Confinement by biased velocity jumps: aggregation of Escherichia coli - Archive ouverte HAL
Article Dans Une Revue Kinetic and Related Models Année : 2015

Confinement by biased velocity jumps: aggregation of Escherichia coli

Résumé

We investigate a linear kinetic equation derived from a velocity jump process modelling bacterial chemotaxis in the presence of an external chemical signal centered at the origin. We prove the existence of a positive equilibrium distribution with an exponential decay at infinity. We deduce a hypocoercivity result, namely: the solution of the Cauchy problem converges exponentially fast towards the stationary state. The strategy follows [J. Dolbeault, C. Mouhot, and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. AMS 2014]. The novelty here is that the equilibrium does not belong to the null spaces of the collision operator and of the transport operator. From a modelling viewpoint it is related to the observation that exponential confinement is generated by a spatially inhomogeneous bias in the velocity jump process.
Fichier principal
Vignette du fichier
Calvez-Raoul-Schmeiser-HAL.pdf (286.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00971302 , version 1 (02-04-2014)

Identifiants

Citer

Vincent Calvez, Gaël Raoul, Christian Schmeiser. Confinement by biased velocity jumps: aggregation of Escherichia coli. Kinetic and Related Models , 2015, ⟨10.3934/krm.2015.8.651⟩. ⟨hal-00971302⟩
442 Consultations
480 Téléchargements

Altmetric

Partager

More