminum and copper. Nowadays, conductive

metals are used for the absorber, mainly aluminum and copper.

4.3.3. Energy transfer to the heat-transfer fluid

Increasing the exchange surface and its efficiency, depending

on the heat-transfer fluid, was one of the first changes to occur.We

find ‘‘louvered’’ metal sheets [43–48], finned metal sheets

[32,47,49,50,56–58] until the arrival of the porous absorber. These

modifications are shown in Fig. 13-B.

The design of collectors, and also exchangers, was optimized

and the result was to break up the passage of the fluid (air-based

collectors) in order to increase the exchange surface, decrease the

size of the passage, and thusmaximize energy recovery by the fluid

[29,30,32,51,52]. Next, the multiple segmentation of the air

passage represented an even greater increase in surface area

and led ultimately to a porous absorber [42,45,51,53–55] (Fig. 14)

for a 10 to 18% increase in thermal efficiency [51]. On the other

hand, the problem of considerable losses of charge made it

necessary to use forced convection and a fan.

4.4. Evolution of the insulation unit

The insulation unit plays a very important part in solar collector

design. Its function is to minimize heat loss at the front and back of

the collector.

In the case of flat-plate collectors, heat loss at the back has been

reduced by using various insulating materials, from glass wool,

through polymeric foams and currently mineral wool [28,35]. To

reduce the costs of materials in the system and with a view to

sustainable development, new insulation materials have been

suggested, based on organic compounds: sheep’s wool, wood fiber

and plant fibers in general.

The problem of losses from the front has been minimized by a

layer of confined air between the transparent cover and the

absorber then by inert gases and lastly by a vacuum.

With regards to the general insulation of the collector, Frei, s/

d, proposes a flat-plate liquid-based collector, which should be

available in 2010. This consists of a caisson filled with an inert

gas (krypton) to reduce losses via convection. Similarly, the

vacuum tubes represent a very significant development in the

area of insulation, as heat losses by convection have been

successfully eliminated [35], this has removed the need for

insulation at the front, which means that the heating unit

is beginning to evolve in the direction of its environment

(law 7).

Unlike flat-plate solar collectors, evacuated collectors have the

advantage of being able to track the sun’s trajectory during the

daytime thanks to their cylindrical shape, which gives them better

efficiency in recovering solar energy and hence a higher level of

performance.

Using a vacuum has enabled us to envisage an independent

collector recovering energy by latent heat and hence avoid the

passage of the heat-transfer fluid in the tube; the tube has become

a heat pipe, the tubular absorber traps a small amount of water (or

a different fluid, depending on the required temperature) (Fig. 15).

This water vaporizes in the absorber tube, the vapor rises in the

tube, it condenses in the upper part placed in the water tank to be

heated (condenser) and finally it returns to the absorber by gravity

in liquid form. The condenser transfers heat to the heat-transfer

fluid in the tank [35].

Evacuated tube collectors are still evolving through:

- the arrival of glass absorbers, thus the problems of metal/glass

tightness are resolved,

- the incorporation of a heat exchanger in the tube in the case of

direct flow collectors,

- the integration of a mirror, parabolic or not, to increase the

capture surface,

- the use of phase change fluids.

Fig. 12. Order of evolution of group I.

Fig. 13. Evolution of the transfer unit (liquid-based collector, A and air-based collector, B).

Fig. 14. Increase in the exchange surface area (absorber/fluid).

1452



4.5. Evolution trends

The control/command part of the system (fourth entity) must

evolve still further, with improvements in tracking the sun and in

the control of transfers. The evacuated tube collector responds to

this without a monitoring system, however it is not yet adapted to

air-based collectors. We can imagine designing heat pipes with

condensers with external fins to heat the air.

Heat losses (law 2) have been reduced thanks to insulation in

the front part (layer of confined air or inert gas), at the back of the

collector (mineral wool), and by using a vacuum.

The law of coordination of rhythms (law 3) involves adapting

the collector to themovement of the sun. The angle of the collector

in relation to the sun’s rays ensures that it receives asmuch energy

as possible during the year. Several authors have researched this

subject. Shariah et al. [59] suggest a mathematical model which

optimizes the angle of the collector. Pucar and Despic [60] have

proved that using an adjustable solar collector is much more

efficient than a fixed collector, particularly at sunrise and sunset

and when the sky is cloudy.

In accordance with law 8 (increase in dynamism of the system),

using a system that follows the movement of the sun makes the

collector dynamic.

From the point of view of law 4, the collector’s performance has

improved as a result of modifications which led to an increase in

the surface area of the absorber, making it more efficient; the

problem of considerable losses of charge experienced by the heat-

transfer fluid still remains to be resolved. The reduction in the size

of the collectors by aiming to improve manipulation when it is

installed will lead to the construction of smaller and smaller

components, the system is thus tending to become more complex.

The transition from a 2D collector to a 3D collector (parabolic

collector and vacuum collector) means that solar energy collection

is optimized. On the other hand, the construction of evacuated tube

collectors has become much more complex because of the

integration of new components into the system.

No non-uniformdevelopment of entities (law5) of the system is

observed since each of the collector’s components can evolve

without affecting the development of the others.

In accordance with law 6, the integration of the collectors into

their environment, the drying kiln and the storage system is

ongoing. The air-based collector is integrated into the drying kiln

[10] and the evacuated system is integrated into the storage (heat

pipes); nevertheless, this last solution has not yet found its place in

storage for industrial use.

The application of selective coatings on the absorber imposes a

development on this component at micro-level (law 7). Analysis of

selective coatings represents years of research in order to find one

or severalmaterials that have the qualities of high absorptance and

low reflectance to solar radiation.

5. Proposed evolution

In order to situate the degree of evolution that has taken place

in existing solar kiln systems, see Fig. 16 which represents the

points of view in accordance with the eight laws of evolution. For

each law, the score applied to the degree of evolution throughout

its existence is based on concepts which have not evolved (0) to

very evolved systems (3). The suggestion in Fig. 7 takes up

interesting known concepts and adds foreseeable evolutions taken

from the radar plot, i.e.:

- arrangement 2,

- use of storage with independent heating,

- integration of an air heater in the storage and not in the drying

chamber,

- management of different drying cycles according to quality

control of the product.

Fig. 15. Insulation in a vacuum (tube with direct flow, A; heat pipe, B).

Fig. 16. Radar plot to assist analysis for future developments and proposal for new arrangement.
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Optimization of the parameters relevant to the drying process,

design of the units, the series of cycles and reducing ownership and

land costs have yet to be carried out.

Concerning the heating units, we have seen that liquid-based

collectors are now extremely efficient (glass tube ensuring static

tracking of the sun), designed in such as way as to ensure that

maintenance is straightforward (collectors with heat pipes). Air-

based collectors, however, have not evolved in the same way and

one suggestion is to use heat pipe collectors by placing finned

surfaces on the condenser and air side. In this case the air no longer

sees the sun and passes into a pipewith internal fins intowhich the

heat pipes are incorporated. In this way we have the same

flexibility for maintenance. This flexibility should be used for

cleaning the absorber surfaces.

6. Conclusion

We have proposed a method for analyzing currently available

solar kilns and associated patents. This method is based on an

organic and functional approach to analyze the arrangements and

the different units of a kiln.

The laws of evolution for technological systems were used to

describe the solutions found and to situate them in terms of

development. Thus, it was possible to suggest integrating a storage

system and a new adapted arrangement. Similarly, a new air-based

collector is a possibility, based on the combined analysis of

development trends of air-based collectors and vacuum collectors.

Fig. 17 shows the kiln that we are currently designing (based on

the proposal shown in Fig. 16) in the context of a doctoral thesis

study in our Laboratory, supported by CONACyT (Mexico). The

heating unit consists of insulated air-based collectors and confined

air. The liquid-based collectors linked to the storage unit are more

rugged for reasons of sturdiness and cost, but they could easily be

replaced with evacuated tube collectors.
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