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CONFINEMENT BY BIASED VELOCITY JUMPS:

AGGREGATION OF ESCHERICHIA COLI

VINCENT CALVEZ, GAËL RAOUL, AND CHRISTIAN SCHMEISER

Abstract. We investigate a linear kinetic equation derived from a velocity jump process modelling
bacterial chemotaxis in the presence of an external chemical signal centered at the origin. We prove
the existence of a positive equilibrium distribution with an exponential decay at infinity. We deduce
a hypocoercivity result, namely: the solution of the Cauchy problem converges exponentially fast
towards the stationary state. The strategy follows [J. Dolbeault, C. Mouhot, and C. Schmeiser,
Hypocoercivity for linear kinetic equations conserving mass, Trans. AMS 2014]. The novelty here is
that the equilibrium does not belong to the null spaces of the collision operator and of the transport
operator. From a modelling viewpoint it is related to the observation that exponential confinement
is generated by a spatially inhomogeneous bias in the velocity jump process.

1. Introduction

Unbiased velocity randomization by a jump process or by Brownian motion combined with accel-
eration by the force field produced by a confining potential can lead to convergence to an invariant
probability measure, if the confinement is strong enough to balance the dispersive effect of velocity
randomization. For kinetic transport models of this kind, convergence to confined equilibria has
been studied extensively leading to strong convergence results with algebraic [10, 14] and later also
exponential [17, 30] convergence rates. This is strongly related to the corresponding macroscopic
description by Fokker-Planck equations of drift-diffusion type [4].

In this work a related type of particle dynamics is considered, where confinement is achieved
by a biased velocity jump process, where the bias replaces the confining acceleration field. The
motivation comes from kinetic transport models for the chemotactic motility of microorganisms
driven by gradients of chemo-attractors. The prototypical example is the bacterium Escheria coli,
whose swimming pattern has been described as run-and-tumble [7, 9], meaning that periods of
straight running alternate with periods of reorientation (tumbling). Since typically tumble-periods
are short compared to run-periods, models with instantaneous velocity jumps seem reasonable,
but see [33, 13]. In the presence of a spatial chemo-attractant gradient, this stochastic process is
biased upwards the gradient, although E. coli is too small to reliably measure the gradient along
its length. An explanation for this phenomenon is that E. coli is able to measure gradients in time
along its path and increases its tumbling frequency, if it experiences decreasing chemo-attractant
concentrations. This produces the desired drift, even if the outward velocity after tumbling events
is unbiased [8].

This and similar motility behavior types have been incorporated into kinetic transport models
of chemotaxis [2, 41, 16, 18, 48], and a connection to versions of the classical Patlak-Keller-Segel
(PKS-) model [35, 42] has been made by the macroscopic diffusion limit [3, 31]. If chemotaxis
acts as a means of signalling between cells, it can be responsible for various types of pattern
formation with aggregation as the most important and basic outcome. Two examples of pattern
formation are stable clusters of bacteria [38] and travelling pulses of bacterial colonies [1, 43, 44].
For corresponding kinetic transport models with nonlinear coupling to a reaction-diffusion model
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for the chemo-attractant, the macroscopic diffusion limit produces nonlinear versions of the PKS-
model [12, 28, 43]. We emphasize that hydrodynamic limits can also be derived from the kinetic
model [16, 19, 32].

Aggregation patterns of signalling E. coli have been observed and simulated in [38]. The stochastic
simulations have considered a prescribed peaked stationary chemo-attractant concentration. A
kinetic model corresponding to these simulations will be considered here:

(1.1) ∂tf + v · ∇xf = Q(f) =

∫

V

(

K(x, v′)f(t, x, v′)−K(x, v)f(t, x, v)
)

dv′ ,

where f(t, x, v) is the phase (position(x)-velocity(v)-) space distribution of microorganisms at time
t ≥ 0, with x ∈ R

d and v ∈ V ⊂ R
d. The velocity set V is supposed to be bounded and rotationally

symmetric. The right hand side of (1.1) is the turning operator. It describes the velocity changes
due to tumbling. The turning kernel K(x, v) is the rate of changing from velocity v to a different
velocity v′ at position x. The x-dependence contains the influence of the chemo-attractant. The fact
that the turning kernel only depends on the incoming (pre-tumbling) velocity means a complete
randomization of velocity at tumbling events. This is actually not describing the experimental
evidence precisely. Whereas independence of the outgoing velocity distribution from the chemo-
attractant gradient seems to be a valid assumption, some directional persistence of E. coli has been
observed, i.e. an outgoing velocity distribution biased by the incoming velocity [7]. This effect
might have important quantitative consequences on the efficiency of chemotactic foraging strategies
[45, 37, 40], but apparently does not change the qualitative picture.

The main deficiency of (1.1) as a model for the experiments of [38] is the lack of a nonlinear
coupling with an equation for the chemo-attractant, describing production by the cells, diffusion,
and decay. The restriction to the linear problem has purely mathematical reasons. The following
sections will show that proving the existence and stability of aggregated stationary solutions already
poses significant difficulties for a simple version of (1.1). Extensions to nonlinear models are the
subject of ongoing investigations. Numerical studies [46, 11, 20] show that convergence to a steady
state can be expected under suitable assumptions. We highlight the well-balanced numerical scheme
proposed by Gosse in [24, Section 9.4]. This focuses on the local kinetic equilibria of (1.1) in a spatial
finite volume with inflow boundary conditions, very much in the spirit of the present work.

We shall restrict ourselves to a one-dimensional model (d = 1) with the velocity set V =
[−1/2, 1/2] (chosen such that |V | = 1). A typical example for the choice of the turning kernel
is given by

(1.2) K(x, v) = 1 + χsign (xv) , with 0 < χ < 1 .

The turning rate takes the larger value 1 + χ for cells moving away from x = 0, and the smaller
value 1−χ for cells moving towards x = 0. Equilibrium distributions of the turning operator, i.e. ,
multiples of 1/K, have a jump at x = 0 and are therefore not solutions of (1.1). Stationary solutions
have to balance the turning operator with the transport operator v∂x. Existence and uniqueness
(up to a multiplicative constant) of a stationary solution will be proven in the following section. As
an illustration we have a short look at the two-velocity model, also known as the Cattaneo model
for chemotaxis [26, 31, 27, 29, 39, 23, 32],

∂tf
+ + ∂xf

+ = (1− χsign (x))f− − (1 + χsign (x))f+ ,

∂tf
− − ∂xf

− = (1 + χsign (x))f+ − (1− χsign (x))f− .

Here, steady states are easily found explicitly as multiples of g+(x) = g−(x) = e−2χ|x|. The
exponential decay with respect to position carries over to the model with V = [−1/2, 1/2], which
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is also proven in the following section. We also refer to [34] for the analysis of a discrete velocity
jump process and its stationary distribution based on the WKB expansion.

Section 3 is concerned with the decay to equilibrium as t → ∞, employing the modified entropy
approach of [17] for abstract hypocoercive operators [47]. This approach is based on a decomposition
of the generator of the dynamics into a symmetric negative semidefinite operator and a skew-
symmetric operator, where the latter needs to satisfy a certain coercivity condition on the null
space of the former (called ’macroscopic coercivity’ in [17], compare also to ’instability of the
hydrodynamic description’ in [15]), and the former needs to be coercive on the complement of its
null space (’microscopic coercivity’ in [17]). The set of equilibria has to be the intersection of the
null spaces of both operators. In the present case, this does not permit the splitting into turning
and transport operators, as usual for kinetic equations. The main preparatory step is therefore the
definition of an appropriate splitting, before the modified entropy method is applied.

The terminology ’microscopic’ and ’macroscopic’ refers to an asymptotic limit, where the char-
acteristic time scale of the symmetric operator is assumed to be much smaller than that of the
skew-symmetric operator. This limit is carried out in the first part of Section 4. Typically the
separation of time scales can be achieved by a macroscopic re-scaling of length in kinetic equations,
which is not the case in the present situation by the redefinition of the splitting between operators.
The asymptotic limit has therefore not much biological relevance. A second, more realistic macro-
scopic limit is carried out in the second part of Section 4, where smallness of the parameter χ is
assumed, and length and time is rescaled diffusively. Both macroscopic limits produce drift-diffusion
equations, whose diffusivities and convection velocities are different, but with the same qualitative
behavior. This brings us back to the beginning of the introduction, since it shows that the macro-
scopic behavior created by biased velocity jumps is the same as for unbiased jumps combined with
a confining potential.

2. Existence and exponential decay of stationary solutions

We seek a nonnegative stationary state g ∈ L1
+(R× V ) satisfying

(2.1) v∂xg(x, v) +K(x, v)g(x, v)−

∫

V
K(x, v′)g(x, v′) dv′ = 0 .

For simplicity, we assume V = [−1/2, 1/2], such that |V | = 1. More generally we may assume that
we are given a probability measure dν(v) which is compactly supported. Then we replace dv with
dν(v) in the following. We denote V+ = V ∩ [0,+∞) and V− = V ∩ (−∞, 0].

We make the following assumptions on the turning kernel K(x, v):

(H1) there exists Kmin and Kmax such that 0 < Kmin ≤ K(x, v) ≤ Kmax,
(H2) K(x, v) = K+(v) for x > 0 and K(x, v) = K−(v) for x < 0,
(H3)

∫

V v(K+(v))
−1 dv < 0,

(H4) K is symmetric with respect to x = 0, i.e. K+(v) = K−(−v), and piecewise continuous, with
a possible jump only at v = 0.

These conditions are satisfied by our main example (1.2).

Theorem 1. Under the assumptions (H1–H4) there exists a nontrivial stationary state g(x, v)
solution to (2.1). It is positive, bounded and symmetric: g(x, v) = g(−x,−v). There exists α > 0,
a positive velocity profile G, and a constant C > 0 such that

(2.2)
1

C
e−αxG(v) ≤ g(x, v) ≤ C e−αxG(v) , x ≥ 0 , v ∈ V .

In addition, we can state precisely the asymptotic behaviour of the stationary state g as x → +∞,
namely variable separates in the limit: g(x, v) ∼ H(g)e−αxG(v), where H(g) denotes a constant.
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Figure 1. Numerical simulation of (1.1) for the tumbling kernel (1.2). The domain of
computation is a box [−L,L] × V with specular reflection. (Left) The macroscopic density
∫

V
f(t, x, v) dv is plotted in logarithmic scale for successive times. Notice the exponential

decay in space of the final state. (Right) The renormalized velocity profiles at x = ±L (resp.
red or green curve) are close to the expected profile G(v). Note the discontinuity at v = 0.
See also [24, Section 9.4] for much more accurate simulations using a well-balanced scheme.

This is a specific feature of the so-called Milne problem in radiative transfer theory [6, 21]. The
analogy between the existence of a stationary state for equation (2.1) and the Milne problem is the
cornerstone of the proof of Theorem 1.

Proposition 2. The stationary state constructed in Theorem 1 converges exponentially fast towards
a multiple of the asymptotic profile e−αxG(v) as x → +∞. More precisely, there exists a constant
C0 such that the following estimate holds true,

(2.3) (∀x ≥ 0)

∥

∥

∥

∥

g(x, v)

e−αxG(v)
−H(g)

∥

∥

∥

∥

2

L2(V ;v2G2 dv)

≤ C0e
−βx ,

where β is the positive root of 1
2β

2 + αβ − 2κ = 0, κ =
(

infv∈V
K+(v)
v2G(v)

)2
(∫

V v2G2 dv
)

, and the

constant H(g) is given by the formula:

(2.4) H(g) =

∫

V g(0, v)v2G(v) dv
∫

V v2G(v)2 dv
.

Remark 3. The higher-dimensional case is left open. We refer to [20] for accurate numerical
simulations of (1.1) in the two-dimensional case, where the velocity set is the unit sphere S

1. In
this work the authors clearly observe convergence towards a spherically symmetric stationary state.

Proof of Theorem 1. The proof is divided into several steps. The first step consists in deriving the
correct asymptotic behavior of g as |x| → +∞. In the second step we make the link between our
stationary problem and the so-called conservative Milne problem in the half-space [6]. The core of
the proof is a regularization process in the velocity variable at x = 0 (step 3), which enables us to
apply the Krein-Rutman Theorem (step 4).

The proof shares some similarity with analogous problems in homogenization theory (see for
instance [5, 25]). However the connection with the Milne problem is new up to our knowledge.
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Step#1. Exponential decay as x → +∞. We make the following ansatz

g(x, v) ∼ e−αxG(v) as x → +∞ .

Substituting this ansatz in (2.1) yields

− αvG(v) +K+(v)G(v) =

∫

V
K+(v

′)G(v′) dv′ ,(2.5)

G(v) = (K+(v)− αv)−1

∫

V
K+(v

′)G(v′) dv′ .

Clearly the profile G is characterized up to a constant factor. We opt w.l.o.g. for the renormalization
∫

V K+(v)G(v) dv = 1. Therefore the exponent α is characterized by the dispersion relation:

(2.6)

∫

V
K+(v)(K+(v)− αv)−1 dv = 1 .

We now prove that this defines a unique α > 0 such that (∀v ∈ V ) K+(v)− αv > 0. We introduce
the auxiliary function J(α) =

∫

V K+(v)(K+(v)− αv)−1 dv. It satisfies

(i) J(0) = 1 and

lim
α→ inf

v>0
(v−1K+(v))

J(α) = lim
α→sup

v<0

(v−1K+(v))
J(α) = +∞ .

(ii) J ′(0) =
∫

V v(K+(v))
−1 dv < 0 (the average speed is negative on the far right: this is the

confinement effect).
(iii) The function J is convex on the admissible range of α.

As a consequence there exists a unique α ∈

(

0, inf
v>0

(

v−1K+(v)
)

)

such that J(α) = 1.

By symmetry, a similar ansatz can be made on the left side: g(x, v) ∼ eαxG(−v) as x → −∞.
Step#2. Connection with the conservative Milne problem. For x ≥ 0 we define u by g(x, v) =
e−αxG(v)u(x, v). We deduce from (2.1) that it satisfies the following equation,

(2.7) v∂xu+

∫

V
G−1K ′

+G
′
(

u− u′
)

dv′ = 0 , (x, v) ∈ R+ × V .

The profile g(0, v) = G(v)u(0, v) is unknown, of course. On the other hand, its knowledge is
sufficient to reconstruct the entire function u. This is the purpose of the Milne problem. It states
that for a given profile u(0, v) defined for v > 0 only, there exists a unique bounded function u,
defined over R+ × V , solution of (2.7).

Lemma 4. Let ϕ ∈ L∞(V+). Then there exists a unique bounded solution u(x, v) of the Milne
problem

(2.8)
v∂xu+

∫

V
G−1K ′

+G
′
(

u− u′
)

dv′ = 0 , (x, v) ∈ R+ × V ,

u(0, v) = ϕ(v) , v ∈ V+ ,







satisfying the pointwise estimate,

(2.9) inf
V+

ϕ ≤ u(x, v) ≤ sup
V+

ϕ , (x, v) ∈ R
+ × V .

Proof of Lemma 4. This result is classical (see [6] and references therein). We recall the main lines
of the proof for the sake of completeness.



6 V. CALVEZ, G. RAOUL, AND C. SCHMEISER

For ε > 0 we associate the perturbed problem

(2.10)
εuε + v∂xuε +

∫

V
G−1K ′

+G
′
(

uε − u′ε
)

dv′ = 0 , (x, v) ∈ R+ × V ,

uε(0, v) = ϕ(v) , v ∈ V+ ,







which possesses a unique solution in L∞(R+ × V ), as can be proven using a fixed point argument
as explained below. The Duhamel formulation for (2.10) reads

(2.11) uε(x, v) =















∫ x/v

0
G(v)−1 exp (−λε(v)s)Aε(x− sv) ds+ exp (−λε(v)x/v)ϕ(v) , v > 0 ,

∫ +∞

0
G(v)−1 exp (−λε(v)s)Aε(x− sv) ds , v < 0 ,

where λε(v) = G(v)−1+ε, and the macroscopic quantity is defined byAε(x) =
∫

V K+(v
′)G(v′)uε(x, v

′) dv′.
For a given inflow data ϕ, we associate the map Tε from L∞(R+) into itself,

Aε 7−→

∫

V
K+(v

′)G(v′)uε(·, v
′) dv′ ,

where uε is defined by (2.11). Then Tε is a contraction with rate

sup
v∈V

1

1 + εG(v)
< 1 .

The fixed point of this map is a solution of (2.10).
The maximum principle applied to (2.10) implies that uε satisfies (2.9). Therefore, as ε → 0, we

can extract a subsequence that converges in L∞(R+)-weak
∗ to a solution u of (2.8), which satisfies

(2.12) ‖u‖L∞(R+×V ) ≤ ‖ϕ‖L∞(V+) .

Next we show that any bounded solution of (2.7) satisfies the estimate (2.12), implying uniqueness.

We define U(x, v) = G(v)
K(v)e

αx, which also satisfies the differential equation in (2.8). It corresponds

in fact to the function g = 1
K , which is a trivial solution of (2.1) for x > 0. For ε > 0 we consider

w = u−εU . It satisfies (2.7) with inflow data ϕε = ϕ−εU(0, ·). Since u is bounded and −εU → −∞
as x → +∞, it is clear that w has a maximum in R+×V . Notice that w is not necessarily continuous
at v = 0, but piecewise continuity is sufficient. The maximum cannot be attained in (0,∞)× V by
the maximum principle. Therefore it is attained at x = 0 and we get

u(x, v)− εU(x, v) ≤ sup
V+

(ϕ− εU(0, ·)) , (x, v) ∈ R+ × V .

A similar estimate holds for −u− εU . Letting ε → 0 we deduce that u satisfies (2.9), and therefore
also (2.12). �

Step#3. Compactness. The expected symmetry property g(0, v) = g(0,−v) of the equilibrium
distribution motivates the definition of the fixed point operator B : L∞(V+) → L∞(V−):

(2.13) (Bϕ)(v) =
G(v)

G(−v)
(Aϕ)(v) , v ∈ V− ,

with the Albedo operator (Aϕ)(v) = u(0, v), where u is the unique bounded solution of (2.8).

Lemma 5. The operator B is compact and positive.
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Proof. To prove compactness, we first define the macroscopic quantity as above,

A(x) =

∫

V
K+(v

′)G(v′)u(x, v′) dv′ .

We have u ∈ L∞(R+×V ) and from (2.8) also v∂xu ∈ L∞(R+×V ). The one-dimensional averaging
lemma [22] implies A ∈ C0,θ(R+) for all θ ∈ (0, 1), with the corresponding Hölder semi-norm
bounded in terms of ‖ϕ‖L∞ . We deduce from the Duhamel representation formula

u(0, v) =

∫ +∞

0
G(v)−1 exp

(

−G(v)−1s
)

A(−sv) ds =

∫ +∞

0
e−tA(−tvG(v)) dt , v ∈ V− ,

that u(0, v) is uniformly continuous for v < 0, with a modulus of continuity which depends only on
‖ϕ‖L∞ and the modulus of continuity of vG(v) on V−.

Positivity is immediate from the Duhamel formula since A(x) > 0 for x > 0, as soon as ϕ ≥ 0
and ϕ 6= 0. �

Step#4. Conclusion. In order to apply the Krein-Rutman Theorem [36], we consider the restriction
of B to continuous functions on V+, since the interior of L∞(V+) is empty. Lemma 5 also holds for
B|C0(V+).

The Krein-Rutman theorem states that the operator B|C0(V+) possesses a simple dominant eigen-
value λ ∈ R together with a positive eigenfunction ϕ: Bϕ = λϕ. The conservation property for (2.1)
yields λ = 1 by the following argument: We denote by u ∈ L∞(R+ × V ) the solution of the Milne
problem (2.8) with inflow data u(0, v) = ϕ(v). We define accordingly g(x, v) = e−αxG(v)u(x, v). It
is a solution of (2.1) on R+ × V satisfying

λg(0, v) = g(0,−v) , v ∈ V+ .

Integrating (2.1) over R+ × V yields

0 =

∫

V
vg(0, v) dv = (1− λ)

∫

V+

vg(0, v) dv ,

implying λ = 1 by the positivity of g. It is straightforward to check that g, symmetrically extended
to R× V , is a solution of (2.1), satisfying (2.2) as a consequence of (2.9). �

Proof of Proposition 2. We adapt the method of [6]. We shall use a quantitative energy/energy
dissipation approach with respect to the space variable. First, we integrate (2.7) against K+G

2, in
order to derive a non trivial conservation,

(2.14) ∂x

(
∫

V
vK+(v)G(v)2u(x, v) dv

)

= 0 .

This comes in addition to the zero-flux relation

(2.15)

∫

V
vG(v)u(x, v) dv = 0 ,

which is a straightforward consequence of equation (2.1) after integration with respect to the velocity
variable. We observe that the relation (2.14) combined with (2.15) and (2.5) yields

cste =

∫

V
vK+(v)G(v)2u(x, v) dv =

∫

V
v

(

αvG(v) +

∫

V
K+(v

′)G(v′) dv′
)

G(v)u(x, v) dv

= α

∫

V
v2G(v)2u(x, v) dv .
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Secondly, we multiply (2.7) by 2K+G
2(u−H(u)), where the constant H(u) is defined such that

(2.16)

∫

V
v2G(v)2u(x, v) dv = H(u)

∫

V
v2G(v)2 dv .

We obtain

∂x

(
∫

V
vK+G

2 (u−H(u))2 dv

)

= −

∫∫

V×V
K+GK ′

+G
′
(

u− u′
)2

dv′dv

≤ −2

(

inf
v∈V

K+(v)

v2G(v)

)2(∫

V
v2G2 dv

)
∫

V
v2G2 (u−H(u))2 dv ,(2.17)

where we have expanded (u′ − u)2 = (u′ −H(u))2 + (u−H(u))2 + 2 (H(u)− u) (u′ −H(u)), and
we have used the conservation (2.16). We define two auxiliary quantities,

J(x) =

∫

V
vK+(v)G(v)2 (u(x, v)−H(u))2 dv , E(x) =

∫

V
v2G(v)2 (u(x, v)−H(u))2 dv .

The dissipation inequality (2.17) reads ∂xJ(x) + 2κE(x) ≤ 0. On the other hand, multiplying (2.7)
by 2vG2(u−H(u)), we get,

∂x

(
∫

V
v2G2(u−H(u))2 dv

)

= −2

∫∫

V×V
vGK ′

+G
′(u−H(u))2 dv′dv

+ 2

∫∫

V×V
vGK ′

+G
′(u′ −H(u))(u−H(u)) dv′dv

= 2

∫

V
vG (αvG−K+G) (u−H(u))2 dv ,

where we have used (2.5), (2.15) and
∫

V vGdv = 0. This reads also ∂xE(x) = 2αE(x)− 2J(x). All
together this yields the damped second order inequality

−
1

2
∂2
xE(x) + α∂xE(x) + 2κE(x) ≤ 0 .

Complemented with the information that E is bounded, this is sufficient to prove that E decays
exponentially fast. In fact, let β > 0 be the positive root of 1

2β
2 + αβ − 2κ = 0, the function

Ẽ(x) = eβxE(x) satisfies

−
1

2
∂2
xẼ(x) + (α+ β)∂xẼ(x) ≤ 0 .

Therefore, there exists a constant C0, depending only on E(0) and ∂xE(0), such that

−∂xẼ(x) + 2(α+ β)Ẽ(x) ≤ C0 .

We deduce that for all 0 ≤ x < y, we have

Ẽ(x)e−2(α+β)x − Ẽ(y)e−2(α+β)y ≤
C0

2(α+ β)

(

e−2(α+β)x − e−2(α+β)y
)

.

Hence we conclude that,

E(x) ≤ E(y)e−(2α+β)(y−x) +
C0

2(α+ β)
e−βx .

Since E(y) is uniformly bounded, letting y → +∞ this yields that E(x) decays exponentially fast,
i.e. the estimate (2.3) holds true up to a modification of the constant C0, and the abuse of notation
H(g) = H(u). �
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3. Decay to equilibrium by hypocoercivity

Since (1.1) conserves the total mass, we expect limt→∞ f(·, ·, t) = µ∞g (with g solving (2.1)),
where the constant µ∞ is chosen such that µ∞

∫∫

R×V g(x, v)dv dx =
∫∫

R×V f(x, v, 0)dv dx. Replac-
ing f by f − µ∞g, we may assume µ∞ = 0, and therefore

∫∫

R×V
f(x, v, t)dv dx = 0 , for t ≥ 0 ,

in the following.
The decay to equilibrium will be proved by employing the abstract procedure of [17]. It is based

on a situation, where the equilibrium lies in the intersection of the null spaces of the collision and
the transport operator. However, the equilibrium g is not in the null spaces of the collision operator
Qf :=

∫

V K ′f ′dv′ −Kf and of the transport operator v∂x. Therefore, as a first step, collision and
transport operators will be redefined.

Multiplying (1.1) by f/g, we get:

1

2

d

dt
‖f‖2 = −

1

2

∫∫∫

R×V 2

g′K ′

(

f ′

g′
−

f

g

)2

dv′dv dx ,

where ‖ · ‖ is the norm on

(3.1) H :=

{

f ∈ L2

(

dv dx

g

)

:

∫

R×V
f dv dx = 0

}

,

induced by the scalar product

〈f1, f2〉 :=

∫∫

R×V

f1f2
g

dv dx .

This motivates the definition of the symmetrized collision operator

(3.2) Lf :=

∫

V

g′K ′ + gK

2

(

f ′

g′
−

f

g

)

dv′ ,

with the same dissipation:

〈Lf1, f2〉 = 〈f1, Lf2〉 ,
1

2

d

dt
‖f‖2 = 〈Lf, f〉 .

Hence we rewrite (1.1) as ∂tf + Tf = Lf with the modified transport operator

(3.3) Tf := v∂xf +
1

2

∫

V

(

Kf −K ′f ′ +Kg
f ′

g′
−K ′g′

f

g

)

dv′ .

It is easily checked that Tg = Lg = 0 and that T is skew symmetric with respect to 〈·, ·〉. Obviously,
for fixed x, the null space of L is spanned by g(x, ·). The orthogonal projection to N (L) is given by

Πf := ρf
g

ρg
, with ρf :=

∫

V
f dv .

We also observe

(3.4) ρTf = ∂x

∫

V
vf dv ,

implying ΠTΠ = 0 (by the property
∫

V vg dv = 0 of the equilibrium distribution), which is As-
sumption (H3) in the abstract setting of [17], Section 1.3. The so called ’microscopic coercivity’
Assumption (H1) is the subject of the following result.

Lemma 6. With the above definitions, −〈Lf, f〉 ≥ Kmin‖(1− Π)f‖2 holds with Kmin = infR×V K
for every f ∈ H.
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Proof.

−〈Lf, f〉 ≥
Kmin

2

∫∫∫

R×V 2

(g + g′)

(

(1−Π)f ′

g′
−

(1−Π)f

g

)2

dv′dv dx

=
Kmin

2

∫∫∫

R×V 2

(g + g′)

(

(

(1−Π)f ′

g′

)2

+

(

(1−Π)f

g

)2
)

dv′dv dx

≥
Kmin

2

∫∫∫

R×V 2

(

(1−Π)f ′2

g′
+

(1−Π)f2

g

)

dv′dv dx = Kmin‖(1−Π)f‖2 .

�

The next step is ’macroscopic coercivity’ (Assumption (H2) in [17]). It relies on the asymptotic
behavior of g as |x| → ∞. By Theorem 1, the equilibrium distribution satisfies

(3.5) 0 < umine
−α|x| ≤ g(x, v) ≤ umaxe

−α|x| , for (x, v) ∈ R× V ,

where α is the unique positive solution of the dispersion relation (2.6), and umin, umax are positive
constants.

Lemma 7. Let (3.5) hold. Then, with the above definitions, there exists a constant λM > 0, such
that ‖TΠf‖2 ≥ λM‖Πf‖2 holds for all f ∈ H ∩ D(TΠ).

Proof. A straightforward computation gives

‖TΠf‖2 =

∫

R

(

∂x
ρf
ρg

)2

mgdx , with mg(x) =

∫

V
v2g(x, v)dv .

By the boundedness of the velocity space, ρg and mg satisfy estimates of the form (3.5), implying
the existence of a positive constant c such that

‖TΠf‖2 ≥ c

∫

R

(

∂x
ρf
ρg

)2

ρgdx .

We claim that the measure ρgdx permits a Poincaré inequality. This can be proved via bounds on
the spectrum of Schrödinger operators. It is a consequence of the fact that ρg can be bounded from
above and below by multiples of a smooth function, whose logarithm is asymptotically linear as
|x| → ∞ and Theorem A.1 of [47]. Therefore, there exists a positive constant λM such that

‖TΠf‖2 ≥ λM

∫

R

(

ρf
ρg

)2

ρgdx = λM‖Πf‖2 .

�

The approach of [17] relies on the ’modified entropy’

H[f ] :=
1

2
‖f‖2 + ε〈Af, f〉 , with A := (1 + (TΠ)∗TΠ)−1(TΠ)∗ ,

and with a small positive constant ε. Its time derivative is given by

d

dt
H[f ] = 〈L f, f〉 − ε 〈ATΠ f, f〉 − ε 〈AT (1−Π) f, f〉+ ε 〈TA f, f〉+ ε 〈AL f, f〉 .

The first two terms on the right hand side are responsible for the decay of H[f ], noting microscopic
coercivity (Lemma 6) and the fact that the macroscopic coercivity result of Lemma 7 implies

〈ATΠ f, f〉 ≥
λM

1 + λM
‖Πf‖2 .
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Coercivity of the dissipation of H[f ] can be obtained by choosing ε small enough, if the auxiliary
operators AT(1 − Π), TA, and AL are bounded, since they only act on (1 − Π)f . By Lemma 1 of
[17], A and TA are bounded.

Lemma 8. Let (3.5) hold. Then the operator L, defined in (3.2), is bounded.

Proof. The result follows from the estimate

|〈Lf, f〉| ≤ 2

∫∫∫

R×V 2

g′K ′

(

f ′2

g′2
+

f2

g2

)

dv′dv dx ≤ 2Kmax

(

‖f‖2 +

∫∫

R×V

ρg
g

f2

g
dv dx

)

≤ 2Kmax

(

1 +
umax

umin

)

‖f‖2 .

�

It remains to prove boundedness of AT(1−Π), which is equivalent to an elliptic regularity estimate.

Lemma 9. Let (3.5) hold. Then the operator AT(1−Π) is bounded.

Proof. As in [17] we work on the adjoint. It is sufficient to prove boundedness of

(AT)∗ = −T2Π(1 + (TΠ)∗TΠ)−1 .

Introducing ϕ = (1 + (TΠ)∗TΠ)−1f , the scalar product of the equivalent equation

(3.6) ϕ+ (TΠ)∗TΠϕ = f

with ϕ leads to the estimate ‖ϕ‖, ‖TΠϕ‖ ≤ ‖f‖. Application of Π to (3.6) gives

(3.7) ρguϕ − ∂x (mg∂xuϕ) = ρf ,

with ρϕ = ρguϕ. We shall have to estimate the norm of

T2Πϕ = g v2∂2
xuϕ +

1

2
∂xuϕ

∫

V
(v′ − v)(Kg −K ′g′)dv′ ,

satisfying

|T2Πϕ| ≤ Ce−α|x|
(∣

∣∂2
xuϕ

∣

∣+ |∂xuϕ|
)

,

in terms of ‖f‖, which is a weighted L2 → H2 regularisation result for (3.7). The first order
derivative has already been taken care of by the bound for TΠϕ = gv∂xuϕ. We shall also need

|∂xmg| =

∣

∣

∣

∣

∫∫

V 2

v(Kg −K ′g′)dv′dv

∣

∣

∣

∣

≤ Ce−α|x| ,

where we have used the equation (2.1), satisfied by g, and (3.5). Now (3.7) is rewritten as

mg∂
2
xuϕ = ρϕ − ∂xmg∂xuϕ − ρf ,

and the proof is completed by taking L2-norms with the weight eα|x|, noting that mg ≥ ce−α|x|. �

We have completed the verification of the assumptions of Theorem 2 of [17] and arrive at our
main result:

Theorem 10. Let a stationary positive solution g of (1.1) (unique up to a constant factor) satisfy
(3.5), let fI ∈ L2(dv dx/g) (⊂ L1(dv dx)), and let

f∞(x, v) := g(x, v)

∫

R×V
fI dv dx

(
∫

R×V
g dv dx

)−1

.
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Then the solution of (1.1) subject to f(t = 0) = fI satisfies

‖f(t, ·, ·)− f∞‖L2(dv dx/g) ≤ Ce−λt‖fI − f∞‖L2(dv dx/g) ,

with positive constants C and λ, only depending on χ ∈ (0, 1).

4. Macroscopic limits

The ’macroscopic limit’ corresponding to the modified entropy method. The separation
into microscopic and macroscopic contributions employed in the previous section can be motivated
by a macroscopic limit, based on the assumption of a separation of time scales related to the
collision and the transport operators. With an appropriate (parabolic) rescaling of time, this leads
to studying the limit as ε → 0+ in

(4.1) ε∂tf
ε + Tf ε =

1

ε
Lf ε .

Whereas for the standard transport operator v∂x the scale separation can be achieved by a length
rescaling, the introduction of the ’Knudsen number’ ε is completely artificial in the present situation,
since the modified collision and transport operators contain identical terms whose different weighting
cannot be justified by scaling arguments. This is the reason for the quotation marks in the title of
this subsection.

The limit ε → 0 in the abstract equation (4.1) has been carried out formally in [17] under the
assumptions ΠTΠ = 0, already used above, and that the restriction of the collision operator L to
(1−Π)H possesses an inverse J. The formal limits f0 of solutions of (4.1) satisfy

(4.2) f0 ∈ ΠH , ∂tf
0 = (TΠ)∗J(TΠ)f0 .

Note that the macroscopic coercivity estimate in Lemma 7 is related to the simplified version
−(TΠ)∗(TΠ) of the macroscopic evolution operator. Since f0(x, v, t) = ρ0(x, t)g(x, v)/ρg(x), the
above evolution equation is equivalent to an equation for ρ0.

Lemma 11. Let L be defined by (3.2). Then the equation Lf = h is solvable for f , iff h ∈ (1−Π)H.
For every solution there exists a function µ(x) such that

f = µg +
2g

λ+ gK

(

∫

V h/(λ+ gK)dv
∫

V 1/(λ+ gk)dv
− h

)

, with λ(x) =

∫

V
g(x, v)K(x, v)dv .

The additional requirement f ∈ (1−Π)H determines µ uniquely.

Proof. With ν =
∫

V Kf dv, µ =
∫

V f/g dv, the equation Lf = h can be rewritten as

f = g

(

µ+
ν − λµ− 2h

λ+ gK

)

Division by g and integration with respect to v gives an equation for ν − λµ leading to the claimed
result. A second equation for µ and ν can be obtained by multiplication by K and integration. The
coefficient matrix of the resulting system is non-invertible, and the solvability condition turns out
to be

∫

V h dv = 0, i.e. h ∈ (1−Π)H. �

Proposition 12. Let L and T be defined by (3.2) and, respectively, (3.3). Then the equation (4.2)
is equivalent to

(4.3) ∂tρ
0 = ∂x

(

D∂x

(

ρ0

ρg

))

,
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where D = D(x) is given by

D = 2

∫

V

v2g2dv

Kg + λ
− 2

(
∫

V

vg dv

Kg + λ

)2(∫

V

dv

Kg + λ

)−1

= 2Z Varp (vg) ,

with p dv =
dv

Z(Kg + λ)
, Z =

∫

V

dv

Kg + λ
.

Remark 13. Note that the macroscopic evolution operator and the simplification −(TΠ)∗TΠ only
differ by the diffusivities D vs. mg. Under the assumption (3.5), both have the same behaviour as
|x| → ∞.

Proof. With TΠf0 = Tf0 = vg ∂x(ρ
0/ρg) and Lemma 11, we obtain

JTΠf0 = µg +
2g

λ+ gK

(

∫

V vg/(λ+ gK)dv
∫

V 1/(λ+ gK)dv
− vg

)

∂x

(

ρ0

ρg

)

.

It remains to apply −ΠT to this expression, where we can use (3.4). �

Weakly biased turning rate. We assume 0 < χ ≪ 1 and introduce the (parabolic) macroscopic
rescaling x → x

χ , t →
t
χ2 :

χ2∂tf + χ v ∂xf = Q0(f) + χQ1(f) ,

with Q0(f) =

∫

V
(f ′ − f)dv′ , Q1(f) =

∫

V
(f ′sign (xv′)− fsign (xv))dv′ .

The standard Hilbert expansion f = f0 + χf1 +O(χ2) (analogously to above) leads to

f0(t, x, v) = ρ0(t, x) , v ∂xf0 = Q0(f1) +Q1(f0) , ∂tρ0 + ∂x

∫

V
vf1dv = 0 .

Multiplication of the second equation by v and integration finally gives

∂tρ0 = ∂x

(

1

12
∂xρ0 +

sign (x)

4
ρ0

)

.

The equilibrium distributions ρg and e−3|x| of the two macroscopic limits share the exponential
behavior for |x| → ∞ up to the decay rate (by (3.5)), which is a consequence of the shared asymptotic
behavior of the diffusivities D/ρg vs. 1/12 and drift velocities −D∂x(1/ρg) vs. −sign (x)/4.
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