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MOMENT BOUNDS AND CONCENTRATION INEQUALITIES FOR

SLOWLY MIXING DYNAMICAL SYSTEMS

SÉBASTIEN GOUËZEL AND IAN MELBOURNE

Abstract. We obtain optimal moment bounds for Birkhoff sums, and optimal concen-
tration inequalities, for a large class of slowly mixing dynamical systems, including those
that admit anomalous diffusion in the form of a stable law or a central limit theorem with
nonstandard scaling (n log n)1/2.

1. Statement of results

Consider a dynamical system T preserving an ergodic probability measure µ. If T is
sufficiently chaotic, i.e., it mixes quickly enough, then the Birkhoff sums Snf =

∑n−1
i=0 f ◦T i

of Hölder continuous functions with zero average typically satisfy the central limit theorem,
and grow like

√
n. On the other hand, the moments

∫
|Snf |p may grow faster than np/2:

it is possible that some sets with small measure give a dominating contribution to those
moments. Estimating the precise growth rate is important from the point of view of large
deviations. It turns out that this precise growth rate depends on finer characteristics of the
system, and displays a transition at some critical exponent p∗ directly related to the lack of
uniform hyperbolicity of the system.

The situation for uniformly expanding/hyperbolic (Axiom A) systems is easily described:
all moments

∫
|Snf |p grow like np/2 and moreover

∫
|n−1/2Snf |p converges to the p’th moment

of the limiting Gaussian in the central limit theorem. [MT12b] showed that convergence of
all moments holds also for nonuniformly expanding/hyperbolic diffeomorphisms modelled
by Young towers with exponential tails [You98]. However, it follows from [MN08, MT12b]
that the situation is quite different for systems modelled by Young towers with polynomial
tails [You99].

In this paper, we give optimal bounds for all moments of Birkhoff sums (by optimal, we
mean that we have upper and lower bounds of the same order of magnitude), in the situation
of Young towers. Many real systems are quotients of such Young towers, hence our bounds
apply to such systems, including notably intermittent maps of the interval [LSV99, PM80].
See for instance [MN08] for a discussion of such applications. Our techniques also give
a generalization of moment inequalities, to concentration inequalities (see [CG12] for a
discussion of numerous applications of such bounds). By the methods in [CG12, MT12b],
all results described here pass over to the situation of invertible systems and flows; for
brevity we present the results only for noninvertible discrete time dynamics.
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A Young tower is a space X endowed with a partition
⋃

α

⋃

06i<hα
∆α,i (where α belongs

to some countable set, and hα are positive integers). The dynamics T maps bijectively ∆α,i

to ∆α,i+1 for i + 1 < hα, and ∆α,hα−1 to ∆0 =
⋃

∆α,0: the dynamics goes up while not
at the top of the tower, and then comes back surjectively to the basis. The distance on X
is defined by d(x, y) = ρs(x,y) where ρ < 1 is fixed and s(x, y), the separation time, is the
number of returns to the basis before the points x and y are not in the same element of the
partition. Finally, we require a technical distortion condition: denoting by g(x) the inverse
of the jacobian of T for the measure µ, one should have |log g(x) − log g(y)| 6 Cd(Tx, Ty)
for all x, y in the same partition element.

With the distance d, the map T is an isometry while going up the tower, and expands by
a factor ρ−1 > 1 when going back to the basis: it is non-uniformly expanding, the time to
wait before seeing the expansion being large on points in ∆α,0 with hα large. In particular,
denoting by ϕ(x) the return time to the basis, the quantities

tailn = µ{x ∈ ∆0 : ϕ(x) > n} = µ




⋃

hα>n

∆α,0



 ,

called the tails of the return time, dictate the statistical properties of the transformation
T . By Kac’s Formula, tailn is summable since µ is finite by assumption. If for instance,
tailn = O(n−q) for some q > 1, then Lipschitz functions mix at a speed C/nq−1 by [You99],

and this speed is optimal, see [Sar02] and [Gou04b]. If q > 2, then n−1/2Snf converges
in distribution to a Gaussian, and the variance is nonzero provided f is not a coboundary.
(More generally, for convergence to a Gaussian it suffices that the return time function ϕ is
square-integrable.) When q ∈ (1, 2], more precise information is required on tailn, leading
to the following result.

Theorem 1.1 ([Gou04a]). Consider a Young tower with tailn ∼ Cn−q for some q > 1.
There is a sequence an, and a nonempty set U in the space of Lipschitz functions f : X → R

with mean zero, such that the following holds. For each f ∈ U , there exists a nondegenerate

law Z such that a−1
n Snf →d Z. Moreover, an and Z are given as follows:

q > 2: an = n1/2, Z is Gaussian.

q = 2: an = (n log n)1/2, Z is Gaussian.

q ∈ (1, 2): an = n1/q, Z is a stable law of index q.

The set U is rather big: it contains for instance all the functions that converge to a
nonzero constant along points whose height in the tower tends to infinity.

Lower bounds for the growth of moments are well-known (see [MN08]) and can be sum-
marized in the following proposition. We will always write ‖u‖ for the Lipschitz norm of a
function u, given by

‖u‖ = sup
x
|u(x)|+ sup

x,y

|u(x)− u(y)|
d(x, y)

,

where the supremum in the second term is restricted to those x and y that belong to the same
partition element. Note that, changing the parameter ρ in the definition of the distance,
Hölder functions for the old distance become Lipschitz functions for the new one. Hence, all
results that are stated in this paper for Lipschitz functions also apply to Hölder functions.
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Proposition 1.2. Consider a Young tower with tailn ∼ Cn−q for some q > 1. Then, for

all p ∈ [1,∞), there exists c > 0 such that for all n > 1

sup
‖f‖61,

∫
f=0

∫

|Snf |p >







cmax(np/2, np−q+1) if q > 2,

cmax((n log n)p/2, np−q+1) if q = 2,

cmax(np/q, np−q+1) if q < 2.

The phase transition in these lower bounds happens at p∗ = 2q − 2 for q > 2, and at
p∗ = q for q 6 2. Before this threshold, the first lower bound (that corresponds to an average
behavior over the whole space) is more important, while the second one (that corresponds
to the Birkhoff sum being large on a small part of the space) is dominating afterwards.

Proof. For the lower bound np−q+1, we take f that is equal to 1 on
⋃

hα>n

⋃

i<hα
∆α,i, and

equal to another constant on the complement of this set, to make sure that
∫
f = 0. Then

Snf = n on
⋃

hα>2n

⋃

i<hα/2
∆α,i, hence

∫

|Snf |p > npµ




⋃

hα>2n

⋃

i<hα/2

∆α,i



 = np
∑

h>2n

h

2
µ(ϕ = h).

Using a discrete integration by parts and the assumption µ(ϕ > n) ∼ Cn−q, one checks
that this is > cnp−q+1.

For the other bound, we fix a mean zero Lipschitz function f ∈ U . By Theorem 1.1, there
exist an and Z nondegenerate such that a−1

n Snf →d Z. Hence a−p
n

∫
|Snf |p is bounded from

below and we get the lower bound capn in all three cases. �

In the case q < 2 and p = q, the lower bound in the proposition is
∫
|Snf |q > cn. It is not

sharp: for f ∈ U , Snf/n
1/q converges to a stable law Z of index q, whose q-th moment is

infinite, hence
∫
|Snf/n1/q|q tends to infinity. To get a better lower bound, one should study

the speed of convergence of Snf/n
1/q to Z. We can do this under stronger assumptions on

the tails (this is not surprising since it is well known that the speed of convergence to stable
laws is related to regularity assumptions on the tails of the random variables):

Proposition 1.3. Consider a Young tower with tailn = Cn−q+O(n−q−ε) for some q ∈ (1, 2)
and some ε > 0. Then there exists c > 0 such that for all n > 0

sup
‖f‖61,

∫
f=0

∫

|Snf |q > cn log n.

This lower bound is considerably more complicated to establish than the ones in Propo-
sition 1.2. Since the arguments are rather different from the rest of the paper (essentially,

they reduce to a proof of a Berry-Esseen like bound for Snf/n
1/q), we defer the proof

of the proposition to Appendix A. The assumptions of this proposition are for instance
satisfied for the classical Pomeau-Manneville intermittent maps [LSV99, PM80]. (See for
example [MT12a, Proposition 11.12].)

For q = 2, the bound cmax((n log n)p/2, np−q+1) is known to be optimal for all p, see

Remarks 1.6 and 1.7 below. Also, for q > 2, the bound cmax(np/2, np−q+1) is known to be
optimal for all p 6= 2q − 2. The remaining cases are much more subtle, and are solved for
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the first time in this paper. We note that for q > 2 and p = 2q − 2, [CG12] obtains an
additional upper bound for the weak moment of Snf , which implies for p > 2q−2 the upper
bound Cnp−q+1, in accordance with the lower bound. Moreover, the very precise methods
of [CG12] seemed to indicate that the upper bound for the weak moment at p = 2q− 2 was
optimal, and that the discrepancy with the lower bound was due to a suboptimality of the
(naive) lower bound. We prove below that this is not the case.

Theorem 1.4. Consider a Young tower with tailn = O(n−q) for some q > 1. Then, for

all p ∈ [1,∞), there exists C > 0 such that for any Lipschitz function f with ‖f‖ 6 1 and
∫
f = 0, for all n > 0,

∫

|Snf |p 6







Cmax(np/2, np−q+1) if q > 2,

Cmax((n log n)p/2, np−q+1) if q = 2,

Cmax(np/q, np−q+1) if q < 2 and p 6= q.

If q < 2, we have for all t

(1.1) µ{x : |Snf(x)| > t} 6 Ct−qn

and therefore
∫

|Snf |q 6 Cn log n.

Our upper bounds all match the corresponding lower bounds given in Propositions 1.2
and 1.3, and are therefore optimal.

Note that, in the proofs, if is sufficient to understand what happens at the critical expo-
nent p∗ = 2q−2 for q > 2: a control on the L2q−2-norm for q > 2 readily implies the control
for any p ∈ [1,∞) thanks to the trivial inequalities

(1.2) ‖u‖pLp 6 ‖u‖p−r
L∞ ‖u‖rLr if p > r, ‖u‖Lp 6 ‖u‖Lr if p < r.

In the same way, for q < 2, the control (1.1) on the weak q-th moment implies the corre-
sponding Lp controls for any p ∈ [1,∞) thanks to the equality

(1.3)

∫

|u|p dµ = p

∫ ‖u‖L∞

s=0
sp−1µ{|u| > s}ds.

This formula would also apply in the q > 2 case (combined with the control of µ{|u| > s}
coming from the estimate at the exponent p∗ and the Markov inequality), but it gives worse
constants than (1.2) in this case.

On the other hand, for q = 2, the bound
√
n log n for the second moment does not give

the desired upper bound for p > 2 (using the formulas (1.2) or (1.3), one only gets the upper
bound

∫
|Snf |p 6 Cnp−1 log n, with an extra log n).

As an immediate consequence of the bounds on moments at the critical exponent, we
obtain convergence of moments for all lower exponents.

Corollary 1.5. Consider a Young tower with tailn ∼ Cn−q for some q > 1. Suppose that

f , an and Z are as in Theorem 1.1. Then
∫
|a−1

n Snf |p → E(|Z|p) for all p < p∗ where

p∗ = 2q − 2 for q ≥ 2 and p∗ = q for q ∈ (1, 2).
In particular, there exist constants C = Cp,q, typically nonzero, such that
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• if q > 2, then
∫
|Snf |p ∼ Cnp/2 for all p < 2q − 2.

• if q = 2, then
∫
|Snf |p ∼ C(n log n)p/2 for all p < 2.

• if q ∈ (1, 2), then
∫
|Snf |p ∼ Cnp/q for all p < q.

Proof. As in [MT12b], this is an immediate consequence of Theorem 1.1, together with the

fact that
∫
|a−1/2

n Snf |p
′

is bounded for any p′ ∈ (p, p∗) as guaranteed by Theorem 1.4 (for
q > 2, one can even take p′ = p∗). �

Remark 1.6. Previously, no results were available on convergence of moments for q < 2.
The case q > 2 in Corollary 1.5 recovers a result of [MT12b] and the result for q = 2 was
obtained by [BCD13] in the context of dispersing billiards with cusps. [BCD13] consider
also the critical exponent p = 2 for dispersing billiards with cusps, and prove for this
example that the limiting second moment is twice the moment of the limiting Gaussian:
∫
|(n log n)−1/2Snf |2 → 2E(|Z|2).

Remark 1.7. Certain aspects of Theorem 1.4 and Corollary 1.5 do not require the full
strength of the assumption that there is an underlying Young tower structure. We can
consider the more general situation where f is a mean zero observable lying in L∞ such
that

∣
∣
∫
f g ◦ T n

∣
∣ ≤ C‖g‖L∞n−(q−1) for all g ∈ L∞, n ≥ 1. (Such a condition is satisfied for

f Lipschitz when X is a Young tower with tailn = O(n−q).)
In the case q = 2, we recover all the moment estimates (and hence the convergence of

moments for p < 2) described above. By [Mel09, Lemma 2.1],
∫
|Snf |p dµ≪ np−1 for p > 2

and
∫
|Snf |2 dµ≪ n log n.

In the case q > 2,
∫
|Snf |p dµ ≪ np−q+1 for p > 2q − 2 by [Mel09, Lemma 2.1], and

∫
|Snf |p dµ ≤ Cnp/2 for p < 2q − 2 by [MT12b], Again it follows that all moments converge

for p < 2q − 2.
After we completed this article, we learned that, using techniques that are completely

different from the ones we develop, Dedecker and Merlevède [DM14] also obtain the con-
trols on moments given in Theorem 1.4, essentially under an assumption of the form
∣
∣
∫
f g ◦ T n

∣
∣ ≤ C‖g‖L∞n−(q−1). Their arguments (initially developed to control the behav-

ior of the empirical measure) rely on general probabilistic inequalities for sums of random
variables, and can not give the concentration inequalities of Theorem 1.9 below.

Remark 1.8. Proposition 1.2 and Theorem 1.4 clarify certain results in the Physics lit-
erature. As in [MT12b], our results go over to flows, and apply in particular to infinite
horizon planar periodic Lorentz gases. These can be viewed as suspension flows over Young
towers with tailn ∼ Cn−2 so we are in the case q = 2. In particular, if r(t) denotes po-

sition at time t, then (t log t)−1/2r(t) →d Z where Z is a nondegenerate Gaussian [SV07].
[AHO03] consider growth rate of moments for r(t), but neglecting logarithmic factors. Defin-
ing γp = limt→∞ log

∫
|r(t)|p/ log t, they argue heuristically that γp = max{p/2, p − 1} in

accordance with our main results. [CESFZ08] conducted numerical simulations to verify
the growth rates of the moments, including logarithmic factors, but based on the belief that
∫
|r(t)|p scales like (n log n)p/2 for all p, whereas we have shown that this is correct only for

p ≤ 2.
Two other examples of billiards that are modelled by Young towers with tailn ∼ Cn−2 are

Bunimovich stadia (discrete and continuous time) [BG06] and billiards with cusps (discrete
time) [BCD11, BCD13]. Again, our results apply to these situations with q = 2.
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The above optimal upper bounds for moments, dealing with Birkhoff sums, can be ex-
tended to concentration estimates, for any (possibly non-linear) function of the point and
its iterates. More precisely, consider a function K(x0, x1, . . . ) (depending on finitely or in-
finitely many coordinates) which is separately Lipschitz: for all i, there exists a constant
Lipi(K) such that, for all x0, x1, . . . and x′i,

|K(x0, x1, . . . , xi−1, xi, xi+1, . . . )−K(x0, x1, . . . , xi−1, x
′
i, xi+1, . . . )| 6 Lipi(K)d(xi, x

′
i).

If K does not depend on some variable xi, we set by convention Lipi(K) = 0.
Let E(K) =

∫
K(x, Tx, . . . ) dµ(x). We are interested in the deviation of K(x, Tx, . . . )

from its average E(K). For instance, if K(x0, . . . , xn−1) =
∑
f(xi), then K(x, Tx, . . . ) is

simply the Birkhoff sum Snf . It is separately Lipschitz if f is Lipschitz, with Lipschitz
constants Lipi(K) = Lip(f) for 0 6 i 6 n− 1, and Lipi(K) = 0 otherwise.

Theorem 1.9. Consider a Young tower with tailn = O(n−q) for some q > 1. Then, for all

p ∈ [1,∞), there exists C > 0 such that, for all separately Lipschitz function K,

• if q > 2,
∫

|K(x, Tx, . . . )− EK|p 6
{

C
(∑

Lipi(K)2
)p/2

if p 6 2q − 2,

C
(∑

Lipi(K)2
)q−1

(
∑

Lipi(K))p−(2q−2)
if p > 2q − 2.

• if q = 2, the quantity
∫
|K(x, Tx, . . . )− EK|p is bounded by







C
(∑

Lipi(K)2
)p/2

[

1 + log (
∑

Lipi(K))− log
(∑

Lipi(K)2
)1/2

]p/2
if p 6 2,

C
(∑

Lipi(K)2
)
(
∑

Lipi(K))p−2
if p > 2.

• if q < 2,

(1.4) µ{x : |K(x, Tx, . . . )− EK| > t} 6 Ct−q
∑

i

Lipi(K)q

and therefore
∫
|K(x, Tx, . . . )− EK|p is bounded by







C (
∑

Lipi(K)q)p/q if p < q,

C (
∑

Lipi(K)q)
[

1 + log (
∑

Lipi(K))− log (
∑

Lipi(K)q)1/q
]

if p = q,

C (
∑

Lipi(K)q) (
∑

Lipi(K))p−q
if p > q.

Note that |K − E(K)| is trivially bounded by
∑

i Lipi(K). Hence, when q > 2, it is
sufficient to prove the estimates for p = 2q − 2, as the other ones follow using (1.2). In the
same way, for q < 2, it suffices to prove the weak moment bound (1.4), thanks to (1.3). On
the other hand, for q = 2, the inequality for p = 2 is not sufficient to obtain the result for
p > 2.

Compared to moment controls, concentration results for arbitrary functions K have a lot
more applications, especially when K is non-linear. We refer the reader to [CG12, Section 7]
for a description of such applications.

Theorem 1.9 implies Theorem 1.4 (just take K(x0, . . . , xn−1) =
∑
f(xi)). However, the

proof of Theorem 1.4 is considerably simpler, and motivates some techniques used in the
proof of Theorem 1.9. Hence, we will prove both theorems separately below. While some
cases of Theorem 1.4 are already known (especially the case q = 2, see Remark 1.7), we will
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nevertheless give again a full proof of these cases, for completeness and with the concentra-
tion case in mind.

The proofs of our results rely on two main tools: a dynamical one (very precise asymp-
totics of renewal sequences of operators) and a probabilistic one (inequalities for martingales,
of Burkholder-Rosenthal and von Bahr-Esseen type). In addition, for the concentration in-
equalities, we will need analytic tools such as maximal inequalities and interpolation results,
since the Lipschitz constants Lipa(K) may vary a lot with a, which makes more usual in-
equalities too crude. All these tools are presented in Section 2. Theorem 1.4 is proved in
Section 3, and Theorem 1.9 is proved in Section 4.

2. Preliminaries

2.1. Renewal sequences of operators. In this paragraph, we summarize the results on
renewal sequences of operators that we will need later on. They are proved in [Sar02,
Gou04b, Gou04c].

Consider a Young tower T : X → X. The associated transfer operator L, adjoint to the
composition by T , is given by

Lu(x) =
∑

Ty=x

g(y)u(y).

Denoting by g(n)(x) = g(x) · · · g(T n−1x) the inverse of the jacobian of T n, one has Lnu(x) =
∑

Tny=x g
(n)(y)u(y). Iterating the inequality |log g(x) − log g(y)| 6 Cd(Tx, Ty) and using

the uniform expansion when a trajectory returns to the basis, one has the following bounded
distortion property: there exists C > 0 such that, for all n, for all points x and y in the
same cylinder of length n,

|log g(n)(x)− log g(n)(y)| 6 Cd(T nx, T ny).

Among the trajectories of T , the only non-trivial behavior is related to the successive
returns to the basis. Define a first return transfer operator at time n by Rnu(x) =
∑

Tny=x g
(n)(y)u(y) where x ∈ ∆0 and the sum is over those preimages y of x that be-

long to ∆0 but T iy 6∈ ∆0 for 1 6 i 6 n − 1. Since Rn only involves preimages y with
ϕ(y) = n, one has ‖Rn‖ 6 Cµ(ϕ = n). In particular, Rn is easy to understand.

Define a partial transfer operator Tn = 1∆0Ln1∆0 . It can be written as Tnu(x) =
∑

Tny=x g
(n)(y)u(y), where x and y all have to belong to ∆0. Decomposing a trajectory

from ∆0 to ∆0 into successive excursions, one gets

Tn =

n∑

k=1

∑

ℓ1+···+ℓk=n

Rℓ1 · · ·Rℓk .

Formally, this is equivalent to the equality
∑
Tnz

n = (I − ∑Rkz
k)−1. This makes it

possible to understand Tn. Denote by Π the projection on constant functions on ∆0, given
by Πu(x) =

∫

∆0
udµ/µ(∆0).

The following proposition is [Gou04c, Proposition 2.2.19 and Remark 2.4.8] in the specific
case of polynomial growth rate (this proposition also holds for more exotic asymptotics such
as O(n−q log n) – it follows that most results of our paper could be extended to such speeds).
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Proposition 2.1. Assume that µ(ϕ > n) = O(n−q) for some q > 1. Then ‖Tn+1 − Tn‖ =
O(n−q) and ‖Tn −ΠTnΠ‖ = O(n−q).

In particular, ‖Tn+1 − Tn‖ is summable, hence Tn converges. Its limit is µ(∆0)Π.
Consider now a general function u and a point x ∈ ∆0, we wish to describe Lnu(x) =

∑

Tny=x g
(n)(y)u(y). Splitting the trajectory of y into a first part until the first entrance in

∆0, of length b > 0, and then a second part starting from ∆0 at time b and coming back to
∆0 at time n, we obtain a decomposition

(2.1) 1∆0Ln =
∑

ℓ+b=n

TℓBb.

The operator Bb is given by Bbu(x) =
∑

T by=x g
(b)(y)u(y), the sum being restricted to those

preimages whose first entrance in ∆0 is at time b (the projection in the basis of those points
necessarily has ϕ > b). By bounded distortion, one gets

(2.2) ‖Bb‖ 6 Cµ(ϕ > b).

2.2. Weak Lp spaces. If a function u belongs to Lp on a probability space, then P(|u| >
s) 6 s−p

E(|u|p) by Markov’s inequality. On the other hand, this condition P(|u| > s) =
O(s−p) is not sufficient to belong to Lp. For instance, a stable law of index p ∈ (1, 2) satisfies
P(|Z| > s) ∼ cs−p, it readily follows that it does not belong to Lp.

We say that a random variable u belongs to weak Lp if P(|u| > s) = O(s−p). We write

‖u‖pLp,w = sup
s
spP(|u| > s).

This is the analogue of the Lp norm in this context. It satisfies ‖u‖Lp,w 6 ‖u‖Lp . In
general, ‖·‖Lp,w is not a norm (i.e., it does not satisfy the triangular inequality), however it
is equivalent to a norm when p > 1 (see for instance [SW71, Paragraph V.3]). The weak
Lp space is a particular instance of Lorentz spaces, corresponding to the space Lp,∞ in the
standard notation.

Apart from its natural appearance when considering stable laws, a major role of the
weak Lp space comes from interpolation theory. The following is a particular case of the
Marcinkiewicz interpolation theorem, see for instance [SW71, Theorem V.2.4].

Theorem 2.2. If a linear operator is bounded from L1(µ) to L1,w(ν) and from L∞(µ) to

L∞(ν), then it is bounded from Lp(µ) to Lp(ν) for any 1 < p <∞.

This result can for instance be used to prove the boundedness of the Hardy-Littlewood
maximal function on any Lp space, 1 < p 6 ∞, since boundedness from L1 to L1,w and
from L∞ to itself hold. We recall the statement in the case of Z, since we will need it later
on. See for instance [SW71, Theorem II.3.7].

Theorem 2.3. To a sequence (un)n∈Z, associate the sequence

Mu(n) = sup
h>0

1

2h+ 1

n+h∑

i=n−h

|ui|.

For all p ∈ (1,+∞], there exists a constant C such that ‖Mu‖ℓp 6 C‖u‖ℓp for any sequence

u ∈ ℓp.
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2.3. Martingale inequalities. Given a decreasing sequence of σ-algebras F0 ⊃ F1 ⊃ . . .
on a probability space, a sequence of reverse martingale differences with respect to this
filtration is a sequence of random variables Dk such that E(Dk | Fk+1) = 0. This is a kind
of one-sided independence condition. Moment inequalities, similar to classical inequalities
for independent random variables, hold in this setting.

We will need the following version of the Burkholder-Rosenthal inequality:

Theorem 2.4. For any Q > 2, there exists a constant C such that any sequence of reverse

martingale differences satisfies

E

∣
∣
∣

∑

Dk

∣
∣
∣

Q
6 C

(∑

‖E(D2
k | Fk+1)‖L∞

)Q/2
+ C

∑

‖E(|Dk|Q | Fk+1)‖L∞ .

The usual statement [Bur73, Inequality (21.5)] is slightly stronger than this one, we have
chosen to put L∞ norms in our statement since we will use it in this precise form.

For Q ∈ (1, 2), the (easier) analogue of the above theorem is the inequality of von Bahr
and Esseen [vBE65] stating that

E

∣
∣
∣

∑

Dk

∣
∣
∣

Q
6 C

∑

E|Dk|Q.

However, we will rather need a version of this inequality involving weak LQ norms (since
the main part of Theorem 1.4 in the case q < 2 is the inequality (1.1), controlling the weak
Lq norm of Snf). Such an inequality holds:

Theorem 2.5. For any Q ∈ (1, 2), there exists a constant C such that any sequence of

reverse martingale differences satisfies

∥
∥
∥

∑

Dk

∥
∥
∥

Q

LQ,w
6 C

∑

k

‖Dk‖QLQ,w .

For independent random variables, this follows from [Bra94, Theorem 7 on Page 39] (note
that the Lorentz space Lp,∞ is the weak Lp space). The general case of martingales can be
reduced to the case of independent random variables by [ASW11, Theorem 6.1].

2.4. Miscellaneous. We will use repeatedly the following classical lemma, which is readily
proved by a discrete integration by parts.

Lemma 2.6. Let ch be a sequence of nonnegative real numbers with
∑

h>n ch = O(n−q) for

some q > 1. Then, for all α < q, one has
∑

h>n h
αch = O(nα−q). Moreover, for all α > q,

one has
∑

h<n h
αch = O(nα−q). Finally,

∑

h<n h
qch = O(log n).

We will also use the following fact: if cn is a summable sequence, and p > 1, then

(2.3)
∣
∣
∣

∑

cnun

∣
∣
∣

p
6

(∑

cn

)p−1∑

cn|un|p.

Indeed, this follows from the convexity of x 7→ xp for
∑
cn = 1, and the general case follows.
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3. Moment bounds

Our goal in this section is to prove Theorem 1.4. We therefore fix a Young tower with
tailn = O(n−q) for some q > 1.

The convolution of two sequences (cn)n>0 and (dn)n>0 is the sequence c ⋆ d given by

(c ⋆ d)n =

n∑

i=0

cidn−i.

We will write c
(q)
n for a generic sequence of the form C/(n + 1)q, for a generic C that

can change from one occurrence to the next, even on the same line, but only finitely many
times in the whole article. We will use repeatedly the fact that the convolution of two such
sequences is bounded by a sequence of the same form. This fact reads

(3.1) (c(q) ⋆ c(q))n =

n∑

i=0

c
(q)
i c

(q)
n−i 6 c(q)n .

(Note that the sequence c
(q)
n on the right is not the same as the sequences on the left, in

accordance with the above convention.)
We wish to understand the moments of Birkhoff sums Snf . Since martingale inequalities

are very powerful, we will reduce to such martingales in the most naive way. Let Fk =
T−k(F0) (where F0 is the Borel sigma-algebra), a function is Fk-measurable if and only if
it can be written as u ◦ T k for some function u. We have

Snf =
n−1∑

k=0

(E(Snf | Fk)− E(Snf | Fk+1)) + E(Snf | Fn) =
n−1∑

k=0

Ak ◦ T k + E(Snf | Fn),

for some functions Ak that we will now describe. Note that this is a decomposition as a sum
of reverse martingale differences, hence the moments of Snf will essentially be controlled
by those of Ak.

Let L be the transfer operator, it satisfies E(u | F1) = (Lu) ◦ T . Hence, for k < n,

E(Snf | Fk)− E(Snf | Fk+1) =

(
k∑

i=0

Lif

)

◦ T k −
(

k+1∑

i=1

Lif

)

◦ T k+1,

giving

(3.2) Ak =
k∑

i=0

Lif −
(

k+1∑

i=1

Lif

)

◦ T.

Let us define a function Fk =
∑k

i=0 Lif , this is the main function to understand.

Lemma 3.1. If x is at height h and Tx ∈ ∆0, then

Fk(x)− Fk+1(Tx) = O(1 + h ∧ k).
Proof. Clearly ‖Fk − Fk+1 ◦ T‖L∞ ≤ 2(1 + k)‖f‖L∞ . We have to prove that Fk(x) −
Fk+1(Tx) = O(1 + h).

First, we estimate 1∆0Fk. We will use the formalism of renewal transfer operators intro-
duced in Paragraph 2.1. As in (2.1), we write 1∆0Ln =

∑

ℓ+b=n TℓBb, where Tℓ counts the
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returns to the basis at time ℓ, and Bb is an average over preimages at time b that did not
return to the basis in between. Write Π for the projection on constant functions on ∆0.

Proposition 2.1 shows that the operator Eℓ = Tℓ −ΠTℓΠ satisfies ‖Eℓ‖ 6 c
(q)
ℓ . We get

1∆0Fk =
k∑

i=0

1∆0Lif =
∑

ℓ+b≤k

TℓBbf =
∑

ℓ+b≤k

ΠTℓΠBbf +
∑

ℓ+b≤k

EℓBbf.

Since ‖Bbf‖ 6 c
(q)
b by (2.2) and ‖Eℓ‖ 6 c

(q)
ℓ , the second sum is uniformly O(1). For the

first sum, the function ΠTℓΠBbf is constant by definition, and can be written as tℓub(f) for
tℓ =

∫

∆0
Tℓ1/µ(∆0) and ub(f) =

∫

∆0
Bbf/µ(∆0). We have obtained

1∆0Fk =
∑

ℓ+b≤k

tℓub(f) +O(1),

where tℓ is uniformly bounded, and ub(f) is summable (with sum at most
∫
|f |).

Consider now an arbitrary x, at height h < k, and with Tx ∈ ∆0. Then Fk(x) =
Fk−h(πx) +O(h) where πx is the projection of x in the basis of the tower, i.e., the unique
preimage of x under T h. We get

Fk(x)− Fk+1(Tx) =
∑

ℓ+b≤k−h

tℓub(f)−
∑

ℓ+b≤k+1

tℓub(f) +O(1 + h)

=
∑

k−h<ℓ+b6k+1

tℓub(f) +O(1 + h).

For each b, there are at most h + 1 values of ℓ for which k − h < ℓ+ b 6 k + 1. Since tℓ is
bounded, we obtain

|Fk(x)− Fk+1(Tx)| 6 (h+ 1)
∑

b

|ub(f)|+O(1 + h) = O(1 + h). �

3.1. The case q > 2. In this paragraph, we prove Theorem 1.4 in the case q > 2. It suffices
to prove the desired estimate for p = 2q − 2, since the other estimates follow using (1.2).

We start from the decomposition

(3.3) Snf =
∑

Ak ◦ T k + E(Snf | Fn).

First, we control the last term, which is easier. Write Q = 2q − 2, we have

‖E(Snf | Fn)‖LQ =

∥
∥
∥
∥
∥

(
n∑

k=1

Lkf

)

◦ T n

∥
∥
∥
∥
∥
LQ

=

∥
∥
∥
∥
∥

n∑

k=1

Lkf

∥
∥
∥
∥
∥
LQ

6

n∑

k=1

‖Lkf‖LQ .

One can use transfer operators techniques, or argue directly as in [MN08]: since the speed
of decay of correlations against bounded functions is O(1/nq−1) by [You99], we have

∫

|Lkf |Q 6 ‖f‖Q−1
∞

∫

sgn(Lkf) · Lkf 6 C/kq−1.

Hence, ‖Lkf‖LQ 6 C/k(q−1)/Q = k−1/2, giving ‖E(Snf | Fn)‖LQ 6 Cn1/2.
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Then, we turn to the first sum
∑
Ak ◦ T k =

∑
Dk in (3.3). It is a sum of reverse

martingale differences, hence we may apply Burkholder-Rosenthal inequality, Theorem 2.4:

(3.4) E

∣
∣
∣

∑

Dk

∣
∣
∣

Q
6 C

(∑

‖E(D2
k | Fk+1)‖L∞

)Q/2
+ C

∑

‖E(|Dk|Q | Fk+1)‖L∞ .

For r ∈ {2, Q}, we have E(|Dk|r | Fk+1)(y) = L(|Ak|r)(T k+1y). Given the definition of
Ak, it satisfies Ak(x) = 0 if x is the unique preimage of Tx, i.e., if Tx 6∈ ∆0. Moreover,
Lemma 3.1 gives Ak(z) = O(1 + h ∧ k) if Tz ∈ ∆0.

Consider x ∈ ∆0, and let zα denote its preimages (with respective height hα − 1), then

L(|Ak|r)(x) =
∑

α

g(zα)|Ak(zα)|r 6 C +
∑

g(zα)(hα ∧ k)r 6 C

∫

∆0

(ϕ ∧ k)r.

We have proved that

(3.5) ‖E(|Dk|r | Fk+1)‖L∞ 6 C

∫

∆0

(ϕ ∧ k)r.

We use this estimate to estimate the two sums on the right hand side of (3.4). For r = 2,
the above integral is uniformly bounded since ϕ has a moment of order 2. Hence, the first
sum in (3.4) is bounded by nQ/2 = nq−1. For r = Q = 2q− 2, the above integral is bounded
by kq−2 thanks to Lemma 2.6. Summing over k, it follows that the second sum in (3.4) is
bounded by nq−1, as desired. �

3.2. The case q < 2. In this paragraph, we prove Theorem 1.4 in the case q ∈ (1, 2).
Again, it suffices to prove the estimate (1.1) regarding the weak q-moment, since the other
estimates follow using (1.3).

We start again from the decomposition Snf =
∑
Ak ◦ T k +E(Snf | Fn). We will rely on

the von Bahr-Esseen result for weak moments given in Theorem 2.5, for Q = q.
First, we control the last term, as above: we have ‖E(Snf | Fn)‖Lq 6

∑n
k=1‖Lkf‖Lq .

Moreover, we have as above ‖Lkf‖Lq 6 C/k(q−1)/q . Summing over k,

‖E(Snf | Fn)‖Lq 6 C
n∑

k=1

k1/q−1 6 Cn1/q.

As the weak Lq-norm is dominated by the strong Lq-norm, this is the desired control.
Now, we turn to the contribution of Ak. We want to estimate ‖Ak‖Lq,w . If Tx 6∈ ∆0, then

Ak(x) = 0. If Tx ∈ ∆0, then |Ak(x)| 6 C(1 + k ∧ h) 6 C(1 + h) by Lemma 3.1. Hence, for
s larger than a fixed constant,

µ{x : |Ak(x)| > s} 6 Cµ{y ∈ ∆0 : ϕ(y) > C−1s} = O(s−q).

This shows that ‖Ak‖Lq,w is uniformly bounded. Summing over k and using Theorem 2.5,

we get ‖∑Ak ◦ T k‖qLq,w 6 Cn, as desired. �

3.3. The case q = 2. In this paragraph, we prove Theorem 1.4 in the case q = 2. Contrary
to the previous cases, it is not sufficient to prove the result at the critical exponent p = 2,
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one should also control all p > 2. The arguments in the proof of the case q > 2 (notably
Burkholder’s inequality (3.4) combined with (3.5)) give, for a general p > 2,

(3.6) ‖Snf‖pLp 6 C

(
n−1∑

k=0

∫

∆0

(ϕ ∧ k)2
)p/2

+ C

n−1∑

k=0

∫

∆0

(ϕ ∧ k)p +
(

n∑

k=1

‖Lkf‖Lp

)p

.

First, we have
∫
|Lkf |p 6 C/k since the speed of decay of correlations is 1/k. Hence,

‖Lkf‖Lp 6 k−1/p and the last term in (3.6) is bounded by np−1.
Let us now deal with p = 2. Lemma 2.6 gives

∫

∆0
(ϕ ∧ k)2 6 log k since we are precisely

at the critical exponent for which there is an additional logarithmic factor. Summing over
k and using (3.6), we obtain ‖Snf‖2L2 6 n log n as desired.

Consider then p > 2. Again,
∫

∆0
(ϕ ∧ k)2 6 log k, hence the first sum in (3.6) gives a

contribution C(n log n)p/2, which is bounded by Cnp−1 as p/2 < p− 1. For the second sum
in (3.6), Lemma 2.6 gives

∫
(ϕ ∧ k)p 6 Ckp−2. Summing over k, we get a bound np−1. �

4. Concentration bounds

In this section, we prove Theorem 1.9 about concentration inequalities in Young towers

with tailn = O(n−q) for some q > 1. As before, we write c
(q)
n for a generic sequence that is

O(n−q).
Consider a general function K(x0, x1, . . . ) which is separately Lipschitz in each variable,

with corresponding constants Lipi(K). Fix any reference point x∗ in the space.
To study the magnitude of K(x, Tx, . . . ), the idea is to decompose it as a sum of reverse

martingale differences. Let Fk be the sigma-field generated by indices starting with k, and
write

(4.1) Kk(xk, . . . ) = E(K | Fk)(xk, . . . ) =
∑

T kx=xk

g(k)(x)K(x, . . . , T k−1x, xk, . . . ).

This function plays the role of the function Fk (defined after (3.2)) for Birkhoff sums, and
is the main object to understand.

As in the proof of Lemma 3.1, we want to express Kk(xk, . . . ), for xk ∈ ∆0, using the
transfer operator restricted to the basis, i.e., Tn. Define for i 6 k a function wi on the basis
by

wi(x) =
∑

T iy=x

g(i)(y)(K(y, Ty, . . . , T j(y)−1y, T j(y)y, . . . , T i−1y, x, x∗, . . . , x∗
︸ ︷︷ ︸

k−i−1 terms

, xk, . . . )

−K(y, Ty, . . . , T j(y)−1y, T j(y)y, x∗, . . . , x∗
︸ ︷︷ ︸

k−j(y)−1 terms

, xk, . . . ),

where for each y we define j(y) as the last time in [0, i− 1] for which T j(y)(y) ∈ ∆0. If there
is no such time, then j(y) = −1. The idea is that, for each preimage y of x under T i, we
replace its last excursion outside of ∆0 by the trivial sequence x∗, . . . , x∗.

A simple telescoping argument then gives:

Kk(xk, . . . ) =

k∑

i=0

∑

x∈∆0,T k−ix=xk

g(k−i)(x)wi(x) +K(x∗, . . . , x∗, xk, . . . ).
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Indeed, in the expression (4.1), if one starts replacing successively each excursion outside
of ∆0, one ends up adding sums of the functions wi(x), and the remaining term (where all
excursions have been replaced) is

∑

T kx=xk
g(k)(x)K(x∗, . . . , x∗, xk, . . . ), which reduces to

K(x∗, . . . , x∗, xk, . . . ) since
∑
g(k)(x) = 1 as the measure is invariant.

The above expression also reads

(4.2) Kk(xk, . . . ) =
k∑

i=0

Tk−iwi(xk) +K(x∗, . . . , x∗, xk, . . . ).

We will be able to use it since we know a lot about the operators Tn (their properties,
expressed in Proposition 2.1, were already at the heart of the proof of Lemma 3.1), but we
first need to understand wi more properly.

Lemma 4.1. We have ‖wi‖ 6
∑

a+b=i Lipa(K)c
(q)
b .

Proof. First, we control the supremum of wi. Write wi(x) =
∑

y g
(i)(y)H(y), then |H(y)| 6

∑i−1
j(y)+1 Lipℓ(K). The sum of g(i)(y) over those points with j(y) < ℓ is

∑

T i−ℓz=x g
(i−ℓ)(z),

where the sum is restricted to those points z that do not come back to the basis before time

i− ℓ. By bounded distortion, this is comparable to µ{ϕ > i− ℓ} 6 c
(q)
i−ℓ. We get

(4.3) ‖wi‖∞ 6
∑

ℓ

Lipℓ(K)c
(q)
i−ℓ.

We estimate now the Lipschitz constant of wi. Write for x, x′ ∈ ∆0

wi(x)− wi(x
′) =

∑

g(i)(y)H(y)− g(i)(y′)H(y′)

=
∑

g(i)(y)(H(y)−H(y′)) +
∑

(g(i)(y)− g(i)(y′))H(y′),

where we have paired together the preimages y and y′ of x and x′ under T i that belong to the
same cylinder of length i. For the second sum, bounded distortion gives |g(i)(y)−g(i)(y′)| 6
Cd(x, x′)g(i)(y′), hence the Lipschitz norm of this sum is at most C‖wi‖∞, which has already
been controlled in (4.3). For the first sum, we have

|H(y)−H(y′)| 6 2

i−1∑

ℓ=0

Lipℓ(K)d(T ℓy, T ℓy′) 6 2

i−1∑

ℓ=0

Lipℓ(K)Ψi−ℓ(T
ℓy)d(x, x′),

where Ψa(z) = ρCard{06t<a,T tz∈∆0}: this function measures the expansion of the map T a

applied to z, since each return to the basis gives an expansion factor of ρ−1 > 1 by definition
of the distance. Using bounded distortion, we get

|
∑

g(i)(y)(H(y)−H(y′))| 6 C

i−1∑

ℓ=0

Lipℓ(K)d(x, x′)

∫

T−(i−ℓ)∆0

Ψi−ℓ.

By [CG12, Lemma 4.4], the sequence
∫

T−n∆0
Ψn is 6 c

(q)
n . The desired bound for the

Lipschitz constant of wi follows. �

Then, we turn to the analogue of Lemma 3.1.
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Lemma 4.2. If xk is at height h and xk+1 ∈ ∆0, then

(4.4) |Kk(xk, xk+1, xk+2, . . . )−Kk+1(xk+1, xk+2, . . . )|

6

k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)

+

k∑

a=k−h+1

Lipa(K).

When h > k, the first sum vanishes, and the second one reduces to
∑k

a=0 Lipa(K) since
Lipa(K) = 0 for a < 0.

If all the Lipa(K) are of order 1 (which is the case for instance with Birkhoff sums), it is
easy to check that the expression in the lemma reduces to O(1 + h ∧ k) as in Lemma 3.1.

Proof. The case h > k is easy (just substitute each variable in the expression of Kk(xk, . . . )
with the corresponding variable in Kk+1(xk+1, . . . )), let us deal with the more interesting
case h 6 k.

We will first prove the inequality

(4.5) |Kk(xk, xk+1, xk+2, . . . )−Kk+1(xk+1, xk+2, . . . )|

6

k−h∑

a=0

Lipa(K)





k−h−a∑

b=0

c
(q)
b





k−a−b∑

j=k−h−a−b

c
(q)
j



+
k−a+1∑

b=k−h−a+1

c
(q)
b



+
k∑

a=k−h+1

Lipa(K).

We replace successively all the variables with index in (k − h, k] in the expressions of

Kk(xk, . . . ) and Kk+1(xk+1, . . . ) with x∗, introducing an error at most
∑k

a=k−h+1 Lipa(K)
that corresponds to the last term in (4.5). Letting

K̃(x0, . . . , xk−h) = K(x0, . . . , xk−h, x∗, . . . , x∗, xk+1, . . . )−K(x∗, . . . , x∗, xk+1, . . . ),

we may then work with K̃ instead of K. It satisfies Lipa(K̃) 6 Lipa(K) for a 6 k − h, and

Lipa(K̃) = 0 for a > k − h. Let wi be the corresponding functions for K̃, and let x = πxk
be the projection of xk in the basis of the tower. We get from (4.2)

K̃k(xk) = K̃k−h(x) =

k−h∑

i=0

Tk−h−iwi(x), K̃k+1(xk+1) =

k+1∑

i=0

Tk+1−iwi(xk+1).

We write Tℓ = ΠTℓΠ+Eℓ, where Π is the projection on constant functions, and ‖Eℓ‖ 6 c
(q)
ℓ

by Proposition 2.1. We have

|
k−h∑

i=0

Ek−h−iwi(x)| 6
∑

ℓ+i=k−h

‖Eℓ‖‖wi‖ 6
∑

ℓ+i=k−h

c
(q)
ℓ

∑

a+b=i

Lipa(K̃)c
(q)
b

=
∑

a+j=k−h

Lipa(K̃)(c(q) ⋆ c(q))j .

By (3.1), this is bounded by
∑

a+j=k−h Lipa(K)c
(q)
j , which is bounded by (4.5) (to see this,

in (4.5), take b = 0 in the first sum over b, and then j = k− h− a in the next sum). In the
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same way, we have

|
k+1∑

i=0

Ek+1−iwi(xk+1)| 6
∑

a+j=k+1

Lipa(K̃)c
(q)
j ,

which is again bounded by (4.5) (up to a shift of one in the indices, take b = 0 in the first
sum of (4.5) and j = k − a in the second sum).

We turn to the main terms, coming from ΠTℓΠ. We have ΠTℓΠwi = tℓui, for some

scalar sequences tℓ and ui. Moreover, ui is bounded by ‖wi‖, and |tℓ − tℓ+1| 6 c
(q)
ℓ by

Proposition 2.1. The resulting term is

|
k−h∑

i=0

tk−h−iui −
k+1∑

i=0

tk+1−iui| 6
k−h∑

i=0

|ui|
k−i∑

j=k−h−i

|tj+1 − tj|+
k+1∑

i=k−h+1

|ui|.

Bounding |ui| by
∑

a+b=i Lipa(K̃)c
(q)
b and |tj+1−tj| with c

(q)
j , we readily check that all those

terms are bounded by (4.5).
This concludes the proof of (4.5). To conclude, we should show that the coefficient of

Lipa(K) in this expression is bounded by min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)

. We have
∑∞

i=ℓ c
(q)
i 6

c
(q−1)
ℓ . In particular,

k−h−a∑

b=0

c
(q)
b





k−a−b∑

j=k−h−a−b

c
(q)
j



 6

k−h−a∑

b=0

c
(q)
b c

(q−1)
k−h−a−b = (c(q) ⋆ c(q−1))k−h−a

6 (c(q−1) ⋆ c(q−1))k−h−a 6 c
(q−1)
k−h−a,

as the sequences that are O(1/nq−1) are stable under convolution. This proves the upper

bound c
(q−1)
k−h−a. For the other one, note that

∑k−a−b
j=k−h−a−b c

(q)
j 6 (h + 1)c

(q)
j . From this

point on, one can continue the computation as above, getting in the end the bound (h +

1)c
(q)
k−h−a. �

Remark 4.3. The article [CG12] already proved concentration estimates in Young towers,
but only for q > 2. In this case, the estimates were not as good as those in Theorem 1.9.
Moreover, all the estimates started diverging when q 6 2. There are three main differences
in the current approach that make it possible to improve upon [CG12]:

• The decomposition (4.2) of Kk, where one replaces one excursion at a time in the
definition of wi, is more efficient than the corresponding decomposition of [CG12]
where one only replaces one variable at a time (this creates some useless redundancy
in the estimates, which is not a problem when q > 2 but causes divergence of the
estimates when q 6 2).

• The main difference between the current paper and [CG12] is that, in Lemma 4.2,
we compare directly Kk to Kk+1. On the contrary, in [CG12], Kk and Kk+1 are
compared to explicit integral quantities (see for instance Lemma 2.3 there). This is
more intuitive and natural, since it expresses the mixing properties of the system.
However, when q 6 2, the convergence towards these integrals is rather slow, making
again the estimates diverge. In the proof of Lemma 4.2, we do not claim that Kk is
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close to any explicit or meaningful quantity, only that it is close to
∑
tk−iui. This is

sufficient to prove that Kk is close to Kk+1 since tn is close to tn+1 by Proposition 2.1.
Both are also close to lim ti if n is large enough, and this is essentially what is used
in [CG12], but this gives a worse estimate.

• In the case q > 2, the main new ingredient compared to the techniques of [CG12] is
Lemma 4.4 below.

We can now deduce concentration bounds in the different situations we considered for
moment bounds.

4.1. The case q > 2. In this paragraph, we prove Theorem 1.9 in the case q > 2. As we
explained after the statement of this theorem, it suffices to prove the result for p = 2q − 2.

In this situation, we will use (4.4) in the form

(4.6) |Kk(xk, xk+1, . . . )−Kk+1(xk+1, . . . )| 6
k−h∑

a=0

Lipa(K)c
(q−1)
k−h−a +

k∑

a=k−h+1

Lipa(K),

i.e., we always use the same term c
(q−1)
k−h−a in the minimum in (4.4).

Let us start the proof of the theorem. The quantity K − E(K) can be decomposed
as
∑

k>0(Kk − Kk+1). Since this is a sum of reverse martingale differences, we may use
Burkholder-Rosenthal inequality (Theorem 2.4), to obtain a bound

∫

|K(x, Tx, . . . )− E(K)|2q−2 dµ(x)

6 C
(∑

‖E(D2
k | Fk+1)‖∞

)q−1
+ C

∑

‖E(|Dk|2q−2 | Fk+1)‖∞,

where Dk = Kk −Kk+1. Hence, for r ∈ {2, 2q− 2}, we should estimate ‖E(|Dk|r | Fk+1)‖∞.
If xk+1 is not in the basis of the tower, then E(|Dk|r | Fk+1)(xk+1, . . . ) = 0 and there is
nothing to do. Assume now that xk+1 is in the basis. Let zα denote its preimages, with
respective heights hα, we have

E(|Dk|r | Fk+1)(xk+1, . . . ) =
∑

g(zα)|Kk(zα, xk+1, . . . )−Kk+1(xk+1, . . . )|r.

With (4.6), we get

‖E(|Dk|r | Fk+1)‖∞ 6
∑

h>0

µ(ϕ = h+ 1)

(
k−h∑

a=0

Lipa(K)c
(q−1)
k−h−a +

k∑

a=k−h+1

Lipa(K)

)r

Using the inequality (X+Y )r 6 C(Xr+Y r) to separate the two sums, we get two different
terms. We should then sum over k, and get a bound in terms of

∑
Lipa(K)2.

First, we deal with the first sum
∑k−h

a=0 Lipa(K)c
(q−1)
k−h−a. Since the sequence c

(q−1)
n is

summable, we have by (2.3)
(

k−h∑

a=0

Lipa(K)c
(q−1)
k−h−a

)r

6 C
k−h∑

a=0

Lipa(K)rc
(q−1)
k−h−a.
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Summing over k, we get a term

∑

k

k∑

h=0

k−h∑

a=0

µ(ϕ = h+ 1)Lipa(K)rc
(q−1)
k−h−a.

Writing k = ℓ+ h, this becomes

∑

h>0

∑

ℓ>0

ℓ∑

a=0

µ(ϕ = h+ 1)Lipa(K)rc
(q−1)
ℓ−a .

The sum over h factorizes out. Then, for each a, the sum over ℓ gives a finite contri-
bution since c(q−1) is summable. We are left with

∑

a Lipa(K)r, which is bounded by
(∑

a Lipa(K)2
)r/2

as desired.

Then, we deal with the second sum
∑k

a=k−h+1 Lipa(K). Summing over k, the correspond-
ing term is

∑

k

∑

h

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)r

.

We need to treat separately the cases r = 2 and r = 2q − 2. For r = 2, we simply use
Cauchy-Schwarz inequality:

∑

k

∑

h

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)2

6
∑

k

∑

h

µ(ϕ = h+ 1)h

k∑

a=k−h+1

Lipa(K)2

=
∑

a

Lipa(K)2
∑

h

µ(ϕ = h+ 1)(h + 1)

a+h−1∑

k=a

1.

We can factorize out
∑

h µ(ϕ = h+1)h2, which is finite since q > 2, by Lemma 2.6. We are
left with C

∑

a Lipa(K)2 as desired.
For the case r = 2q − 2, we should prove an inequality

∑

k

∑

h

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)2q−2

6 C

(
∑

a

Lipa(K)2

)q−1

.

It turns out that this inequality is less elementary than the previous ones. It is given in
Lemma 4.4 below. With this lemma, the proof is complete. �

Lemma 4.4. Let q > 2. Consider a sequence an > 0 with
∑

n>N an = O(N−q). There

exists a constant C such that, for any sequence (un) ∈ ℓ2(Z),

∑

n∈Z

∑

h>0

ah

∣
∣
∣
∣
∣

n+h∑

i=n−h

ui

∣
∣
∣
∣
∣

2q−2

6 C

(
∑

n∈Z

u2n

)q−1

.

Proof. We associate to a sequence un the sequence

v(n, h) =

∑n+h
i=n−h ui

(2h + 1)1/2
.
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We consider v as a function on the space Z × N endowed with the measure ν(n, h) =
(h+ 1)q−1ah.

By Cauchy-Schwarz, the function v is bounded in L∞ by ‖u‖ℓ2. Let us now consider

its weak L2-norm. Let Mu(n) = suph

(
∑n+h

i=n−h|ui|
)

/(2h + 1) be the maximal function

associated to u. It is bounded in ℓ2 by C‖u‖ℓ2, by Theorem 2.3. Since v(n, h) 6 (2h +

1)1/2Mu(n), we have for all s > 0

ν{(n, h) : |v(n, h)| > s} 6 ν{(n, h) : (2h+ 1)1/2 > s/Mu(n)}
6
∑

n

∑

h>((s/Mu(n))2−1)/2

(h+ 1)q−1ah.

By Lemma 2.6, we have
∑

h>t(h+ 1)q−1ah 6 C/(t+ 1). Hence,

ν{(n, h) : |v(n, h)| > s} 6 C
∑

n

Mu(n)2/s2 6 Cs−2‖Mu‖2ℓ2 6 Cs−2‖u‖2ℓ2 .

This shows that v is bounded in L∞ and in weak L2 by C‖u‖ℓ2. One could deduce
boundedness in any Lp for 2 < p < ∞ by using classical interpolation arguments, but it is
simpler to use the formula (1.3): we get

(4.7)

∫

|v|p dν 6 C

∫ ‖v‖
∞

s=0
sp−1Cs−2‖u‖2ℓ2 ds 6 C‖u‖2ℓ2‖v‖

p−2
∞ 6 C‖u‖p

ℓ2
.

Taking p = 2q − 2, we get

C
(∑

u2n

)q−1
>
∑

n

∑

h

ν(n, h)|v(n, h)|2q−2 =
∑

n

∑

h

(h+ 1)q−1ah

∣
∣
∣
∣
∣

∑n+h
i=n−h ui

(2h+ 1)1/2

∣
∣
∣
∣
∣

2q−2

.

The powers of h cancel on the right, and we are left with the statement of the lemma. �

4.2. The case q < 2. In this case, it is sufficient to prove the weak moment estimate (1.4),
since it implies all the other ones thanks to (1.3). Let us for instance explain how to
get the most complicated moment estimate, for p = q. Write A =

∑
Lipi(K)q, so that

µ{|K − EK| > s} 6 CAs−q, and B =
∑

Lipi(K) > ‖K − EK‖L∞ . Then
∫

|K − EK|q = q

∫

sq−1µ{|K − EK| > s}ds 6 q

∫ B

s=0
sq−1min(1, CAs−q) ds

6 q

∫ A1/q

s=0
sq−1 ds+ q

∫ B

s=A1/q

sq−1CAs−q ds = A+ qCA(logB − logA1/q).(4.8)

This is the desired moment estimate.
Let us now start the proof of (1.4). Thanks to Proposition 2.5, the decomposition K −

EK =
∑
Dk (with Dk = Kk −Kk+1) gives

‖K − EK‖qLq,w 6 C
∑

‖Dk‖qLq,w .

We have Dk(x) = 0 if Tx 6∈ ∆0, and otherwise Lemma 4.2 gives the bound

|Dk(x)| 6
k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)

+
k∑

a=k−h+1

Lipa(K),
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where h = h(x). We should bound the weak Lq norm of both terms on the right to conclude.
Let us denote them by Uk(x) and Vk(x).

We start with Vk. Fix some s > 0, let h0(k) be minimal such that
∑k

a=k−h0+1 Lipa(K) > s.
Then

µ

{

x ∈ T−1∆0 :

k∑

a=k−h+1

Lipa(K) > s

}

= µ{x ∈ T−1∆0 : h(x) > h0}.

This measure is exactly µ{y ∈ ∆0 : ϕ(y) > h0} = O(h−q
0 ). Hence,

µ

{

x :

k∑

a=k−h+1

Lipa(K) > s

}

6 C(1 + h0)
−q

6 C(1 + h0)
−q





k∑

a=k−h0+1

Lipa(K)/s





q

6 Cs−qM(k)q,

where M(k) is the maximal function associated to Lipi(K), i.e.,

(4.9) M(k) = sup
h>0

1

2h+ 1

k+h∑

i=k−h

Lipi(K).

We have proved that ‖Vk‖qLq,w 6 CM(k)q. Summing over k, we obtain
∑

‖Vk‖qLq,w 6 C
∑

k

M(k)q 6 C
∑

Lipi(K)q,

since M is bounded in ℓq(Z) by C‖Lipi(K)‖ℓq(Z), by Theorem 2.3. This is the desired upper

bound.
We turn to Uk. We have
∑

k

‖Uk‖qLq,w 6
∑

k

‖Uk‖qLq

6
∑

k

∑

h

µ(ϕ = h+ 1)

(
k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)
)q

.

The next lemma shows that this is bounded by C
∑

Lipi(K)q (set ε = q − 1, n = k − h,
i = a and ui = Lipi(K) to reduce to this statement). This concludes the proof. �

Lemma 4.5. Let q > 1 and ε > 0. Consider a sequence an > 0 with
∑

n>N an = O(N−q).
There exists a constant C such that, for any sequence (un) ∈ ℓq(Z),

∑

n∈Z

∑

h>0

ah

∣
∣
∣
∣
∣

∑

i∈Z

ui ·min

(
h+ 1

1 + |n− i|1+ε ,
1

1 + |n− i|ε
)
∣
∣
∣
∣
∣

q

6 C
∑

n∈Z

|un|q.

Proof. We proceed as in the proof of Lemma 4.4. Define a sequence

v(n, h) =
1

(1 + h)1−ε

∑

i∈Z

ui ·min

(
h+ 1

1 + |n− i|1+ε ,
1

1 + |n− i|ε
)

.
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We consider it as a function on the space Z×N with the measure ν(n, h) = ah(1 + h)q(1−ε).
We have for any n ∈ Z

∑

i∈Z

min

(
h+ 1

1 + |n− i|1+ε ,
1

1 + |n− i|ε
)

6
∑

|m|6h

1

1 + |m|ε + (h+ 1)
∑

|m|>h

1

1 + |m|1+ε 6 C(1 + h)1−ε.

This shows that the operator A : u 7→ v is bounded from ℓ∞(Z, µ) (where µ is the counting
measure) to ℓ∞(Z× N, ν). Moreover, writing m = n− i,
∑

n,h

ν(n, h)v(n, h)

=
∑

n∈Z

∑

h>0

ah(1 + h)q(1−ε) 1

(1 + h)1−ε

∑

i∈Z

ui ·min

(
h+ 1

1 + |n− i|1+ε ,
1

1 + |n− i|ε
)

=
∑

i∈Z

ui ·
∑

h>0

ah(1 + h)(q−1)(1−ε)
∑

m∈Z

min

(
h+ 1

1 + |m|1+ε ,
1

1 + |m|ε
)

.

As we have seen above, the last sum over m is O((1 + h)1−ε). Hence, the sum over h

and m reduces to
∑

h ah(1 + h)q(1−ε), which is finite by Lemma 2.6. This shows that
‖v‖ℓ1(ν) 6 C‖u‖ℓ1(µ).

The operator A : u 7→ v is bounded from ℓr(µ) to ℓr(ν) for r = 1 and ∞. By interpolation
(see Theorem 2.2), it is also bounded from ℓq(µ) to ℓq(ν). This is the desired inequality. �

4.3. The case q = 2. In this paragraph, we prove Theorem 1.9 in the case q = 2. As we
explained after the statement of this theorem, it suffices to prove the result for p > 2. We
follow essentially the same steps as in the q > 2 case. We start with Burkholder-Rosenthal
inequality

∫

|K(x, Tx, . . . )− E(K)|p dµ(x)

6 C
(∑

‖E(D2
k | Fk+1)‖∞

)p/2
+ C

∑

‖E(|Dk|p | Fk+1)‖∞.

Moreover, for r ∈ {2, p}, we have

‖E(|Dk|r | Fk+1)‖∞ 6 C
∑

h>0

µ(ϕ = h+ 1)

(
k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)
)r

+ C
∑

h>0

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)r

.

(4.10)

Let us first consider the contribution of the first line when we sum over k. For r = 2,
Lemma 4.5 shows that the resulting term is bounded by C

∑
Lipa(K)2. Its contribution to
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Burkholder-Rosenthal inequality is therefore at most

C
(∑

Lipi(K)2
)p/2

= C
(∑

Lipi(K)2
)

·
(∑

Lipi(K)2
)p/2−1

6 C
(∑

Lipi(K)2
)(∑

Lipi(K)
)p−2

,

since
∑
x2i 6 (

∑
xi)

2. This bound is compatible with the statement of the theorem. For
r = p, we write

(
k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)
)p

6

(
k−h∑

a=0

Lipa(K)min
(

(h+ 1)c
(q)
k−h−a, c

(q−1)
k−h−a

)
)2

·
(
∑

a∈Z

Lipa(K)

)p−2

.

Using again Lemma 4.5, it follows that the contribution of this term to Burkholder-Rosenthal
inequality is at most

(∑
Lipi(K)2

)
(
∑

Lipi(K))p−2 as desired.
Let us now turn to the second line of (4.10). We define a sequence

v(k, h) =

k∑

a=k−h+1

Lipa(K)

on the space Z × N with the measure ν(k, h) = µ(ϕ = h + 1). It satisfies ‖v‖ℓ∞ 6
∑

a∈Z Lipa(K). Let us control its weak L2 norm. Let s > 0. For fixed k, let h0(k) be

the smallest h such that
∑k

a=k−h+1 Lipa(K) > s. Then

ν{(k, h) : v(k, h) > s} =
∑

k

∑

h>h0(k)

µ(ϕ = h+ 1) 6 C
∑

k

(1 + h0(k))
−2

6 C
∑

k

(1 + h0(k))
−2





k∑

a=k−h0(k)+1

Lipa(K)/s





2

6 Cs−2
∑

k

M(k)2,

whereM(k) is the maximal function associated to Lipa(K), defined in (4.9). By Theorem 2.3,
it satisfies

∑

kM(k)2 6 C
∑

Lipa(K)2. Hence, we have proved that the weak L2 norm of v

is bounded by C
(∑

Lipa(K)2
)1/2

.

Using the bounds on the weak L2 norm of v and on its L∞ norm, one deduces a bound
on its strong L2 norm as in (4.8), and on its strong Lp norm for p > 2 as in (4.7). These
bounds read:

∑

k

∑

h

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)2

6 C

(
∑

a∈Z

Lipa(K)2

)

1 + log

(
∑

a∈Z

Lipa(K)

)

− log

(
∑

a∈Z

Lipa(K)2

)1/2
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and for p > 2

∑

k

∑

h

µ(ϕ = h+ 1)

(
k∑

a=k−h+1

Lipa(K)

)p

6 C

(
∑

a∈Z

Lipa(K)2

)(
∑

a∈Z

Lipa(K)

)p−2

.

For p = 2, we deduce directly that the contribution of the second line of (4.10) to
Burkholder-Rosenthal inequality is bounded as in the statement of the theorem.

For p > 2, we also obtain that the contribution of this line, for r = p, is bounded as
desired. It remains to check the contribution of this line with r = 2. Writing ua = Lipa(K),
we should prove that

(
∑

a∈Z

u2a

)p/2


1 + log

(
∑

a∈Z

ua

)

− log

(
∑

a∈Z

u2a

)1/2




p/2

6 C

(
∑

a∈Z

u2a

)(
∑

a∈Z

ua

)p−2

.

Since this equation is homogeneous, it suffices to prove it when
∑
u2a = 1. In this case,

writing x =
∑
ua > 1, it reduces to the inequality (1 + log x)p/2 6 Cxp−2, which is trivial

on [1,∞). �

Appendix A. Speed of convergence to stable laws

In this appendix, our goal is to prove Proposition 1.3. To do so, we will estimate the
speed of convergence of the Birkhoff sums to the stable law, first on the basis ∆0 of the tower
using the Nagaev-Guivarc’h spectral method. Then, we will induce back those estimates to
the whole tower. Those ideas are classical: the first step comes from [AD01], the second
step from [MT04] (see [Gou13] for a general explanation of the method). However, since we
want quantitative estimates, we need to go beyond the results of these articles.

The standing assumptions are those of Proposition 1.3: (∆, T ) is a Young tower with
tailn = Cn−q + O(n−q−ε), for some q ∈ (1, 2) and some ε > 0. Without loss of generality,
we can assume q + ε < 2.

Let Y = ∆0 be the basis of the Young tower. We will denote by TY : Y → Y the induced
map on the basis, by µY = µ|Y /µ(Y ) the induced probability measure, by SY

n the Birkhoff
sums for TY , and by ϕ : Y → N the first return time to Y .

We define a function f on the tower, by f = 1 − 1Y /µ(Y ), so that
∫
f dµ = 0. The

induced function on the basis of the tower is by definition

fY (x) =

ϕ(x)−1
∑

k=0

f(T kx) = ϕ(x)− 1Y /µ(Y ).

Denote by L the transfer operator associated to TY , and define a family of perturbed transfer
operators Lt(u) = L(eitfY u). Their interest is that

(A.1)

∫

Y
eitS

Y
n fY dµY =

∫

Y
Ln
t 1 dµY .

Hence, spectral properties of Lt will make it possible to understand the characteristic func-
tion of SY

n fY , and therefore its closeness to the limiting stable law.

Lemma A.1. The family of operators t 7→ Lt is C1.
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Proof. We omit the standard argument which shows in fact that the family is Cq, see for
instance [AD01, Theorem 2.4]. �

The unperturbed operator L = L0 has a simple eigenvalue at 1, and the rest of its
spectrum is contained in a disk of strictly smaller radius. This spectral description persists
for small t, see [Kat66]. Denote by λt the leading eigenvalue of Lt, by Πt the corresponding
(one-dimensional) spectral projection, and by Qt = Lt − λtΠt the part of Lt corresponding
to the rest of the spectrum. All those quantities depend in a C1 way on t, by the previous
proposition. Moreover, for small t, we have

(A.2) Ln
t = λnt Πt +Qn

t , with ‖Qn
t ‖ 6 Crn,

for some fixed r < 1. The main contribution in this equation comes from the perturbed
eigenvalue λt.

Lemma A.2. We have for small t > 0

λt = 1 + ctq +O(tq+ε),

where c is a complex number with ℜc < 0.

Proof. Let ξt denote the C1 family of eigenfunctions of Lt for the eigenvalue λt, normalized
so that

∫

Y ξt dµY = 1. In particular, ξ0 ≡ 1.
Now

λt =

∫

Y
λtξt dµY =

∫

Y
Ltξt dµY =

∫

Y
Lt1 dµY +

∫

Y
(Lt − L)(ξt − 1) dµY

=

∫

Y
eitfY dµY +O(t2)

= 1 + it

∫

Y
fY dµ+

∫

Y
(eitfY − 1− itfY ) dµY +O(t2)

= 1 +

∫

Y
(eitfY − 1− itfY ) dµY +O(t2).
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Let G(s) = µY (fY < s) denote the distribution function of fY . It vanishes for s < −M ,
for M = 1− 1/µ(Y ). Then 1−G(s) = c1s

−q +A(s) where A(s) = O(s−q−ε). Hence
∫

Y
(eitfY − 1− itfY ) dµY =

∫ ∞

−M
(eits − 1− its) dG(s)

= −
∫ ∞

−M
(eits − 1− its) d(1−G(s))

= (e−itM − 1 + itM) + it

∫ ∞

−M
(eits − 1)(1 −G(s)) ds

= it

∫ ∞

1
(eits − 1)(1−G(s)) ds +O(t2)

= i

∫ ∞

t
(eiσ − 1)(1 −G(σ/t)) dσ +O(t2)

= ic1t
q

∫ ∞

t
(eiσ − 1)σ−q dσ + i

∫ ∞

t
(eiσ − 1)A(σ/t) dσ +O(t2)

= c2t
q + E1 + E2 +O(t2),

where

c2 = ic1

∫ ∞

0
(eiσ − 1)σ−q dσ, E1 = −ic1t

q

∫ t

0
(eiσ − 1)σ−q dσ,

E2 = i

∫ ∞

t
(eiσ − 1)A(σ/t) dσ.

Note that c2 is well-defined since q ∈ (1, 2). Also, |E1| ≤ c1t
q
∫ t
0 σ

−(q−1) dσ = O(t2). There
is a constant C > 0 such that |A(s)| ≤ Cs−q−ε for s ≥ 1. Hence

|E2| ≤ Ct−q−ε

∫ ∞

t
|eiσ − 1|σ−q−ε dσ 6 Ct−q−ε

∫ ∞

0
min(σ1−q−ε, σ−q−ε) dσ = O(t−q−ε),

where the integral is finite since q + ε ∈ (1, 2). �

Let ZY be the real probability distribution whose characteristic function is given for t > 0
by

E(eitZY ) = eict
q
,

where c is given by Lemma A.2. It is a totally asymmetric stable law of index q. We can
now estimate the speed of convergence of SY

n fY to ZY :

Proposition A.3. There exists C > 0 such that for any n > 0 and for any s ∈ R,
∣
∣
∣µY {x : SY

n fY (x)/n
1/q > s} − P(ZY > s)

∣
∣
∣ 6 Cn−ε/q.

In particular, we recover the (already known) convergence of SY
n fY /n

1/q to ZY , the
novelty being the control on the speed of convergence. Below, in Proposition A.4 and
Theorem A.5, we will also recover known stable limits, with additional controls on the
speed of convergence.
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Proof. The quantity to estimate is the L∞-norm of the difference between the distribution
functions of SY

n fY /n
1/q and ZY . Berry-Esseen’s lemma (see for instance [Fel66, Lemma

XVI.3.2]) ensures that, for any M > 0, this quantity is bounded by

(A.3) C

∫ M

0

|ϕn(t)− ψ(t)|
t

dt+
C

M

where C is a universal constant, and ϕn and ψ denote respectively the characteristic func-
tions of SY

n fY /n
1/q and ZY . We will estimate this integral, taking M = Mn = α0n

1/q for
some suitably small α0.

First, for t < 1/n, we have

|ϕn(t)− 1| = |E(eitSY
n fY /n1/q − 1)| 6 t

∫

|SY
n fY |/n1/q 6 Ctn1−1/q.

In the same way, |ψ(t)− 1| 6 Ctq. Hence,
∫ 1/n

0

|ϕn(t)− ψ(t)|
t

6 Cn−1/q + Cn−q 6 Cn−1/q.

Now, we turn to the interval t ∈ [1/n,Mn]. Combining the formula (A.1) for ϕn and the
spectral expansion (A.2) of Ln

t , we get

ϕn(t) = λ(t/n1/q)nu(t/n1/q) + rn(t/n
1/q),

where rn is exponentially small, u is a C1 function close to 0 and the asymptotic expansion
of λ is given in Lemma A.2. The contribution of rn to the integral (A.3) is exponentially

small (this is why we had to discard the interval [0, 1/n]). We can write λ(s) = ecs
q+B(s)

where B(s) = O(sq+ε), by Lemma A.2. Hence,

λ(t/n1/q)n = en(ct
q/n+B(t/n1/q)) = ect

q
enB(t/n1/q) = ψ(t)enB(t/n1/q ).

The remaining part of the integral (A.3) can be written as

∫ Mn

1/n

|ψ(t)enB(t/n1/q )u(t/n1/q)− ψ(t)|
t

dt

6

∫ Mn

0

∣
∣
∣ψ(t)enB(t/n1/q )

∣
∣
∣
|u(t/n1/q)− 1|

t
dt+

∫ Mn

0
|ψ(t)| |e

nB(t/n1/q ) − 1|
t

dt =: I1 + I2.

In I1, we have
nB(t/n1/q)

tq
6 C(t/n1/q)q+ε−q

6 Cαε
0.

Hence,
∣
∣
∣ψ(t)enB(t/n1/q )

∣
∣
∣ 6 eℜ(c)tqeCαε

0t
q
. If α0 is small enough, this is bounded by e−atq , for

some a > 0. Since the function u is C1 with u(0) = 1, it follows that

I1 6 C

∫ Mn

0
e−atqn−1/q dt 6 Cn−1/q.

Finally, in I2, we use the inequality |es − 1| 6 |s|e|s|, to get a bound

I2 6

∫ Mn

0

∣
∣
∣ψ(t)en|B(t/n1/q)|

∣
∣
∣
n|B(t/n1/q)|

t
dt.
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As above, the factor
∣
∣
∣ψ(t)en|B(t/n1/q)|

∣
∣
∣ is bounded by e−atq . Moreover, the second factor is

bounded by tq+ε−1n−ε/q. This gives I2 6 Cn−ε/q.
Finally, we obtain a bound for (A.3) of the form Cn−1/q +Cn−ε/q, which is bounded by

Cn−ε/q as ε < 2− q < 1. �

We can then lift the above bound to the original Birkhoff sums Snf . Let Z = µ(Y )1/qZY ,
it is again a (completely asymmetric) stable law of index q.

Proposition A.4. Let δ = min((q − 1)/(1 + 2q2), ε/q) > 0. There exists C > 0 such that

for any n > 0 and for any s ∈ R,
∣
∣
∣µY {x : Snf(x)/n

1/q > s} − P(Z > s)
∣
∣
∣ 6 Cn−δ.

Proof. For x ∈ Y , the Birkhoff sums Snf(x) and SY
nµ(Y )fY (x) should be close (since a return

to Y takes on average 1/µ(Y ) iterates of T , both sums involve roughly the same number of

iterations of T ), and we know that SY
nµ(Y )fY (x)/(nµ(Y ))1/q is close to ZY in distribution.

(We write nµ(Y ) instead of its integer part for notational simplicity.) The result follows if
we can show that the different errors are suitably small.

Define a function H on ∆ as follows: if x is at height i (i.e., it belongs to ∆α,i for

some α), let πx = T−ix be its unique preimage in the basis, and let H(x) =
∑i−1

j=0 f(T
jx).

Let N(n, x) denote the number of returns to Y of a point x ∈ Y before time n. We get
Snf(x) = SY

N(n,x)fY (x) + H(T nx). We expect N(n, x) to be close to nµ(Y ), hence we

decompose further as

Snf(x) = SY
nµ(Y )fY (x) + (SY

N(n,x)fY (x)− SY
nµ(Y )fY (x)) +H(T nx)

= SY
nµ(Y )fY (x) + En(x) + Fn(x).

Suppose that, for un = n−δ for some δ > 0, we have

(A.4) µY {|En|/n1/q > un} 6 Cun, µY {|Fn|/n1/q > un} 6 Cun.

We deduce from the above equation that

µY {Snf/n1/q > s} 6 µY {SY
nµ(Y )fY /n

1/q > s− 2un}+ 2Cun.

By Proposition A.3, this is bounded by

P(µ(Y )1/qZY > s− 2un) + Cn−ε/q + 2Cun.

As ZY has a bounded density, the probability that µ(Y )1/qZY belongs to the interval [s −
2un, s) is bounded by Cun. Finally, we obtain

µY {Snf/n1/q > s} 6 P(µ(Y )1/qZY > s) + Cn−ε/q + Cun.

The lower bound is similar, and we obtain the conclusion of the proposition.
It remains to prove (A.4). We first deal with the bound involving Fn. We have

µ(Fn > unn
1/q) = µ(H ◦ T n

> unn
1/q) = µ(H > unn

1/q).
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The function H can only be > A on the set of points with height at least A. The set of
points with height i has measure taili+1 ∼ Ci−q, hence µ(H > A) 6 CA−q+1. We get

µ(Fn > unn
1/q) 6 C(unn

1/q)−(q−1).

This is bounded by Cun if un = n−δ with δ 6 (q − 1)/q2.
We turn to En. Let Mn = nr, for some r ∈ (1/q, 1). We have

{En > unn
1/q} ⊂ {En(x) > unn

1/q, |N(n, x)−nµ(Y )| < Mn}∪{|N(n, x)−nµ(Y )| >Mn}.

In the first set, as SY
N(n,x)fY (x) and SY

nµ(Y )fY (x) are separated by unn
1/q, one of them is

distant from SY
nµ(Y )−Mn

fY (x) by at least unn
1/q/2. Hence, the first set is included in

{

max
06k62Mn

|SY
nµ(Y )−Mn+kfY (x)− SY

nµ(Y )−Mn
fY (x)| > unn

1/q/2

}

.

By the invariance of the measure µY under TY , the measure of this set is

µY

{

max
06k62Mn

|SY
k fY | > unn

1/q/2

}

.

The sequence SY
i fY /i

1/q converges in distribution, but more is true: It follows from [CG07,
Lemma 7.1 and proof of Theorem 2.10] that this sequence remains bounded in L1, and that
the weak L1 norm of the corresponding maxima also remain bounded in L1. Hence, the

above equation is bounded by CM
1/q
n /(unn

1/q). This is bounded by un if un = n−δ with
δ 6 (1− r)/(2q).

Finally, if |N(n, x) − nµ(Y )| > Mn, then either N(n, x) > nµ(Y ) +Mn, or N(n, x) 6

nµ(Y ) −Mn. In the first case, SY
nµ(Y )+Mn

ϕY 6 n, i.e., Snµ(Y )+MnfY 6 −Mn/µ(Y ). By

Proposition A.3, this can only happen with probability P(ZY 6 −cMnµ(Y )/n1/q)+Cn−ε/q.
The stable law ZY has tails of order q, i.e., P(|ZY | > s) 6 Cs−q. Hence, this is bounded by
un = n−δ if δ 6 min(q(r − 1/q), ε/q). The second case is handled similarly.

We have proved that, if δ is small enough, then (A.4) holds. More specifically, we can
choose r so that q(r−1/q) = (1−r)/2q, i.e., r = (1+2q)/(1+2q2). The resulting constraints
on δ are

δ 6 min((q − 1)/q2, (q − 1)/(1 + 2q2), ε/q).

The first constraint can be removed since it is implied by the second one. �

We can now conclude the proof of Proposition 1.3. The probability distribution Z has
heavy tails, since it is a stable law of index q: there exists c > 0 such that, for all s > 1,
we have P(Z > s) > cs−q. It follows from Proposition A.4 that µY {Snf/n1/q > s} >

cs−q −Cn−δ. This is > cs−q/2 if Cn−δ 6 cs−q/2, which holds for s ∈ [1, nr] if r < δ/q and

n is large enough. In this range, it follows that µ{Snf/n1/q > s} > c′s−q.
Using (1.3) for the first equality, we have
∫

|Snf/n1/q|q = q

∫ ∞

s=0
sq−1µ

{

|Snf/n1/q| > s
}

ds > q

∫ nr

s=1
sq−1c′s−q ds = c′qr log n.

This is the desired lower bound. �
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One can also deduce from Proposition A.4 a speed of convergence towards the stable law
Z on the whole space (∆, µ). Although this is not needed for Proposition 1.3, we include it
for completeness:

Theorem A.5. Let δ = min((q − 1)/(1 + 2q2), ε/q). There exists C > 0 such that for any

n > 0 and for any s ∈ R,
∣
∣
∣µ{x : Snf(x)/n

1/q > s} − P(Z > s)
∣
∣
∣ 6 Cn−δ.

Proof. Consider a set ∆α,i, with its renormalized probability measure µα,i = µ|∆α,i
/µ(∆α,i).

This measure is sent by T hα−i
∗ to a measure on Y , which is equivalent to µY , with a den-

sity bounded from above and from below, and with uniformly bounded Lipschitz constant.
Proposition A.3 still works for this measure, with uniform constants, since all we need to
apply the spectral argument is that the density is Lipschitz. It follows that Proposition A.4
also works for these measures. Adding the additional error coming from the hα − i first
steps needed to reach Y (bounded by (hα − i)/n1/q), we deduce: for n > hα − i,
∣
∣
∣µα,i{x ∈ ∆α,i : Snf(x)/n

1/q > s} − P(Z > s)
∣
∣
∣ 6 C(n− (hα − i))−δ + C(hα − i)/n1/q.

Let Λk denote the set of points in ∆ that enter Y after exactly k steps. Multiplying the
above inequality by µ(∆α,i) and summing over (α, i), we obtain:

∣
∣
∣µ{x ∈ ∆ : Snf(x)/n

1/q > s} − P(Z > s)
∣
∣
∣

6 C
∑

k<n

µ(Λk)min((n− k)−δ + k/n1/q, 1) +
∑

k>n

µ(Λk).

We have µ(Λk) = tailk+1 ∼ Ck−q. Splitting the above sum into k 6 n1/q and k > n1/q, we
get the bound

C
∑

k6n1/q

k−q(n−δ + k/n1/q) + C
∑

k>n1/q

k−q 6 Cn−δ + Cn(2−q)/q/n1/q + Cn(1−q)/q.

This is bounded by Cn−δ′ for δ′ = min(δ, 1 − 1/q) = δ. �
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