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Abstract

Parallel robots enjoy enhanced mechanical characteristics that have to be contrasted

with a more complicated design. In particular, they often have parallel singularities at

some poses, and the robots may become uncontrollable, and could even be damaged, in

such configurations. The computation of the connected components in the set of non-

singular reachable configurations, called generalized aspects, is therefore a key issue

in their design.

This paper introduces a new method, based on numerical constraint programming,

to compute a certified enclosure of the generalized aspects. Though this method does

not allow counting their number rigorously, it constructs inner approximations of the

nonsingular workspace that allow commanding parallel robots safely. It also provides

a lower-bound on the exact number of generalized aspects. It is moreover the first

general method able to handle any parallel robot in theory, though its computational

complexity currently restricts its usage to robots with three degrees of freedom. Fi-

nally, the contraint programming paradigm it relies on makes it possible to consider

various additional constraints (e.g., collision avoidance), making it suitable for practi-

cal considerations.

Keywords: Numerical constraints; parallel robots; singularities; generalized aspects.

1. Introduction

Mechanical manipulators, commonly called robots, are widely used in the industry

to automatize various tasks. They are mechanical assemblies of rigid links connected

by mobile joints. Some joints are actuated and they allow commanding the robot op-

erating link, called its end-effector (or platform). One key characteristic of a robot

is its reachable workspace, informally defined as the set of poses its end-effector can

reach. Indeed, its size defines the scope of operational trajectories the robot can per-

form. The workspace can be computed from the set of possible command inputs using

1This paper is an extended version of [1], which has been presented at the Multi-disciplinary track of the

18th International Conference on Principles and Practice of Constraint Programming.
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the kinematic model of the robot, a system of equations relating the commands and the

pose coordinates. The size of this system is often referred to as the degrees of freedom

(DOF) of the robot.

Robots comply with either a serial or a parallel (or possibly a hybrid) assembly,

whether its links are connected in series or in parallel. Parallel robots [2, 3] present

several advantages with respect to serial ones: They are naturally stiffer, leading to

better accuracy with larger loads, and allow high speed motions. These advantages

are contrasted by a more complicated design that yields difficulties for the computa-

tion and the analysis of their workspace. First, one pose of the robot’s end-effector

may be reached by several actuated joint commands (which correspond to different

working modes), and conversely one input command may lead to several poses of its

end-effector (which correspond to different assembly modes). Second, parallel robots

generally have parallel singularities [4], i.e., specific configurations where they become

uncontrollable and can even be damaged.

One central issue in designing parallel robots is to compute its nonsingular work-

space, together with the corresponding commands, so that the robot can be safely oper-

ated. This amounts to computing the connected components of the set of nonsingular

configurations, called generalized aspect in [5]. This computation must be certified in

terms of non-singularity and connectivity in order to guarantee safe operations. Few

frameworks provide such certifications, among which algebraic computations and in-

terval analysis. Algebraic methods are in general too expensive and apply only for

polynomial systems. Still, the cylindrical algebraic decomposition was used in [6] with

a connectivity analysis limited to robots with 2 DOFs. Though generalized aspects are

mathematical objects that cannot, in general, be computed exactly using numerical

methods, interval analysis allows the rigorous computation of some approximation. It

was used in [7] for robots having a single solution to their inverse kinematic prob-

lem; Though limited, this method can still tackle important classes of robots like the

Stewart platform. A quad-tree with certification of nonsingularity was built in [8] for

some planar robots with 2 DOFs; This method can be extended to higher dimensional

robots, but it requires the a priori separation of working modes by adhoc inequalities,

and is not certified with respect to connectivity. Finally, the two works [9, 10] pro-

pose algorithms based on interval analysis to analyze the connectivity of set defined by

inequalities constraints, but cannot be extended to equality constraints. In particular,

the developments presented in the present paper somehow extend the interval-based

path planning method proposed in [9] for sets defined by inequality constraints only, to

manifolds defined by equality, disequality and inequality constraints.

In this paper we propose a branch and prune algorithm incorporating the certifi-

cation of the solutions and of their connectivity. This allows a fully automated and

certified computation of what we call connected sets of nonsingular configurations

(CSNCs), i.e., certified approximations of generalized aspects, from the model of arbi-

trary parallel robots, including robots with multiple solutions to their direct and inverse

kinematic problems, without requiring any a priori study to separate their working

modes. Though the proposed method does not allow counting the number of CSNCs

rigorously, it constructs inner approximations of the nonsingular workspace that allow

commanding parallel robots safely. Although less important in practice, a more accu-

rate and costly connectivity analysis is also proposed, which enables separating non
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Figure 1: The PRRP in a generic pose (left) and in singular poses (right).

connected CSNCs, hence providing a lower-bound on the exact number of generalized

aspects. The algorithm is applicable to robots with an arbitrary number of DOF, al-

though the complexity of the computations currently restricts its application to robots

with three DOFs. It is also very flexible as it can naturally take into account additional

constraints such as, e.g., arm collisions, obstacle avoidance or joint limits. It is thus the

first method able to handle such a large class of robots for the problem of computing

connected sets of nonsingular configurations. Its main limitation is its performances,

due to the combinatorial explosion of the number of computed boxes with the dimen-

sion of the problem and the prescribed computational precision. As a consequence, we

have applied it to planar robots only at the moment.

A motivating example is presented in Section 2 followed by some preliminaries

about numerical constraint programming and robotics in Section 3. The proposed al-

gorithm for certified singularity free connected components computation is presented

in Section 4. Finally, experiments on planar robots with 2 and 3 degrees of freedom are

presented in Section 5.

Notations

Boldface letters denote vectors. Thus f(x) = 0 denotes a system of equations f on

a vector of variables x: f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0. The Jacobian

matrix of f(x) with respect to the subset x′ of the variables x is denoted Fx′(x).
Interval variables are denoted using bracketed symbols, e.g., [x] = [x, x] := {x ∈
R | x ≤ x ≤ x}. Hence, [x] is an interval vector (box) and [A] = ([aij ]) is an interval

matrix. IR denotes the set of intervals and IR
n the set of n-dimensional boxes. For an

interval [x], we denote wid[x] := x − x its width, int[x] := {x ∈ R | x < x < x}
its interior, and mid[x] := (x + x)/2 its midpoint. These notations are extended to

interval vectors.
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2. Motivating Example

Description. Consider the simple PRRP2 planar robot depicted in Figure 1 (left), which

involves two prismatic joints (gray rectangles) sliding along two perpendicular direc-

tions. These prismatic joints are connected through three rigid bars (black lines) linked

by two revolute joints (circles) that allow free rotations between the rigid bars. The

lengths of the prismatic joints are respectively denoted by x and q, the end-effector

pose x being along the horizontal direction and the command q corresponding to the

height along the vertical direction. Figure 1 (left) shows one generic configuration of

the robot. Note that there is another symmetric (negative) pose x associated to the

same command q, which is typical of parallel robots. From this configuration, every

(vertical) change in q induces a unique corresponding (horizontal) change in x, hence

this configuration is nonsingular. Figure 1 (right) shows two singular configurations.

In the plain green pose (where the robot’s main rigid bar is horizontal), increasing or

decreasing the command q both entails a decrease of x. In the dashed red pose (where

the robot’s main rigid bar is vertical), increasing or decreasing the command q entails

a vertical motion of the end-effector which is impossible due to the robot architecture,

hence a potential damage to the robot. The green configuration amounts to a serial sin-

gularity, which restricts the robot mobility without damaging it; the red configuration

is a parallel singularity, which may damage the robot.

Kinematic model. The coordinates of the revolute joints are respectively (a, q) and

(x, b), where a and b are architecture parameters corresponding to the lengths of the

two horizontal and vertical small rigid bars. Then the main oblique rigid bar enforces

the distance between these two points to be equal to its length l, a third architecture

parameter. Hence, the kinematic model of this robot is defined as follows:

(x− a)2 + (q − b)2 = l2. (1)

The solution set of this model, the circle of center (a, b) and radius l, is depicted in

Figure 2 (left). The direct kinematic problem consists in computing x knowing q,

leading to two solutions a±
√

l2 − (q − b)2 if q ∈ [b− l, b+ l], no solution otherwise.

Similarly, the inverse kinematic problem consists in computing q knowing x, leading to

two solutions b±
√

l2 − (x− a)2 provided that x ∈ [a−l, a+l], no solution otherwise.

It is noteworthy that this simple robot is representative of the general case since parallel

robots can have several solutions to both their direct and inverse kinematic problems.

It is also typical regarding its singularities: It has two serial singularities where the

solution set has a vertical tangent (leftmost and rightmost green points in left hand

side graphic of Figure 2), and two parallel singularities where the solution set has a

horizontal tangent (topmost and bottommost red points in the left hand side graphic

of Figure 2). These four singularities split the solution set into four singularity free

connected components (quarters of circle), i.e., this robot has four generalized aspects.

We can determine the nonsingular workspace of the robot by projecting each aspect

onto the x component (the thick lines above and under the paving in Figure 2 (right)).

2In robotics, manipulators are typically named according to the sequence of joints they are made of, e.g.,

P stands for prismatic joint and R stands for revolute joint, actuated joints being underlined.
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Figure 2: The PRRP kinematic model solutions set (left) and the computed paving (right).

Certified approximation of Generalized Aspects. This paper uses numerical constraint

programming in order to compute, with full certification, subsets of the different as-

pects, called connected sets of nonsingular configurations (CSNC) in the following.

The standard branch and prune algorithm is adapted in such a way that solving the

robot kinematic model together with non-singularity constraints leads to the enclosure

depicted in the right hand side graphic of Figure 2. Each solution box is certifiably

crossed by a single aspect which covers the whole box projection on the x subspace,

and each pair of neighbor solution boxes are certified to share a common solution.

Therefore, the connected components A1,A2,A3,A4 of the computed boxes shown

in the right hand side graphic of Figure 2 allow separating the four aspects, and pro-

vide, by projection, inner approximations of the nonsingular workspace of this robot.

3. Preliminaries

3.1. Numerical Constraint Programming

Numerical constraint solving inherits principles and methods from discrete con-

straint solving [11] and interval analysis [12]. Indeed, as their variable domains are

continuous subsets of R, it is impossible to enumerate the possible assignments and

numeric constraint solvers thus resorts to interval computations. As a result, we use a

so-called interval extension [f ] : IRn → IR of each function f : Rn → R involved in

a constraint, such that ∀[a] ∈ IR
n, ∀a ∈ [a], f(a) ∈ [f ]([a]).

Numerical Constraint Satisfaction Problems

A numerical constraint satisfaction problem (NCSP) is defined as a triple 〈v, [v], c〉
that consists of

• a vector of variables v = (v1, . . . , vn),

• an initial domain, in the form of a box [v] = ([v1], . . . , [vn]) ∈ IR
n, and

• a constraint c(v) := (f(v) = 0 ∧ g(v) ≥ 0), f : Rn → R
e and g : Rn → R

i,

i.e., a conjunction of e equations and i inequalities.
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A solution of a NCSP is an assignment of its variables v ∈ [v] that satisfies its

constraints. The solution set Σ of an NCSP is the region within its initial domain that

satisfies its constraints, i.e., Σ([v]) := {v ∈ [v] | c(v)}.

The Branch and Prune Algorithm

The branch and prune algorithm [13] is the standard complete solving method for

NCSPs. It takes a problem as an input and outputs two sets of boxes, called respectively

the undecided boxes (stored inside U ) and solution boxes (stored inside S). It inter-

leaves a refutation phase, called prune, that eliminates inconsistent assignments within

a box, and an exploration phase, called branch, that divides a box into several sub-

boxes to be searched recursively, until a prescribed precision ǫ is reached. Algorithm 1

shows a generic description of this scheme. It involves four subroutines: Extract (ex-

traction of the next box to be processed), Prunec (reduction of the domains based on

refutation of assignments that cannot satisfy a subset of constraint c), Provec (certifica-

tion that a box contains some solutions of the constraint c, the specific semantic being

problem dependent), and Branch (division of the processed box into sub-boxes to be

further processed). Each of them has to be instantiated depending on the problem to be

solved. The procedure Prunec obviously depends on the type of constraint in the prob-

lem, as well as on other characteristics of the problem. The procedures Extract and

Branch allow defining the search strategy (e.g., breadth-first, depth-first, etc.), which

may be tuned differently with respect to the problem. The procedure Provec actually

defines the aim of the branch and prune. A box for which Provec succeeds is called a

solution box: Being a solution box can take different meaning depending on the con-

sidered problem and the question asked. For instance, if the question is to find the real

solutions of a well-constrained system of equations, then it will generally implement a

solution existence (and often uniqueness) theorem, e.g., Miranda, Brouwer or interval

Newton [14], that guarantees that the solution box contains a (unique) real solution;

on the other hand, if the question is to compute the solution set of a conjunction of

inequality constraints, then it will usually implement a universal solution test, which

guarantees that every real assignment in the solution box is a solution of the NCSP.

3.2. Parallel Robots, Singularities and Generalized Aspects

As illustrated in Section 2, the kinematic model of a parallel robot can be expressed

as a system of equations relating its end-effector pose x and its commands q:

f(x,q) = 0. (2)

A solution (x,q) is called a configuration, and the solution set Σ is called the

configuration manifold and lies within the configuration space (also called the pose-

command product space). The subspace restricted to the pose parameters x (resp.

command parameters q) is known as the workspace (resp. joint-space). The projec-

tion Σx (resp. Σq) of the solution set Σ is called the robot reachable workspace (resp.

reachable joint-space). In this paper, we restrict to the most typical architectures which

satisfy dimx = dimq = dim f = n, i.e., neither over- nor under-actuated manipula-

tors. Then, by the implicit function theorem, this system of equations defines a local

bijection between x and q provided the Jacobian matrices Fx(x,q) and Fq(x,q) are

6



Algorithm 1 Branch and prune

Input: NCSP 〈v, [v], c〉, precision ǫ > 0
Output: pair of sets of boxes (U ,S)

1: L ← {[v]}, S ← ∅ and U ← ∅
2: while L 6= ∅ do

3: [v]← Extract(L)
4: [v]← Prunec([v])
5: if [v] 6= ∅ then

6: if Provec([v]) then

7: S ← S ∪ {[v]}
8: else if wid[v] > ǫ then

9: L ← L ∪ Branch([v])
10: else

11: U ← U ∪ {[v]}
12: end if

13: end if

14: end while

15: return (U ,S)

non-singular. The configurations (x,q) that do not satisfy these regularity conditions

are called singularities, respectively parallel or serial whether Fx(x,q) or Fq(x,q) is

singular. These algebraic singularity characterizations correspond to the horizontal and

vertical tangents of the kinematic manifold described in Section 2.

A key issue in robotics is to control a robot while avoiding singularities, in particu-

lar because reaching a parallel singularity can dramatically damage a robot. This leads

to the definition of generalized aspects [5] as maximal sets of nonsingular configura-

tions (x,q) that can all be connected within Σ without crossing any singularity. More

formally, the set of nonsingular configurations of the robot is

Σ∗ := {(x,q) ∈ R
n × R

n | f(x,q) = 0, detFx(x,q) 6= 0, detFq(x,q) 6= 0}. (3)

This corresponds, e.g., to the four quarters of circle in the left hand side graphic of

Figure 2, where the four singularities (green and red points) are removed. As illustrated

by this diagram, Σ∗ is generally made of several connected components3. Formally,

the generalized aspects of the robots are defined to be the connected components of (3).

For a given generalized aspect A, its projection Ax is a maximal singularity-free

region in the robot reachable workspace. Knowing these regions allows roboticists

to safely plan robot motions: Any two poses in Ax are connected by at least one

singularity-free path. In addition, the study of aspects provides important information

about robot characteristics, e.g., if (x,q) and (x,q′) exist in an aspect A and q 6= q′,

3The connected components [15] of a set are its subsets that are connected and maximal with respect

to inclusion. They define a unique partition of the set. Since the Jacobian of f is full rank at nonsingular

configurations, Σ∗ is a manifold. In that case, connectedness is equivalent to path-connectedness (see [16]),

which matches the requirement for path planning.
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i.e., two different commands yield the same pose, then the robot is said to be cuspi-

dal [17]. Cuspidal robots can change assembly mode without crossing singularities,

yielding an extra flexibility in their usage. Finally, the computation of aspects allows

roboticists to make informed choices when designing a robot for a given task.

4. Description of the Method

The proposed method for the generalized aspect computation relies on solving the

following NCSP whose solutions are the nonsingular configurations of the robot:

〈

(x,q) , ([x], [q]) , f(x,q) = 0 ∧ detFx(x,q) 6= 0 ∧ detFq(x,q) 6= 0
〉

. (4)

Let Σ([x], [q]) be the solution set of this NCSP. Our method computes a set of boxes

partly covering this solution set. This set of boxes is partitioned into subsets that rep-

resent fully certified approximations of the aspects of the considered robot, in terms

of both solution existence and connectedness within the solution set. The computed

boxes have to satisfy the specific properties stated in Subsection 4.1. The correspond-

ing branch and prune instantiation is described in Subsection 4.2. Finally, the connec-

tions between the output boxes have to be certified as described in Subsection 4.3, and

the connected component analysis is described in Subsection 4.4.

4.1. From the NCSP Model to the Generalized Aspects Computation

We aim at computing a (finite) set of boxes S ⊆ IR
n × IR

n together with (undi-

rected) links N , i.e. 2-subsets of S , satisfying the following three properties:

(P1) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∃ a unique q ∈ [q], f(x,q) = 0;

(P2) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∀q ∈ [q], detFx(x,q) 6= 0 ∧ detFq(x,q) 6= 0;

(P3) ∀
{

([x], [q]), ([x′], [q′])
}

∈ N , ∃(x,q) ∈ ([x], [q]) ∩ ([x′], [q′]), f(x,q) = 0.

Property (P1) allows defining in each ([x], [q]) ∈ S a function κ([x],[q]) : [x]→ [q]
that associates the unique command q = κ([x],[q])(x) with a given position x (i.e., the

solution of the inverse kinematic problem locally defined inside ([x], [q])).
Property (P2) proves there is no singularity in the box. Furthermore, it allows

applying the Implicit Function Theorem to prove that κ([x],[q]) is differentiable (and

hence continuous) inside [x]. Therefore, for a given box ([x], [q]) ∈ S , the solution set

restricted to this box

Σ([x], [q]) =
{(

x, κ([x],[q])(x)
)

: x ∈ [x]
}

(5)

is proved to be connected and singularity free, and is thus a subset of one generalized

aspect.

These two properties entail in particular that Σ∗ ∩ ([x], [q]) is a connected man-

ifold, hence a subset of a single aspect, and that [x] is included inside the reachable

workspace. They are satisfied by the motivating example output shown in Figure 2

8



(right). Remark that given a box ([x], [q]) ∈ S and a position x ∈ [x], the correspond-

ing command κ([x],[q])(x) is easily computed using Newton iterations applied to the

system f(x, ·) = 0 with initial iterate q̃ ∈ [q] (e.g., q̃ = mid[q]).
Property (P3) basically entails that Σ([x], [q]) and Σ([x′], [q′]) are connected, and

are thus subsets of the same aspect. Finally, assuming Sk ⊆ S to be a connected

component of the undirected graph (S,N ), the solution set

⋃

([x],[q])∈Sk

Σ([x], [q]) (6)

is fully certified to belong to one single generalized aspect. Hence the final output of

the process will be several sets of boxes Sk, each of them being certified to enclose

one connected set of nonsingular configurations (CSNC). As mentioned previously,

certified approximations of CSNCs are of central importance for practical robot design

and usage purposes.

4.2. Instantiaton of the Branch and Prune Algorithm

The main specificity of the proposed branch and prune algorithm lies within the

solution test used in the Provec function, which must ensure the desired properties.

The pruning and branching steps use standard operators and can be tuned appropriately

depending on the considered robot. Details are provided below.

4.2.1. Solution Test

The Provec function of Algorithm 1 has to return true only when properties (P1)
and (P2) are verified. The former is related to proving the existence of solution and is

performed using a parametric Newton operator as described in the following paragraph.

The latter requires checking the regularity of some interval matrices as described in the

next paragraph.

Existence proof. The standard way to prove that a box ([x], [q]) satisfies Property (P1)
is to use a parametric interval Newton existence test [18, 19, 20]. Using the Hansen-

Sengupta [14] version of the interval Newton, the following sequence is computed

[q0] := [q], . . . , [qk+1] := [H]([qk]) ∩ [qk] (7)

where [H] is the Hansen-Sengupta operator applied to the system f([x],q) = 0, which

depends only on the variables q and hence is a square system of equations with interval

parameters. As soon as ∅ 6= [qk+1] ⊆ int[qk] is verified, the interval Newton operators

properties entails

∀x ∈ [x], ∃q ∈ [q], f(x,q) = 0, (8)

hence the box ([x], [qk+1]) is proved to satisfy Property (P1). However, because Algo-

rithm 1 has to bisect the domain [q] for insuring convergence by separating the different

commands associated to the same pose,4 this test fails in practice in most situations.

4In [18], only problems where the system has one unique solution for each parameter value were tackled,

hence without bisecting variable domains and using directly the parametric existence test (7).
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This issue was overcome in [20], in the restricted context of constraints of the form

x = f(q), by computing [qk+1] := [H]([qk]) in (7), i.e., removing the intersection

with [qk], in order to allow inflating and shifting [qk−1] if necessary.5 As a result, the

Hansen-Sengupta operator acts as a rigorous local search routine allowing the sequence

to converge towards the aimed solution set. An inflation factor τ has also to be applied

before the Hansen-Sengupta operator so as to ease the strict inclusion test after each

iteration. Hence, the computation of [qk+1] is as follows:

[q̃k] := mid[qk] + τ([qk]−mid[qk]) and [qk+1] := [H]([q̃k]). (9)

Then the condition ∅ 6= [qk+1] ⊆ int[q̃k] also implies Property (P1) and is likely to

succeed as soon as ([x], [q]) is small enough and close enough to some nonsingular

solution, which eventually happens thanks to the bisection process. A typical value

for the inflation factor is τ = 1.01, which would have to be more accurately tuned for

badly conditioned problems, but it is not the case of usual robots.

Regularity test. In order to satisfy the regularity constraints in Property (P2), the in-

terval evaluation of each Jacobian Fx and Fq over the box ([x], [q]) has to be regular.

Testing the regularity of interval matrices is NP-hard, so sufficient conditions are usu-

ally used instead. Here, we use the strong regularity of a square interval matrix [A],
which consists in checking that C[A] is strongly diagonally dominant, where C is usu-

ally chosen as an approximate inverse of the midpoint of [A] (see [14]).

4.2.2. Pruning

The considered constraints are of two types: A system of n equalities, and two

disequalities. Since the latter generally does not allows any pruning in the context

of numerical CSPs, only the former is considered for pruning. In our context, the

Prunec function is implemented as a standard AC3-like fixed-point propagation of

contracting operators that enforces local consistencies, like the Hull [23, 24] or the Box

consistencies [23, 25], which allows an inexpensive refutation non-solution. Moreover,

a stronger consistency can be achieved using some interval-Newton based operator.

Those operators readily apply to square systems of equations, but have to be adapted

to under constrained systems of equations. This is detailed in Subsection 4.2.1, since

those operators also allow proving the existence of solutions.

4.2.3. Search Strategy

The standard search strategy for NCSPs applies appropriately in our context: We

use a deep first search strategy within the Extract function, which is adequate and

avoids the risk of filling up the memory (unlike a breadth-first search or largest-first

search approach). The Branch function typically selects a variable in a round-robin

manner (i.e., all domains are selected cyclically) and splits the corresponding interval

at its midpoint (i.e., a domain is split into two halves).

5This interval-Newton driven inflation technique is used in global optimization to prove feasibility of

approximate feasible points. It is, for instance, implemented by the Intlab [21] function verifynlss.

It was also used in [19] in the context of sensitivity analysis, and in [22] within a numerical constraint based

method dedicated to the projection of a manifold.
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4.3. Computing and Certifying Links

The computation of N , i.e., the links that satisfy Property (P3), is done in two

steps:

1. Maintain the neighborhood graph (R,M), where R = L ∪ S ∪ U is the set of

all boxes produced by the algorithm, defined as the graph between the boxes in

R which share at least a common point;

2. Compute the certified neighborhood graph (S,N ), where N ⊆ M∩ 2S is the

set of links between certified boxes that satisfy Property (P3);

N is generally a strict subset ofM∩2S : Indeed, two certified boxes with nonempty

intersection may still contain different components of Σ∗. Note that, (R,M) and

(S,N ) somehow play similar roles as G± in [9].

4.3.1. Maintaining the Neighborhood Graph

Two boxes ([x], [q]) and ([x′], [q′]) are neighbors if and only if they share at least

one common point, i.e., ([x], [q]) ∩ ([x′], [q′]) 6= ∅. The neighborhood links M are

maintained during the branch and prune computation: After the current box has been

pruned (line 4 of Algorithm 1), its neighbors are updated accordingly (it may have

lost some neighbors); also, the boxes produced when splitting the current box (line 9 of

Algorithm 1) inherit from (some of) the neighbors of the current box, and are neighbors

to one another. One delicate point in managing neighborhood comes from the fact that

some pose or command parameters are often angles whose domains are restricted to

a single period, e.g., [−π, π]; the periodicity of these parameters has to be taken into

account: Boxes are neighbors when they share a common point modulo 2π on their

periodic dimensions.

4.3.2. Certifying Connectivity Between Neighbors

The linksM∩ 2S between certified boxes have to be checked to satisfy (P3): It

may happen that two neighbor boxes share no common point satisfying the kinematic

relation f = 0, e.g., if they each cover a portion of two disjoint, but close, aspects.

Asserting neighborhood Property (P3) requires again a certification procedure: For

any pair of neighbor certified boxes
{

([x], [q]), ([x′], [q′])
}

∈M∩ 2S , we verify

∃q ∈ ([q]∩[q′]), f(mid([x]∩[x′]),q) = 0, (10)

which implies Σ([x], [q]) ∩ Σ([x′], [q′]) 6= ∅. Since the union of two connected sets

that have a nonempty intersection is also connected, this proves that Σ([x], [q]) and

Σ([x′], [q′]) belong to the same aspect.

Using the certification procedure described in Section 4.2 allows proving Equa-

tion (10). Finally, N is defined as the subset ofM∩ 2S of pairs that satisfy (10), and

obviously satisfy obvious satisfy Property (P1), Property (P2) and Property (P3).

4.4. Connected Components Computation

We present two ways to compute connected sets of nonsingular configurations

(CSNCs) from the graphs (R,M) and (S,N ).
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Figure 3: Singular singularity

4.4.1. Simple CSNCs Construction

The first simply consists in computing the connected components (Si,Ni) of the

graph (S,N ), using a standard algorithm for the graph connected component compu-

tation (e.g., [26]). This leads to a partition of S into Si, each Si covering a single aspect

of the considered robot. However, there is no certified information about the discon-

nectedness of the different components: The major portion of a large aspect should be

covered with a single CSNC, but the instability of the proving process close to singular

regions implies that many small “spurious” CSNCs should appear at the boundaries.

Together with the fact very small aspects may not be covered by certified boxes, this is

the reason why the number of computed CSNCs is not related to the exact number of

aspects of a robot.

For practical considerations, the spurious CSNCs can be eliminated using a mea-

sure of their size: All computed CSNCs are ordered by decreasing number of constitut-

ing boxes; The largest ratio, in number of constituting boxes, between two consecutive

CSNCs in this order is computed, and used as a separation between relevant and spu-

rious components. Though heuristic, we show in Section 5 that this filtering process

allows retrieving the most significant CSNCs which in fact correspond to the exact

aspects of the robots for which they are known.

4.4.2. CSNCs Construction and Separation

The second approach is more complex, but provides more information in term of

connectedness: The main computed CSNCs can be proved to be actually separated

either because they have different determinant signs, or because they are disconnected

within (R,M). However, it can happen that some generalized aspects may not be

separable numerically using these conditions, as illustrated by the following example.

Example. Consider the manifold Σ∗ := {x ∈ R
3 : x2

1 + x2
2 + x2

3 = 1, x1x2 6= 0}. It

is made of 4 connected components, as illustrated on the left hand side graphic of Fig-
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ure 3. However, these four components, although connected, are infinitely close to each

other, making their separation impossible using some box classification with respect to

the sign of x1x2. Note that this situation is not generic: By slightly perturbing the

separating equation to, e.g., Σ∗ := {x ∈ R
3 : x2

1+x2
2+x2

3 = 1, x1x2 6= 0.01}, which

is depicted on the right hand side of Figure 3, we obtain three connected components

which can be separated using the sign of x1x2 − 0.01.

The undecidable status illustrated by the previous example is actually generic for

some robots: As soon as one of the determinants detFx(x,q) or detFq(x,q) can be

formally factored (e.g., when one of these Jacobians are diagonal, in which case the

its determinant is the product of its diagonal entries), some aspects may turn out to be

non separable using only the signs of these determinants. In order to overcome this

difficulty, exploiting the structure of the determinants is mandatory: When possible,

we factor the product detFx(x,q) detFq(x,q) to d1(x,q) · · · dp(x,q) and, instead

of recording the sign of both detFx([x], [q]) and detFq([x], [q]) for each box, we

record the sign of each di([x], [q]).
For each possible s = (s1, . . . , sp) ∈ {−1, 1}p, we define (Rs,Ms) ⊆ (R,M) as

the subgraphs of (R,M) whose boxes satisfy sup sidi([x], [q]) ≥ 0, i.e., Rs contains

boxes whose interval evaluations di([x], [q]) have signs compatible with s. Then, we

compute the connected components (Rs

i ,Ms

i ), i ∈ {1, . . . , Is}, of each (Rs,Ms).
Finally, we compute the connected components of (Rs

i ∩ S,Ms

i ∩ N ), the subgraph

of (Rs

i ,Ms

i ) containing only certified boxes and links, and denote them (Ssij ,N s

ij),
j ∈ {1, . . . , Js,i} with Js,i ≥ 0 (Js,i could be equal to zero if (Rs

i ,Ms

i ) contains no

certified box or link).

Obviously, boxes in two different (Rs

i ,Ms

i ) and (Rs
′

i′ ,Ms
′

i′ ) cannot contain solu-

tions that belong to the same aspect. Therefore,

∑

s∈{−1,1}p

card{i ∈ {1, . . . Is} : Js,i > 0} (11)

is a lower bound of the number of aspect. On the other hand, as mentioned in the

previous subsection, we expect (Ssij ,N s

ij) to contain numerous spurious CSNCs due

to the instability of the proving process close to singular regions. The same heuristic

filtering can thus be used to isolate the largest CSNCs of practical interest.

5. Experiments

We present experiments on four planar robots with respectively 2 and 3 degrees of

freedom, yielding respectively a configuration manifold of dimension 2 or 3 embedded

in a configuration space of dimension 4 or 6. Although these dimensions seem some-

how low, some of them represent real challenges for methods that certify admissibility

and connectivity.

5.1. Implementation

We have implemented the proposed method described in Section 4 using the Re-

alpaver library [27] in C++, specializing the classes for the different routines in the

13



branch and prune algorithm. Given a NCSP that models a robot and a prescribed pre-

cision ǫ, the implementation outputs certified boxes grouped by certified connected

components as explained in Section 4. Hence we can count not only the number of

output boxes but also the number of certified connected set of nonsingular configura-

tions (CSNCs) that can be extracted from them. The experiments were run using a

3.4GHz Intel Xeon processor with 16GB of RAM.

5.2. Robot Models

P

A B

x2

x1

(a) RPRPR

x2

x1

P

A B

A’

B’

(b) RRRRR

A1

P

A2

A3

x2

x1

(c) 3-RPR

x2

x1

A1

P

A2

A3

(d) 3-RRR

Figure 4: Considered robot architectures.

Robot RPRPR (resp. RRRRR) is represented in Figure 4(a) (resp. Figure 4(b)).

It has two arms, each connecting an anchor point (A, B) to its end-effector (P ), each

composed of a revolute joint, a prismatic (resp. revolute) joint and again a revolute

joint in sequence. The end-effector P lies at the shared extremal revolute joint and is

described as a 2D point (x1, x2) ∈ [−20, 20]2. The prismatic (resp. initial revolute)

joint in each arm is actuated, allowing to vary the arms lengths (resp. angles). The arm

lengths (resp. angles) are considered to be the command (q1, q2) ∈ [2, 6]×[4, 9] (resp.

[−π, π]2) of the robot. Using the architecture parameters defined in [28] (resp. [5]),

their kinematic equations are respectively

x2
1 + x2

2 − q21 = 0,
(x1 − 9)2 + x2

2 − q22 = 0,
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and
(x1 − 8 cos q1)

2 + (x2 − 8 sin q1)
2 − 25 = 0,

(x1 − 9− 5 cos q2)
2 + (x2 − 5 sin q2)

2 − 64 = 0.

Robot 3-RPR (resp. 3-RRR) is represented in Figure 4(c) (resp. Figure 4(d)). It has

three arms, each connecting an anchor point (A1, A2, A3) to its end-effector (P ), each

composed of a revolute joint, a prismatic (resp. revolute) joint and again a revolute

joint in sequence. The end-effector is a triangular platform whose vertices are attached

to the extremal revolute joints of the arms. The pose parameters (x1, x2, x3) represent

the coordinates (x1, x2) ∈ [−50, 50]2 of one vertex of the platform, and the angle x3 ∈
[−π, π] between its basis and the horizontal axis. The prismatic (resp. initial revolute)

joint in each arm is actuated, allowing to vary the arm lengths (resp. angles). The arm

lengths (resp. angles) are considered to be the command (q1, q2, q3) ∈ [10, 32]3 (resp

[−π, π]3) of the robot. Using the architecture parameters defined in [29] (resp. [28]),

their kinematic equations are:

x2
1 + x2

2 − q21 = 0,
(x1 + 17 cosx3 − 15.9)2 + (x2 + 17 sinx3)

2 − q22 = 0,
(x1 + 20.8 cos(x3 + 0.8822))2 + (x2 + 20.8 sin(x3 + 0.8822)− 10)2 − q23 = 0,

and, respectively

(x1 − 10− 10 cos q1)
2 + (x2 − 10− 10 sin q1)

2 − 100 = 0,
(x1 + 10 cosx3 − 10− 10 cos q2)

2+
(x2 + 10 sinx3 − 10− 10 sin q2)

2 − 100 = 0,

(x1 + 10
√
2 cos(x3 + π/4)− 10 cos q3)

2+

(x2 + 10
√
2 sin(x3 + π/4)− 10− 10 sin q3)

2 − 100 = 0.

Due to the computational complexity of our method, we have added the extra con-

straint x3 = 0 to the latter model of robot 3-RRR, i.e., fixing the orientation of its

platform. This constraint virtually reduces the dimension of the problem to 5 instead

of 6, making it tractable in reasonable time with our method. Results below integrate

this additional constraint and we denote this modified robot 3-RRR* in the following.

History and Applications of the Four Planar Parallel Robots under Study

We can find many studies on the four planar parallel robots under study and some

practical applications in the literature. The RPRPR robot, also called bipod robot,

is used in the so-called hexapod machine tools, which are the most widespread [30],

and in the famous Gough-Stewart platforms, commonly met in flight-simulators [31].

The bipod robot is also used in the design of the Micromat Hexa industrial machine

developed at the IWU in Chemnitz and in the design of the CMW300 industrial robot

developed by the Compagnie Mécanique des Vosges in France [32].

The RRRRR robot, usually called five-bar mechanism, has often been used in

research papers as an illustrative example due to its simplicity and interesting kine-

matic properties similar to those of spatial robots, namely : (i) several working and

assembly modes [5] ; (ii) error analysis and assembly conditions [33, 34]; (iii) gen-

eralized aspects [35]; (iv) trajectory planning [36]. There exist some prototypes of
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Table 1: Experimental results.

PRRP RPRPR RRRRR 3-RPR 3-RRR*

# aspects 4 2 10 2 unknown

precision 0.1 0.1 0.1 0.3 0.008
# boxes 38 2 176 69 612 13 564 854 11 870 068
# boxesfiltered 28 1 444 53 062 5 833 951 5 841 193
# CSNCs 4 4 1 767 44 220 56 269
# CSNCsfiltered 4 2 10 2 25
# CSNCsseparated 4 2 10 2 25
time (in sec.) 0.003 0.36 38 12 700 10 700

the RRRRR robot such as the Dexterous Twin-Arm Robot (DexTAR) developed by

Prof. Bonev and his team [37].

A reference book on kinematics, static analysis and stiffness of 3-DOF planar par-

allel robots composed of revolute and/or prismatic joints was published by Duffy [38].

There have been various studies of these robots. 3-RPR planar parallel robots have

been extensively studied [3]: synthesis, kinematic and singularity analysis, workspace

analysis. 3-RRR planar parallel robots have also been studied in [39, 40, 41]. Some

prototypes based on the architecture of the 3-RRR planar parallel robot have been de-

veloped such as the NaVARo that has eight actuation modes thanks to three transmis-

sions with two clutches and additional parallelogram linkages [42].

5.3. Computation of CSNCs

Table 1 provides some figures on our computations. Its columns represent the dif-

ferent robots we consider. Line “# aspects” provides the theoretically established num-

ber of aspects of each robot provided in [28, 5, 29] (this value is unknown for the

3-RRR* robot). Line “precision” gives the prescribed precision ǫ used in the compu-

tation. Lines “# boxes” and “# CSNCs” give respectively the number of boxes and

the number of connected sets of nonsingular configurations returned by our method.

Line “time” gives the overall computational time in seconds of the method, including

the connected components computation with connectivity certification. Note that, this

timing does not contain the time taken for filtering out the spurious CSNCs.

Despite the quite coarse precisions we have used, the number of output boxes can

be very large, due to the dimension of the search space we are paving. The number of

CSNCs is much smaller, but still does not match the theoretically known number of as-

pects (except for the PRRP which is very simple), implying numerous disjoint CSNCs

do in fact belong to the same aspect. As expained in Section 4.4, this is due to the nu-

merical instability of the kinematic equations of the robots in the vicinity of the aspect

boundaries, which are singularities of the robot. Indeed, in these regions, the numerical

certification process cannot operate homogeneously, resulting in disconnected subsets

of certified boxes, separated either by non-certified boxes or by non-certified links.

These spurious CSNCs have no practical use in robotics because they represent

only very small, hence negligible, regions of the reachable workspace, moreover too
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Figure 5: Number of boxes in each connected component. Each bar corresponding to a CSNC shows the

number of contained boxes (ordered largest first). The rightmost bar in each histogram corresponds to the

largest CSNC that is filtered out with our heuristic.

close to singularities to safely operate within. For practical considerations, we can

thus filter them out as explained in Section 4.4.1. Applying this heuristic, practical,

post-process, the number of obtained CSNCs, reported at Line “# CSNCsfiltered” in

Table 1, reaches the theoretically known number of aspects in the cases of the robots

we considered. Line “# boxesfiltered” in Table 1 shows the total number of boxes after

the filtering heuristic. Figure 5 illustrates the number of boxes of the CSNCs retained

after filtering (the dashed lines represent the computed heuristic thresholds), as well as

the number of boxes of the largest spurious (and filtered) CSNC right after the dashed

line. Line “# CSNCsseparated” gives the lower bounds of the number of aspects, which

are computed by the method described in Section 4.4.2. These results seem to indicate

that our assumption is correct for the considered robots, i.e., that the major part of each

aspect is indeed covered with a single large CSNC.

The retained CSNCs projected onto the x subspace are depicted in Figures 6 and 7.6

They graphically correspond to the aspects of the robots for which they are theoretically

known (e.g., see [28, 8, 5, 29]). Note that the red boxes, that enclose the singularity

curves, seem to cross the aspects due to the projection onto the workspace, while they

of course do not cross in the configuration space where the boxes have been computed

and proved to certify Property (P2).
The computation requires quickly growing time and space with respect to the pre-

scribed precision ǫ, since this parameter controls the explosion of the number of spuri-

ous components, hence boxes, at the boundaries of the aspects. We thus need to tweak

it for an efficient and reliable aspect determination. For the first three robots, the preci-

sion ǫ = 0.1 gave precise enough results to compute precisely CSNCs corresponding

to the known aspects after filtering out the spurious components. For 3-RPR, we had to

use the coarser precision ǫ = 0.3 to avoid getting out of memory. Still, it was sufficient

to compute precise CSNCs approximating the two known aspects of this robot. In the

6Figures are available at http://www.ueda.info.waseda.ac.jp/˜ishii/pub/aspects/.
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Figure 6: Computed 3D workspace of of 3-RPR (after filtering). First figure shows the undecided boxes that

cover the surface of the workspace. Second and third figures show the computed CSNCs corresponding to

the two aspects.

computation of 3-RRR*, the threshold between the regular and the spurious compo-

nents is not as clear as for the other robots, even though we improved the precision up

to ǫ = 0.008. Nevertheless, only the largest CSNCs have a practical usage in the con-

text of robotics, hence deciding whether these very small CSNCs are really spurious is

not critical. According to our filtering criterion, we selected the 25 largest ones that are

depicted in Figure 7.

5.4. Handling Additional Constraints

In the process of robot design, various properties should be verified in addition to

the aspect identification. In our framework, such properties can be handled by sim-

ply adding constraints to the robots models, which is an intrinsic strength of NCSPs

based method with respect to other methods, e.g., based on formal computations. In

the following, we investigate the impact of three recurrent issues in robotics: Self colli-

sions between different robot links, joint limits, and collision with obstacles inside the

workspace. We use the RRRRR robot as an illustrative example.

The considered additional constraints are inequality constraints: More precisely,

they can be formulated as conjunctions and/or disjunctions of inequalities. Therefore,

they are involved in both pruning and proving, and solution boxes will be proved to

fully satisfy these additional constraints in addition to properties (P1), (P2) and (P3)
defined in page 8. Note that due to the additional constraints expressions, a trivial

contractor is used, which simply uses interval evaluations to check if a box contains no

solution.

5.4.1. Arm Collisions

First we show how to avoid collisions between arms of the RRRRR robot. The

required additional constraint consists of enforcing no collision of any pair of links.

For an arbitrary pair of links (T, U) and (V,W ), where T , U , V and W are their

respective endpoints, their non intersection is mathematically expressed as:

∀λ ∈ [0, 1], ∀µ ∈ [0, 1], λ T + (1− λ)U 6= µV + (1− µ)W.

One such constraint must be imposed for each pair of links in the robot. Inner and outer

tests for such a constraint are easily derived.

18



(a) RPRPR (b) RRRRR

(c) 3-RRR*

Figure 7: Projections into the 2D workspace of the computed CSNCs (after filtering). Green boxes are

certified; red and black boxes are undecided (i.e., do not satisfy Properties (P1) and (P2), respectively).
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Figure 8: Aspect decomposition of RRRRR with respect to various additional constraints.
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Link collisions happen in full-dimensional regions of the workspace. Indeed, when

two links intersect at a given pose, they also intersect at neighbor poses (except when

intersecting at their extremities). Hence, link collisions constraints define colliding

regions, which must be removed from the computed CSNCs. Figure 8 illustrates these

facts. Figure 8(a) presents one of the CSNCs we have previously obtained for the

RRRRR robot (see Figure 7(b)). Figure 8(b) then shows how this component is reduced

when considering link collisions, and presents two poses to explain this reduction.

Pose P1 induces no link collision and thus remains within the collision-free CSNC.

Pose P2 previously belonged to the CSNC but does not belong to the collision-free

CSNC as it induces a link collision. The two full-dimensional regions corresponding to

collision and collision-free configurations have to be separated by a boundary, which

corresponds to tangential collisions. They are depicted in blue in contrast with the

red boundaries that represent singularities of the robot. Note that like singularities,

some of the collision boundaries overlap with the collision-free components due to the

projection in the 2D workspace of the paving computed in the 4D configuration space.

Results are depicted in Figure 9. We set the precision to 0.01 for a better visualiza-

tion of the collision boundaries, although a cruder precision is sufficient to obtain the

collision-free CSNCs. As in the previous experiment, we obtain ten CSNCs that are

collision free. They correspond to collision-free subregions of the ten CSNCs obtained

previously. Note that some of the previously obtained components remain unaffected

by the additional constraint, i.e., they were already collision-free. As in Figure 8, blue

boxes in each figure represent collision boundaries where the end point of a link comes

to touch another link.

5.4.2. Joint Limits

In the second experiment, we compute the CSNCs while considering the joint lim-

its, which are inherent in real mechanisms. Limits of the range of actuated joints are

easily enforced by setting their corresponding domains. Instead, we consider joint

limits of non-actuated joints. In the RRRRR robot, it consists in limiting the angle

between the links (A′P ) and (PB′), inside the interval [θ, θ]. This is equivalent to the

conjunction of the two following two-sided inequality constraints:

θ ≤ cos−1 〈u |v 〉
‖u‖‖v‖ ≤ θ,

θ ≤ sin−1 〈u⊥ |v 〉
‖u⊥‖‖v‖

≤ θ,

where u = P −A′, v = P −B′ and u⊥ = (−u2, u1), and 〈 · | · 〉 is the scalar product.

As in the link collisions, this constraint will remove some regions from the com-

puted CSNCs. Figure 8(c) presents the joint-limited CSNCs of the RRRRR robot re-

sulting from the original CSNC depicted in Figure 8(a) when the angle at the end-

effector P is limited to [−π/2, π/2]. It also presents two poses: Pose P1 is consistent

with the joint limit and thus remains within the original joint-limited CSNC. Pose P2

did belong to the original CSNC but it does not belong to the computed joint-limited

CSNC since, at this pose, the joint limit is not respected. Blue boxes represent joint

limit boundaries where the limited joint angle becomes π/2 or −π/2.
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The other joint-limited CSNCs are depicted in Figure 10. We have twelve joint-

limited CSNCs where the first and sixth original CSNCs in Figure 7(b) have been split

in two by the joint limit constraint.

5.4.3. Collision with Obstacles

The third experiment takes into account the collision of robot links with an obsta-

cle in the workspace. We assume a circular obstacle centered at point C with radius

R. For each link (T, U) of the robot, collision-freeness is described by the constraint

dist2(C, (T, U)) ≥ R2 where

dist2(C, (T, U)) :=











〈C − T |C − T 〉 if 〈U − T |C − T 〉 < 0
〈C − U |C − U〉 if 〈T − U |C − U〉 < 0

〈C − T |C − T 〉 − 〈U−T |C−T 〉2

〈U−T |U−T 〉 otherwise.

Again, the obstacle avoidance constraint yields collision regions and collision-free

regions within the aspects. Figure 8(d) presents the three collision-free CSNCs of the

RRRRR robot resulting from the CSNC depicted in Figure 8(a) when a circular ob-

stacle (in black) located at C = (4.5, 0) with radius R = 1 is to be avoided. It also

presents two poses: Pose P1 induces no collision with the obstacle and thus remains

within the collision-free CSNC. Pose P2 did belong to the original CSNC but it does

not belong to the collision-free CSNCs since, at this pose, a link overlaps with the ob-

stacle. Again, blue boxes represent the boundaries between collision-free and collision

regions.

The other collision-free CSNCs are depicted in Figure 11. We have twenty six

collision-free CSNCs where the first, second, third, sixth, seventh and eighth original

CSNCs in Figure 7(b) are split into three, four, four, three, four and four parts respec-

tively.

6. Conclusion

The computation of aspects, i.e., connected components of nonsingular configura-

tions, is a critical task in the design and analysis of parallel robots. The proposed al-

gorithm uses numerical constraint programming to fully certify this computation. It is

worth noting that this is the first algorithm that automatically handles such a large class

of kinematic models with fully certifying the configurations existence, non-singularity

and connectivity: The only restriction of the algorithm is its computational complexity,

which is exponential with respect to the number of degrees of freedom of the robot.

The presented experiments have reported the sharp approximations of aspects for

some realistic models: Large connected sets of nonsingular configurations, particularly

suitable for path planning, have been computed for well-known planar robots with two

and three degrees of freedom, the number of which matches the exact number of as-

pects. The more challenging 3-RRR planar parallel robot, whose number of aspects is

still an open question, remains out of reach because of the complexity of the compu-

tation, though we have obtained some promising results for a given orientation of its

moving-platform. Tackling this robot, as well as more complex and spatial ones, will
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Figure 9: Computed CSNCs of RRRRR taking into account link collisions.

Figure 10: Computed CSNCs of RRRRR with a limited angle.

Figure 11: Computed CSNCs of RRRRR with a circular obstacle.
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certainly require the definition of stronger, dedicated, operators, and probably a change

of computing paradigm, e.g., using parallelepipeds [43] instead of boxes. Finally, al-

though experiments have shown that the proposed method computes approximations of

all aspects of well-known robots, it cannot be used for rigorously counting the aspects,

a challenge we will address in the future on the basis of this method.
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[32] P. Wenger, C. Gosselin, B. Maillé, Comparative study of serial and parallel mech-

anism topologies for machine tool, Int. Workshop on Parallel Kinematic Ma-

chines (1999) 23–35.

[33] N. Binaud, P. Cardou, S. Caro, P. Wenger, Kinematic sensitivity of robotic manip-

ulators to joint clearances, in: Proceedings of ASME Design Engineering Tech-

nical Conferences, Montreal, QC., Canada., 2010.

[34] G. Wu, S. Bai, J. Kepler, S. Caro, Error modeling and experimental validation

of a planar 3-PPR parallel manipulator with joint clearances, ASME Journal of

Mechanisms and Robotics 4 (2012) 0410081–04100812.

[35] S. Caro, P. Wenger, D. Chablat, Non-singular assembly mode changing trajecto-

ries of a 6-DOF parallel robot, in: Proceedings of the ASME 2012 International

Design Engineering Technical Conferences & Computers and Information in En-

gineering Conference IDETC/CIE, Chicago, Illinois, USA, 2012.

[36] C. Barnard, S. Briot, S. Caro, Trajectory generation for high speed pick and place

robots, in: Proceedings of the ASME 2012 11th Biennial Conference On Engi-

neering Systems Design And Analysis ESDA 2012, Nantes, France, 2012.

[37] A. Joubair, M. Slamani, I. A. Bonev, Kinematic calibration of a five-bar planar

parallel robot using all working modes, Robotics and Computer-Integrated Man-

ufacturing 29 (4) (2013) 15 – 25.

[38] J. Duffy, Statics and Kinematics with Applications to Robotics, Cambridge Uni-

versity Press, New-York, 1996.

[39] K. Hunt, Structural kinematics of in parallel actuated robot arms, Mechanisms,

Transmissions and Automation in Design 105(4) (1983) 705–712.

[40] C. Gosselin, Kinematic analysis optimization and programming of parallel

robotic manipulators, Ph.D. thesis, McGill University, Montreal (1988).

[41] M. Husty, On the workspace of planar three-legged platforms, In World Automa-

tion Congress 3 (1996) 339–344.

[42] N. Rakotomanga, D. Chablat, S. Caro, Performance of a planar parallel mecha-

nism with variable actuation, in: Advances in Robot Kinematics, 2008, pp. 311–

320.

[43] A. Goldsztejn, L. Granvilliers, A new framework for sharp and efficient resolution

of NCSP with manifolds of solutions, Constraints 15 (2) (2010) 190–212.

27


	Introduction
	Motivating Example
	Preliminaries
	Numerical Constraint Programming
	Parallel Robots, Singularities and Generalized Aspects

	Description of the Method
	From the NCSP Model to the Generalized Aspects Computation
	Instantiaton of the Branch and Prune Algorithm
	Solution Test
	Pruning
	Search Strategy

	Computing and Certifying Links
	Maintaining the Neighborhood Graph
	Certifying Connectivity Between Neighbors

	Connected Components Computation
	Simple CSNCs Construction
	CSNCs Construction and Separation


	Experiments
	Implementation
	Robot Models
	Computation of CSNCs
	Handling Additional Constraints
	Arm Collisions
	Joint Limits
	Collision with Obstacles


	Conclusion

