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Institut de Mathématiques de Jussieu - Paris Rive Gauche, Université Paris
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Abstract. The wavefront set provides a precise description of the singularities
of a distribution. Because of its ability to control the product of distributions, the
wavefront set was a key element of recent progress in renormalized quantum field
theory in curved spacetime, quantum gravity, the discussion of time machines or
quantum energy inequalitites. However, the wavefront set is a somewhat subtle
concept whose standard definition is not easy to grasp. This paper is a step
by step introduction to the wavefront set, with examples and motivation. Many
different definitions and new interpretations of the wavefront set are presented.
Some of them involve a Radon transform.
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1. Introduction

Feynman propagators are distributions, and Stueckelberg realized very early that
renormalization was essentially the problem of defining a product of distributions [1, 2,
3]. This point of view was clarified by Bogoliubov, Shirkov, Epstein and Glaser [4, 5, 6]
but was almost forgotten.

In a ground-breaking paper [7], Radzikowski showed that the wavefront set of a
distribution was a crucial concept to define quantum fields in curved spacetime. This
idea was fully developed into a renormalized scalar field theory in curved spacetimes by
Brunetti, Fredenhagen [8], Hollands andWald [9]. This approach was rapidly extended
to the case of Dirac fields [10, 11, 12, 13, 14, 15, 16], to gauge fields [17, 18, 19] and
even to the quantization of gravitation [20].

This tremendous progress was made possible by a complete reformulation of
quantum field theory, where the wavefront set of distributions plays a central role,
for example to determine the algebra of microcausal functions and to define a spectral
condition for time-ordered products and quantum states [21, 22, 23, 24]. The wavefront
set was also a decisive tool to discuss the existence of time-machine spacetimes [25],
quantum energy inequalities [26] and cosmological models [27].

Until the early 90s, the wavefront set was rarely used to solve physical problems.
We only know of a few works in crystal optics [28, 29] and quantum field theory on
curved spacetimes [30, 31]. This is probably due to the fact that this concept is not
familiar to most physicists and not easy to grasp. But now, the wavefront set is here
to stay and we think that a smooth and physically motivated introduction to it is
worthwhile. This is the purpose of the present paper.

There are textbook descriptions of the wavefront set [32, 33, 34, 35, 36, 37, 38,
39, 40, 41], but they do not give any clue on its physical meaning and advanced
textbooks are notoriously laconic (the outstanding exception being the book by
Gregory Eskin [40]).

The main use of the wavefront set in quantum field theory is to provide a condition
for the product of distributions. Indeed, the Feynman propagator is a distribution and
the products of propagators present in a Feynman diagrams are not well defined. The
wavefront set gives a precise description of the region of spacetime where the product
is well defined and the value of the Feynman diagram on the whole spacetime is then
obtained by an extension procedure [8].

After this introduction, we discuss in simple terms the problem of the
multiplication of one-dimensional distributions. This elementary example reveals a
natural condition for two distributions to be multiplied and this condition leads to the
definition of the wavefront set. After giving elementary examples of wavefront sets,
we discuss in detail the wavefront set of the characteristic function of a domain Ω in
the plane (i.e. a function which is equal to 1 on Ω to 0 outside it). To bring a physical
feel of the concept, we give two new characterizations of the wavefront set: the first
one uses a Radon transform, the second one counts the number of intersections of
straight lines with the boundary of Ω. These two characterizations do not employ
any Fourier transform. The next section explores the wavefront set of a distribution
defined by an oscillatory integral. This technique is crucial to calculate the wavefront
set of the Wightman and Feynman propagators in quantum field theory. The main
properties of the wavefront set are listed without proof. The last section enumerates
other definitions of the wavefront set.
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2. Multiplication of distributions

We shall introduce the wavefront set as a condition required to multiply distributions.
We first recall that a distribution u ∈ D′(Rn) is a continuous linear map from the set of
smooth compactly supported functions D(Rn) to the complex numbers, and we denote
u(f) by 〈u, f〉. For example, if δ is the Dirac delta distribution, then 〈δ, f〉 = f(0). If g
is a locally integrable function, then we can consider it as a distribution by associating
to g the distribution 〈ug, f〉 =

∫
g(x)f(x)dx (for a nice introduction to distributions

see for example [36]).
It is well known that distributions can generally not be multiplied [42]. The first

reason is the very definition of distributions as objects which generalize the functions
but for which the ‘value at some point’ has no sense in general. But, motivated
by questions in theoretical physics (e.g. quantum field theory), we may ask under
which circumstances it is possible to extend the product of ordinary functions to
distributions. In most cases this is just impossible. For instance we cannot make
sense of the square of δ: a simple way to convince yourself of that is to study the
family of functions χε : R −→ R for ε > 0 defined by χε(x) = 1/ε if |x| ≤ ε/2 and

χε(x) = 0 otherwise. For any f ∈ D(R) we have
∫
R
χε(x)f(x)dx = ε−1

∫ ε/2
−ε/2 f(x)dx =

ε−1(εf(0) + O(ε3)) and limε→0 χε = δ. However, the square of χε does not converge

to a distribution:
∫
R
χ2
ε(x)f(x)dx = ε−2

∫ ε/2
−ε/2 f(x)dx = ε−2(εf(0) + O(ε3)) diverges

for ε→ 0.
In some other cases it is possible to define a product, but we loose some good

properties. Consider the example of the Heaviside step function H , which is defined
by H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0. Its associated distribution, denoted
by θ, is

〈θ, f〉 =

∫ ∞

−∞

H(x)f(x)dx =

∫ ∞

0

f(x)dx.

The function H can obviously be multiplied with itself and Hn = H for any integer
n > 0. As we shall see, it is possible to define a product of distributions such that
θn = θ as a distribution. But then, we loose the compatibility of the product with
the Leibniz rule because, by taking the derivative of both sides we would obtain
nθn−1θ′ = θ′. The identity θ′ = δ and θn−1 = θ would give us nθδ = δ for all integers
n > 1. Since the left hand side depends linearly on n and the right hand side does
not and is not equal to zero, we reach a contradiction.

The Leibniz rule is essential for applications in mathematical physics and we shall
define a product of distributions obeying the Leibniz rule. We first enumerate some
conditions under which distributions can be safely multiplied.

2.1. In which cases can we multiply distributions ?

2.1.1. A distribution times a smooth function The product of distributions is well
defined when one of the two distributions is a smooth function. Indeed, consider a
distribution u ∈ D′(Rn) and a smooth function φ ∈ C∞(Rn). Then, for all test
function f ∈ D(Rn) we can define the product of u and φ by 〈uφ, f〉 = 〈u, φf〉.

2.1.2. Distributions with disjoints singular supports We can also define the product
of two distributions when the singularities of the distributions are disjoint. To make
this more precise, we recall that the support of a function f , denoted by supp f , is the
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closure of the set of points where the function is not zero [32, p. 14]. For example, the
support of the Heaviside function is suppH = [0,+∞[. Note that although a function
is zero outside its support, it can also vanish at isolated points of its support, because
of the closure condition of the definition. For example the support of the sine function
is R although sin(nπ) = 0.

However, the support of a distribution cannot be defined as the support of a
function because the value of a distribution at a point is generally not defined. Hence
we define the support by duality: we say that the point x does not belong to the
support of the distribution u if and only if there is an open neighborhood U of x
such that u is zero on U , in other words if 〈u, f〉 = 0 for all test functions f whose
support is contained in U [36, p. 12]. For example supp δ = {0} and supp θ = [0,+∞].
Similarly, we can define the singular support of a distribution u ∈ D′(Rn), denoted
by sing suppu, by saying that x /∈ sing suppu if and only if there is a neighborhood
U of x such that the restriction of u to U is a smooth function, in other words if
there is a smooth function φ ∈ C∞(U) such that 〈u, f〉 = 〈φ, f〉 =

∫
φ(x)f(x)dx

for all test functions f supported on U [36, p. 108]. For example sing supp δ = {0},
sing supp θ = {0}.

A more elaborate example is the distribution u ∈ D′(R), defined by: u(x) =
(x+ i0+)−1, i.e. u is the limit in D′(R) of uε(x) := (x+ iǫ)−1, when ε > 0 and ε→ 0,
this means that [43, § 2]:

〈u, f〉 = lim
ǫ→0+

∫ ∞

−∞

f(x)dx

x+ iǫ
= lim

ǫ→0+

∫ ∞

ǫ

f(x)− f(−x)

x
dx− iπf(0).

If y 6= 0, consider the open set U = (y − |y|/2, y + |y|/2). Take a smooth function χ
such that χ(x) = 1 for |x − y| < 3|y|/4 and χ(x) = 0 for |x − y| > 7|y|/8. Then, for
any f supported on U we have f(0) = 0 and f = fχ. Thus,

〈u, f〉 = 〈u, χf〉 =

∫ ∞

|y|/8

χ(x)f(x) − χ(−x)f(−x)

x
dx

=

∫ ∞

−∞

χ(x)f(x)

x
dx = 〈φ, f〉,

where φ(x) = χ(x)/x is smooth because χ(x) = 0 for |x| < |y|/8 (see fig. 1). As a
consequence, every y 6= 0 is not in the singular spectrum of u and sing suppu = {0}
because the imaginary part of u is proportional to a Dirac δ distribution.

We can now state an important theorem [32, p. 55].

Theorem 1. If u and v are two distributions in D′(Rn) such that sing suppu ∩
sing supp v = ∅, then the product uv is well defined.

Proof. We first notice that, if f ∈ D(Rn) is supported outside the singular support of
v, then vf is smooth and we can define the product by 〈uv, f〉 = 〈u, vf〉. Similary,
〈uv, f〉 = 〈v, uf〉 if f is supported outside the singular support of u. This definition of
uv extends to all test functions f by using a smooth function χ which is equal to zero
on a neighborhood of the singular support of u and equal to one on a neighborhood
of the singular support of v. Then 〈uv, f〉 = 〈v, uχf〉 + 〈u, v(1 − χ)f〉. This product
is associative and commutative [32, p. 55].

2.1.3. The singular oscillations of the distributions are transversal Consider the two
distributions u = δ⊗1 and v = 1⊗δ in D′(R2), i.e., ∀ϕ ∈ D(R2), 〈u, ϕ〉 =

∫
R
ϕ(0, y)dy

and 〈v, ϕ〉 =
∫
R
ϕ(x, 0)dx. Then we can define their product by uv = (δ⊗ 1)(1⊗ δ) :=



Introduction to the wavefront set 5

y

Χ

U
0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. In this figure we take y = 0.8, the open set is U = (0.4, 1.2) and the
smooth function χ is supported on (0.1, 1.5).

δ ⊗ δ = δ(2), i.e. 〈uv, ϕ〉 = ϕ(0, 0), since 〈uv, ϕ〉 =
∫ ∫

u(x)v(y)ϕ(x, y)dxdy =∫
u(x)

(∫
v(y)ϕ(x, y)dy

)
dx =

∫
u(x)ϕ(x, 0)dx = ϕ(0, 0) by the Fubini theorem for

distributions. Here u and v are singular on the lines {x = 0} and {y = 0} respectively,
which have a non empty intersection {(0, 0)}. However the oscillations of both
distributions are orthogonal at that point, so that this definition makes sense. But
actually the orthogonality is not essential and, as we will see, the important point is
the transversality.

Indeed we can extend this example to measures which are supported by non
orthogonal lines: let α : R2 −→ R2 be a linear invertible map and set α = (α1, α2)
and uα := α∗u = u ◦ α and vα := α∗v = v ◦ α, where ∀w ∈ D′(R2), ∀ϕ ∈ D(R2),
〈α∗w,ϕ〉 := (detα)−1〈w,ϕ ◦ α−1〉. These distributions are well-defined and they are
singular on the line of equation α1 = 0 and α2 = 0 respectively. Moreover we can
define uαvα by setting uαvα := α∗(uv) = α∗(δ(2)). Hence here uαvα = (detα)−1δ(2)

and we see that the product makes sense as long as detα 6= 0, which means that the
singular supports of uα and vα are transversal.

2.1.4. The singularities of the distributions are transversal in the complex world This
last case looks as the most mysterious at first glance and concerns complex valued
distributions. Consider the distribution u(x) = 1/(x + i0+) defined previously, i.e.
the limit of uǫ(x) = 1/(x + iε) = x

x2+ε2 − iε
x2+ε2 when ε > 0 and ε → 0. (Hence

u = pv( 1x )− iπδ0.) Observe that (uε)
′ = −(uε)

2, ∀ε > 0. Thus since (uε)
′ converges

to u′ in D′(R), we can set u2 := −u′. Moreover since any polynomial relation in uε and
its derivatives which follows from Leibniz rule is satisfied (uε being a smooth function),
the same holds for u. One can define similarly the square of u(x) = 1/(x − i0+).
However this recipe fails for defining the product of u by u.

A similar mechanism works for making sense of the square of the Wightman
function (see Section 6). One way to understand what’s happening is to remark that
we multiply distributions which are boundary values of holomorphic functions on the
same domain.

In order to really understand all these examples and go beyond, we need to revisit
them by using refined tools such as: the Radon transform and the Fourier transform.
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This will lead us to Hörmander’s definition of wavefront sets.

2.2. The product of distributions by using Fourier transform

We remark that the Fourier transform of a product of distributions (when it is
defined) is the convolution of the Fourier transforms of these distributions [36, p. 102]:
ûv = û ⋆ v̂, if it exists. Therefore, we can define the product of two distributions
u and v as the inverse Fourier transform of û ⋆ v̂. However, this definition, which
requires the Fourier transforms of u and v to be defined and their convolution product
to make sense, can be improved. Indeed it does not take into account the fact that
the product of two distributions is local, i.e. that its definition on the neighbhorhood
of a point depends only on the restriction of the distributions on that neighborhood.
Therefore, we can localize the distributions by multiplying them with a test function:
if u ∈ D′(U) and f ∈ D(U), then fu is a distribution with compact support in U
and we can extend it to a distribution defined on R

n by setting it to equal to zero
outside U . Let us still denote by fu this compactly supported distribution on Rn.

It has a Fourier transform f̂u(k) which is an entire analytic function of k by the
Paley–Wiener–Schwartz Theorem.

Following the physicist’s convention [44],[45, p. 32], we define the Fourier
transform of u by

F(u)(k) = û(k) =

∫

Rn

dxeik·xu(x),

where k ·x =
∑

i kix
i (we could interpret this quantity as an Euclidean scalar product

between two vectors in Rn; however as we will see in Section 6 it is better to understand
k as a covector and the product k·x as a duality product, this is the reason for the lower
indices used for the coordinates of k and the upper indices used for the coordinates of
x). More rigorously, the above definition applies to functions f of rapid decrease and,

for a tempered distribution u, the Fourier transform is defined by 〈û, f〉 = 〈u, f̂〉. The
inverse Fourier transform is

u(x) =

∫
dk

(2π)n
e−ik·xû(k),

where n is the dimension of spacetime. The same convention was used, for example,
by Franco and Acebal [46]. Note the relation between this Fourier transform
and the one used in other references: û(k) = FH(u)(−k) [32, 47], or û(k) =
(2π)n/2FRS(u)(−k) [35, 39, 41].

We can now give a definition of the product of two distributions. Note that there
are alternative definitions, under different hypotheses (and we will meet another one
later on). For a general overwiew about the existing options, see [48, 49].

Definition 2. Let u and v in D′(Rn). We say that w ∈ D′(Rn) is the product of u
and v if and only if, for each x ∈ Rn, there exists some f ∈ D(Rn), with f = 1 near
x, so that for each k ∈ Rn the integral

f̂2w(k) = (f̂u ⋆ f̂v)(k) =
1

(2π)n

∫
f̂u(q)f̂ v(k − q)dq, (1)

is absolutely convergent.

When it exists, this product has many desirable properties: it is unique,
commutative, associative (when all intermediate products are defined) and it coincides
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with the product of Theorem 1 when the singular supports of u and v are disjoint [35,
p. 90].

Let us consider some examples.

Example 3. If u = v = δ, the product is not defined.

Proof. For any test function f satisfying the hypothesis of the definition, fδ(x) =

f(0)δ(x) = δ(x) and f̂ δ(k) = 1, so that
∫
f̂ δ(q)f̂ δ(k − q)dq =

∫
dq, which is not

absolutely convergent.

Example 4. If u = v = θ, the product is well defined.

Proof. For any f ∈ D(R), f̂ θ(k) =
∫∞

0 eikxf(x)dx satisfies the uniform bounded

|f̂ θ(k)| ≤ ‖f‖L1 :=
∫
R
|f(x)|dx. Moreover an integration by part gives us also

f̂ θ(k) = i
k [f(0) + g(k)] with g(k) :=

∫∞

0 eikxf ′(x)dx and we thus have the uniform

bound |f̂ θ(k)| ≤ 1
|k| (|f(0)| + ‖f ′‖L1). Hence, for any k ∈ R, |f̂ θ(k)| 6 C(1 + |k|)−1

for C = ‖f ′‖L1 + ‖f‖L1 + |f(0)| and the integral defining (f̂u ⋆ f̂v)(k) is absolutely
convergent because

∫

R

∣∣∣f̂ θ(q)f̂ θ(k − q)
∣∣∣ dq ≤

∫

R

C2dq

(|k − q|+ 1)(|q|+ 1)
≤ C̃

∫

R

dq

(|q|+ 1)2
,

where C̃ = C2 supq
(|q|+1)

(|k−q|+1) is finite.

Example 5. If u(x) = v(x) = 1/(x+ i0+), the product exists.

Proof. By contour integration, û(k) = −2iπθ(−k). Thus,

f̂u(k) =
1

2π

∫

R

dqf̂(q)û(k − q) = −i

∫ ∞

k

f̂(q)dq,

tends to −2πif(0) = −2πi for k → −∞.
To show that the integral in eq. (1) is absolutely convergent, we define the

smooth function F (k) =
∫ +∞

k f̂(q)dq. The Fourier transform of a test function f

is fast decreasing: for any integer N , there is a constant CN for which |f̂(q)| ≤
CN (1 + |q|)−N [32, p. 252]. Thus, for k ≥ 0

|F (k)| ≤ CN

∫ ∞

k

(1 + q)−Ndq =
CN
N − 1

(1 + k)1−N ,

is fast decreasing and for any k ∈ R

|F (k)| ≤ CN

∫ ∞

−∞

(1 + |q|)−Ndq =
2CN
N − 1

.

Therefore, the right hand side of eq. (1) can be written−(2π)−1(
∫ k
−∞ +

∫ 0

k +
∫ +∞

0 )F (q)F (k−

q)dq. The first integral is absolutely convergent because |F (q)F (k − q)| ≤ 2C2
N (N −

1)−2(1 + |k − q|)1−N , the second because the integrand is smooth and the domain is
finite and the third integral because |F (q)F (k − q)| ≤ 2C2

N (N − 1)−2(1 + q)1−N .
To compute the product w = u2 we take f = 1 and we calculate directly

û2(k) =
1

2π

∫

R

û(q)û(k − q)dq = −2π

∫

R

θ(−q)θ(q − k) = 2πkθ(−k).
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Note that the Fourier transform of the derivative of a distribution v is given by

v̂′(k) = −ikv̂(k). Thus we recover the relation û2 = −û′ i.e. u(x)2 = (x + i0+)−2 =
− d
dx(x+ i0+)−1.

Example 6. If u(x) = 1/(x+ i0+) and v(x) = 1/(x− i0+), the product does not exist.

Proof. We have û(k) = −2iπθ(−k) and v̂(k) = 2iπθ(k). Thus,

f̂ v(k) =
1

2π

∫
dqf̂(q)v̂(k − q) = i

∫ k

−∞

f̂(q)dq,

which decreases fast for k → −∞ and tends to 2πif(0) = 2πi for k → +∞. We define

G(k) =
∫ k
−∞

f̂(q)dq and recall that F (k) =
∫ +∞

k
f̂(q)dq so that F + G = 2π. The

right hand side of eq. (1) can be written as the limit for M → ∞ of (2π)−1IM (k) with

IM (k) =

∫ ∞

−M

F (q)G(k − q)dq

= 2π

∫ ∞

−M

F (q)dq −

∫ ∞

−M

F (q)F (k − q)dq.

We saw in the previous example that the second term is absolutely convergent and for
the first term we use F = 2π −G to write

∫ ∞

−M

F (q)dq =

∫ ∞

0

F (q)dq + 2π

∫ 0

−M

dq −

∫ 0

−M

G(q)dq.

The decay properties of F and G imply that the first and third terms are absolutely
convergent, but the second term is 2πM which diverges forM → ∞. Thus, there is no
test function f with f(0) = 1 such that IM (k) converges: the product of distributions
does not exist.

In example 5, the distribution u2 was calculated without using the localizing test
function f . In general this is not possible. For example, consider

Example 7.

u(x) =
1

x+ i0+
+

1

x+ a− i0+
,

with a 6= 0. Then, u2 exists.

Indeed, denote by u1 and u2 the two terms on the right hand side. We showed
that u21 exists and the same reasoning implies that u22 exists. The cross term u1u2
exists because the singular support of u1, which is {0}, is disjoint from the singular
support of u2, which is {−a}. Thus, u2 exists although the Fourier transform of u (i.e.
û(k) = −2iπθ(−k)+ 2iπe−ikaθ(k)) is slowly decreasing in both directions. Therefore,
the role of the localizing test function f is not only to make the Fourier transform
of fu exist (even when the Fourier transform of u does not), but also to isolate the
singularities of u. In example 7, the two singular points of u are x = 0 and x = −a.
To localize the distribution around x = 0, we multiply u by a smooth function f such

that f(0) = 1 and f(x) = 0 for |x| > |a|/2, so that f̂u(k) = −i
∫∞

k
f̂(q)dq is fast

decreasing in the direction of k > 0 because the contribution of 1/(x + a − i0+) is
eliminated. Conversely, if we multiply the distribution by a smooth function g such

that g(−a) = 1 and g(x) = 0 for |x + a| > |a|/2, then ĝu(k) = i
∫ k
−∞ ĝ(q)dq, which is

fast decreasing in the direction k < 0.
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2.2.1. Discussion In the previous examples, we saw that the calculation of the
product of two distributions by using the Fourier transform looks rather tricky. In
particular, it seems that we have to know the Fourier transform of the product of each
distribution with an arbitrary function.

Moreover even when we are able to define it, the product of distribution does not
always satisfy the Leibniz rule ∂(uv) = (∂u)v + u(∂v). For instance the product of θ
makes sense (Example 4) but does not respect the Leibniz rule (see Section 2). On
the other hand the square of 1/(x + i0+) can be defined (see Example 5) and this
definition agrees with Leibniz rule.

Fortunately, Hörmander devised a powerful condition on a pair of distributions
to: 1) guarantee the existence of their product without computing it; 2) ensure that
this product satisfies the Leibniz rule.

As a preparation for this condition, we can analyze why the product exists in
example 5 and not in example 6. In example 5, the support of û is (−∞, 0) and,
because of the convolution formula û(q)û(k − q), the support of û(q)û(k − q) as a
function of q is the finite interval [k, 0] if k ≤ 0 and is empty if k > 0. Thus, the
integral over q is absolutely convergent. On the other hand, in example 6 the support
of û(q)v̂(k − q) is (−∞,min(k, 0)), which is infinite.

In general, for the convolution integral to be well defined, we just need that the

product f̂u(q)f̂ v(k − q) decreases fast enough for large q for the integral over q to
be absolutely convergent. Note also that, for any distribution u and for any smooth
function f with compact support, since fu is a distribution with compact support,

its Fourier transform f̂u grows at most polynomially at infinity, i.e. there exists some

p ∈ N and some constant C > 0 such that |f̂u(k)| ≤ C(1 + |k|)p everywhere. Hence it

is enough that one of the two factors in the product f̂u(q)f̂ v(k− q) is fast decreasing

at infinity to ensure that the product is fast decreasing. In example 5, f̂u(q) decreases

very fast for q → +∞ but does not decrease for q → −∞. If f̂u(q) decreases slowly

in some directions q, this must be compensated by a fast decrease of f̂ v(k − q) in the
same direction q. This is exactly what happens in example 5 and not in example 6.

Lastly Example 7 confirms that a general condition for the existence of a product
of distributions should use the Fourier transform of distributions localized around
singular points.

It is now time to introduce the key notion for defining Hörmander’s product of
distributions: the wavefront set.

3. The wavefront set

We want to find a sufficient condition by which the product of distributions defined
in eq. (1) is absolutely convergent. In this integral, the distribution fv is compactly
supported because f ∈ D(Rn). Thus, there is constant C and an integer m such

that |f̂ v(k − q)| ≤ C(1 + |k − q|)m. The smallest m for which this inequality is
satisfied is called the order of the distribution fv. The integral (1) would be absolutely

convergent if we had |f̂u(q)| ≤ C′(1 + |q|)−m−n−1. However, since we also wish the
product of distributions to be compatible with derivatives through the Leibniz rule
∂(uv) = (∂u)v+ u(∂v) and since a derivative of order n increases the order of u by n,

what we really need is that |f̂u(q)| decreases faster than any inverse power of 1 + |q|.
We give now a precise definition of the property of fast decrease.
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k0

V

Figure 2. Example of a conical neighborhood of k.

3.1. Outside the wavefront set: the regular directed points

We start by defining some basic tools: the conical neighborhoods and the fast
decreasing functions.

Definition 8. A conical neighborhood of a point k ∈ Rn \ {0} is a set V ⊂ Rn such
that V contains the ball B(k, ǫ) = {q ∈ Rn ; |q − k| < ǫ} for some ǫ > 0 and, for any
p in V and any α > 0, αp belongs to V .

An example of conical neighborhood of k is given in figure 2.

Definition 9. A smooth function g is said to be fast decreasing on a conical
neighborhood V if, for any integer N , there is a constant CN such that |g(q)| ≤
CN (1 + |q|)−N for all q ∈ V .

For example, the function e−q
2

is fast decreasing on Rn. We need functions to
be fast decreasing in a conical neighborhood and not only along a specific direction
(which would be the case if CN were a function of q), because a single direction has
zero measure and we would not be able to control the integral (1). According to the
discussion of the previous section we see that the integral (1) converges absolutely if

the directions where f̂ v(k − q) decrease slowly correspond to regions where f̂u(q) is
fast decreasing.

We define now the “nice points” around which f̂u is fast decreasing. They are
called regular directed points [35, p. 92]:

Definition 10. For a distribution u ∈ D′(Rn), a point (x, k) ∈ R
n × (Rn\{0}) is

called a regular directed point of u if and only if there exist: (i) a function f ∈ D(Rn)

with f(x) = 1 and (ii) a closed conical neighborhood V ⊂ Rn of k, such that f̂u is fast
decreasing on V .

The relevance of the concept of regular directed point also stems from the following
theorem [32, p. 252]

Theorem 11. A compactly supported distribution u ∈ E ′(U) is a smooth function if
and only if û(q) is fast decreasing on R

n.
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This theorem is physically reasonable because, if f is a smooth function, then
f(x)eik·x oscillates widely when k is large, so that the average of this expression (i.e.

f̂(k)) is very small. Theorem 11 implies that any singularity of a distribution can be
detected by an absence of fast decrease in some direction: a point x is in the singular
support if and only if there is a direction k where the Fourier transform is not fast
decreasing. However, if x ∈ sing suppu, there can be directions k such that (x, k) is

regular directed. In example 5, we saw that f̂u(k) is rapidly decreasing for k > 0 but
not for k < 0. This brings us finally to the definition of the wavefront set

3.2. The definition of the wavefront set and the Product Theorem

Definition 12. The wavefront set of a distribution u ∈ D′(Rn) is the set, denoted by
WF(u), of points (x, k) ∈ Rn × (Rn\{0}) which are not regular directed for u.

In other words, for each point of the singular support of u, the wavefront set of u
is composed of the directions where the Fourier transform of fu is not fast decreasing,
for f a sufficiently small support. The name “wavefront set” comes from the fact that
the singularities of the solutions of the wave equation move within it [32, p. 274], so
that the wavefront set describes the evolution of the wavefront. The wavefront set is
a refinement of the singular support, in the sense that the singular support of u is the
set of points x ∈ Rn, such that (x, k) ∈ WF(u) for some nonzero k ∈ Rn.

Now we see how this definition can be used to determine the product of two
distributions u and v. Broadly speaking, if a point x belongs to the singular support
of u and v, then the product of u and v exists at x if, for all directions q, either

f̂u(q) or f̂ v(k − q) is rapidly decreasing. In particular, if (x, q) belongs to WF(u),
then (x,−q) must not belong to WF(v). This is called Hörmander’s condition and
the precise theorem is [32, p. 267]:

Theorem 13 (Product Theorem). Let u and v be distributions in D′(U). Assume
that there is no point (x, k) in WF(u) such that (x,−k) belongs to WF(v), then the
product uv can be defined. Moreover, if so, then

WF(uv) ⊂ S+ ∪ Su ∪ Sv, (2)

where S+ = {(x, k + q)|(x; k) ∈ WF(u) and (x; q) ∈ WF(v)}, Su = {(x; k)|(x; k) ∈
WF(u) and x ∈ supp (v)} and Sv = {(x; k)|(x; k) ∈ WF(v) and x ∈ supp (u)}.

Remarks

(i) This theorem is absolutely fundamental for the theory of renormalization in
curved spacetimes. With this simple criterion, we can prove that a product of
distributions exists even if we cannot calculate their Fourier transforms and even
if we do not know the explicit form of the distributions.

(ii) The condition involving the support of u in Sv and the support of v in Su in
WF(uv) is given in [38, p. 84] but is usually not stated explicitly [32, p. 267] [33,
p. 21] [35, p. 95], [34, p. 527], [36, p. 153], [37, p. 193], [40, p. 61]. This support
condition is imperative to calculate the wavefront set of example 19 or of the
Feynman propagator in section 6.2.

(iii) When Hörmander’s condition holds, then the product of distributions satisfies
the Leibniz rule for derivatives, because derivatives do not extend the wavefront
set [32, p. 256]).



Introduction to the wavefront set 12

(iv) Note that if u and v satisfy Hörmander’s condition, then their product exists in
the sense of Definition 2. The converse is not true in general. However, if the
product of distributions is extended beyond Hörmander’s condition, then it is
generally not compatible with the Leibniz rule, as shown by the example of the
Heaviside distribution at the beginning of section 2.

(v) Hörmander’s condition of the Product Theorem can be rephrased by saying that
S+ does not meet the zero section (of the cotangent bundle over U), i.e. that
S+ ∩ (U × {0}) = ∅.

(vi) For any pair A and B of subsets of U × Rn, we can define A ⊕ B := {(x, k +
q)|(x, k) ∈ A, (x, q) ∈ B}. We then observe that S+ =WF (u)⊕WF (v) and hence
Hörmander’s condition amounts to saying thatWF (u)⊕WF (v) does not intersect
the zero section. On the other hand if we set WF (u) :=WF (u)∪ (supp u×{0}),
etc., we then always have WF (u)⊕WF (v) = S+ ∪ Su ∪ Sv ∪ (supp (uv)× {0}).
Moreover if Hörmander’s condition holds then supp (uv) × {0} is disjoint from
S+ ∩ Su ∩ Sv and thus Conclusion (2) is equivalent to the inclusion WF (uv) ⊂
WF (u)⊕WF (v).

3.3. Simple examples and applications of the Product Theorem

We give a few very simple examples.

Example 14. The simplest example is δ(x) in D′(Rn), for which WF(δ) = {(0; k)|k ∈
Rn, k 6= 0}. Thus, the powers of δ cannot be defined.

Proof. The singular support of δ(x) is {0} and f̂ δ(k) = f(0) is not fast decreasing
if f(0) 6= 0. This proves that WF(δ) = {(0; k)|k ∈ Rn, k 6= 0}. To show that the
product is not allowed, consider any point (0; k) of WF (δ), then (0;−k) is also a
point of WF(δ) and the Hörmander condition is not satisfied.

Example 15. The wavefront set of the Heaviside distribution θ is WF(θ) =

{(0; k) ; k 6= 0}. There is a constant C such that |θ̂f(k)| ≤ C/(1 + |k|) for all k.

Proof. The Heaviside distribution is smooth for x < 0 and x > 0 because it is constant
there. Thus, the only possible singular point is x = 0. Consider a smooth compactly
supported function f such that f(0) = 1. We have for k 6= 0

θ̂f(k) =

∫ ∞

0

eikxf(x)dx =
(−i)

k

∫ ∞

0

(eikx)′f(x)dx

=
if(0)

k
+
i

k

∫ ∞

0

eikxf ′(x)dx, (3)

where the prime denotes a derivative with respect to x and we integrated by parts. A
further integration by part gives us

θ̂f(k) =
if(0)

k
−
f ′(0)

k2
−

1

k2

∫ ∞

0

eikxf ′′(x)dx. (4)

Let L be the length of supp f and, for n = 0, 1, 2, let Mn be a constant such that

|f (n)(x)| ≤ Mn for all x. Using f(0) = 1, Identity (4) implies that |θ̂f(k) − i
k | ≤

M1+LM2

k2 . Hence (0, k) ∈ WF (θ), ∀k 6= 0. On the other hand (3) implies both

|θ̂f(k)| ≤ LM0 and |θ̂f(k)| ≤ 1+LM1

|k| . We hence deduce that |θ̂f(k)| ≤ C
1+|k| , for some

constant C.
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The wavefront set of θ is the same as the wavefront set of δ. This explains why
the powers of θ are not allowed in the sense of Hörmander.

Example 16. u(x) = 1/(x+ i0+), then WF(u) = {(0; k), k < 0}. Thus, u2 exists and
WF(u2) = WF(u).

Proof. The proof is obvious from example 5 (see also [35, p. 94], where one must
recall that the sign is opposite because of the different convention for the Fourier
transform).

Example 17. v(x) = 1/(x− i0+), then WF(v) = {(0; k), k > 0}. Thus, v2 exists and
WF(v2) = WF(v), but we cannot conclude that uv exists (it does not, as we saw in
example 6).

Example 18. We consider again example 7:

u(x) =
1

x+ i0+
+

1

x+ a− i0+
,

with a 6= 0. Then, WF(u) = {(0; k), k < 0} ∪ {(−a; k), k > 0} and u2 exists, with
WF(u2) = WF(u).

Example 19. (See [35, p. 97]). Let δ1 and δ2 be the distributions in D′(R2) defined
by 〈δ1, f〉 =

∫
dyf(0, y) and 〈δ2, f〉 =

∫
dxf(x, 0). Then, WF(δ1) = {(0, y;λ, 0)|y ∈

R, λ 6= 0} and WF(δ2) = {(x, 0; 0, µ)|x ∈ R, µ 6= 0}. Thus, δ1δ2 exists and
WF(δ1δ2) ⊂ {(0, 0;λ, µ), λ 6= 0, µ 6= 0} ∪ {(0, 0;λ, 0), λ 6= 0} ∪ {(0, 0; 0, µ), µ 6= 0},
where we used supp (δ2) = {(x, 0)|x ∈ R} and supp (δ1) = {(0, y)|y ∈ R}. Note that
the estimate of the wavefront set of δ1δ2 would be much worse if the support of δ2 and
δ1 had not been taken into account in Sδ1 and Sδ2 of the Product Theorem. In that case
the inclusion is in fact an equality because WF(δ1δ2) = {(0, 0;λ, µ), (λ, µ) 6= (0, 0)}.

Proof. Let y ∈ R, we want to calculateWF (δ1) at (0, y). Take a test function f(x1, x2)
which is equal to one around (0, y). Then,

f̂ δ1(k) =

∫
dx1dx2f(x1, x2)δ(x1)e

ik1x1+ik2x2 =

∫
dx2f(0, x2)e

ik2x2 .

Take k = (k1, k2) and observe the decay of f̂ δ1(λk). If k2 6= 0 this is a fast decreasing
function of λ because f(0, x2) is a smooth compactly supported function of x2. If

k2 = 0, then we have f̂ δ1(k1, 0) =
∫
dx2f(0, x2), which is independent of k1, so that

f̂ δ1(λk1, 0) is not fast decreasing. This proves that WF(δ1) has the given form. A
similar proof yields WF(δ2). The rest follows from the fact that δ1δ2 is the two-
dimensional delta function.

4. The wavefront set of a characteristic function

Now that we know the definition of the wavefront set, we shall get the feel of it by
studying in detail the characteristic distribution u of a region Ω of Rn, defined by
〈u, f〉 =

∫
Ω f(x)dx. We shall also revisit it in section 5.2.
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4.1. The upper half-plane

For concreteness we start from the characteristic distribution of the upper half-plane

〈u, f〉 =

∫ ∞

−∞

dx1

∫ ∞

0

dx2f(x1, x2).

This is the distribution corresponding to the function equal to one on the upper half-
plane (i.e. if x2 ≥ 0) and to zero on the lower half-plane (i.e. if x2 < 0). It is intuitively
clear that the singular support of u is the line (x1, 0). Now take a point (x1, 0) of the
singular support and a test function f which is non-zero on (x1, 0). What are the

directions of slow decrease of f̂u? It seems clear that f̂u(k) decreases fast when k
is along (1, 0), because we do not feel the step of u if we walk along it and do not
cross it. But what about the other directions? Does the wavefront set contain all the
directions that cross the step or just the direction (0, 1) which is perpendicular to it?

The wavefront set of u can be obtained by noticing that u is the (tensor) product
of the constant function 1 for the variable x1 by the Heaviside distribution θ(x2).
Then, a standard theorem [32, p. 267] gives us WF(u) = {(x1, 0; 0, λ), λ 6= 0}. In
other words, the wavefront set detects the direction perpendicular to the step. It is
instructive to make an explicit calculation to understand why it is so.

We use an idea of Strichartz [37, p. 194] and consider test functions f(x1, x2) =
f1(x1)f2(x2). This is not really a limitation because any test function can be

approximated by a finite sum of such products. Then ûf(k) = f̂1(k1)θ̂f2(k2). We
want to show that, if k1 6= 0, for every integer N there is a constant CN such that

|ûf(τk)| ≤ CN (1+ τ |k|)−N for every κ > 0. We already know that there is a constant

DN such that |f̂1(τk1)| ≤ DN (1 + τ |k1|)−N because f1 is smooth and a constant C

such that |f̂2(τk2)| ≤ C(1 + τ |k2|)−1 (see Example 15). We are going to show that,

if the component k1 of k is not zero, the fast decrease of f̂1(τk1) induces the fast

decrease of ûf(τk). If k1 6= 0, we have |k| ≤ α|k1| where α = |k|/|k1|. Note that α ≥ 1
because |k1| ≤ |k|. Hence (1 + τ |k|) ≤ α(1 + τ |k1|) and

|ûf(τk)| ≤ CDN (1 + τ |k1|)
−N (1 + τ |k2|)

−1 ≤ CDNα
N (1 + τ |k|)−N ,

where we bounded (1 + τ |k2|)−1 by 1. Finally, if k1 6= 0, then |ûf(τk)| ≤ CN (1 +
τ |k|)−N for all κ > 0 with CN = αNCDN . This result was obtained for a single vector
k, but it can be extended to a cone around k by increasing the value of α.

4.2. Characteristic function of general domains

More generally, we can consider the characteristic function of any domain Ω in Rn

limited by a smooth surface S. The characteristic function of Ω is the function χΩ

such that χΩ(x) = 1 if x ∈ Ω and χΩ(x) = 0 if x /∈ Ω. The characteristic function χΩ

corresponds to a distribution uΩ defined by 〈uΩ, f〉 =
∫
Ω
f(x)dx. The wavefront set

of uΩ is given by [50, p. 129]:

Proposition 20. Let Ω ⊂ Rn be a region with smooth boundary S and let
uΩ = χΩ be the characteristic distribution of Ω. Then WF(uΩ) = {(x, k);x ∈
S, and k normal to S}.

Notice that the vectors k are perpendicular to the boundary S of Ω (see fig. 3 for
the example of a disk). This can be understood by a hand-waving argument. Since
the boundary S is smooth, by using a test function with very small support around
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Figure 3. The characteristic function of the unit disk (pink) is equal to 1 for
x2+y2 ≤ 1 to zero for x2+y2 > 1. Some vectors of the wavefront set are indicated
as green arrows. For a given point (x, y) of the boundary x2 + y2 = 1, the points
(x, y; kx, ky) of the wavefront set are such that (kx, ky) is perpendicular to the
boundary, thus (kx, ky) = (λx, λy) for all λ 6= 0. In this figure we represent the
characteristic function, the tangent bundle and the cotangent bundle in the same
coordinates.

x ∈ S, the boundary looks flat around x and we can apply the argument of the upper-
half plane (generalized to R

n) previously discussed. The set of vectors k which are
perpendicular to all tangent vectors to S at x is called the conormal of S at x and is
denoted by Cx (see fig. 3 for the example where n = 2 and Ω is the unit disk). The
set C = {(x, k) ; k ∈ Cx} is called the conormal bundle of S. The previous proposition
says that the wavefront set of uΩ is the conormal bundle of S.

The wavefront set of a characteristic distribution has many applications. Its
ability to give an accurate description of the boundary of shapes makes it particularly
efficient for image analysis [51] and tomography [52].

4.3. Counting intersections

We close this section by showing that the wavefront set of the characteristic
distribution of a bounded smooth domain Ω in the plane can be determined by
the following striking procedure. For each straight line Lk,a in the plane, denote
by nk,a the number of times the straight line intersects the boundary. For generic
domains, the wavefront set of uΩ can be recovered from the set of integers nk,a [53].
In particular, this information is sufficient to recover the shape of Ω. This remark can
have applications in image analysis.

In some exceptional cases, this result holds only up to localization or the
replacement of the number of intersections by the number of connected parts of the
intersection [53]. This characterization of the wavefront set can be extended to surfaces
in R3 if we replace the number of intersections nk,a by the Euler characteristic of the
intersection of a given surface with all possible half–spaces [53].
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Figure 4. Counting the number of times a straight line crosses the boundary of
Ω. From the bottom to the top, this number is 0, 1, 2, 3 and 4. It is possible to
reconstruct Ω from the set of straight lines and their numbers of crossings.

5. Use of the Radon transform

5.1. The wavefront set of a measure supported by a hypersurface

In an attempt to better understand the wavefront set, we came up with the following
idea. As seen in Example c) in Section 2.1, a distribution may be singular and may
enjoy partial regularity properties simultaneously. Consider for instance a smooth
submanifold Γ ⊂ R

n and the distribution which is the measure µ supported by Γ
with the Euclidean density. The singular character of µ shows up by restricting µ to a
smooth path which crosses transversally Γ: this gives us a Dirac mass type singularity.
However if we probe µ by moving in a parallel to Γ we may be tempted to say that
heuristically the distribution varies smoothly. Such a test cannot be performed by
following a path which lies inside Γ, because the restriction of µ to such a path would
not make sense! However we may replace such a path by a dual wave. In the most naive
approach, this consists in a family of hypersurfaces (Ht)t which cross transversally (e.g.
orthogonally) our path and which forms locally a foliation of an open subset of Rn.
Each Ht can be thought as a wavefront in this Huygens type picture. This is another
indication that we must interpret p as a covector.

Let’s explore this idea in the simple case where Γ is a smooth curve. Choose a
point x0 ∈ Γ and a covector p ∈ Rn, and define the linear form α : Rn −→ R by
α(x) := p · x and assume that α|Tx0

Γ 6= 0. We will test µ locally around x0 by using
a plane wave whose wavefronts are the hyperplanes Hα,a of equation α(x) = a, for
a ∈ R close to α(x0). Choose an open neighborhood U ⊂ Rn of x0 such that there
exists a parametrization γ : I −→ U of Γ ∩ U . Then for any ϕ ∈ D(Rn) with support
contained in U , we have

〈µ, ϕ〉 =

∫

I

ϕ(γ(t))|γ̇(t)|dt.
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Moreover we may choose U such that α|TxΓ 6= 0, ∀x ∈ Γ ∩ U . We remark then that
α ◦ γ is a diffeomorphism into its image.

Let ω be an open subset of U such that ω ⊂ U and let χ ∈ D(Rn) with support
contained in U and such that χ = 1 on ω. Let f ∈ D(R) with support in α(ω ∩ Γ).
Set ϕ := χ(f ◦α) and observe that f ◦α = ϕ on U ∩Γ. Hence we can define 〈µ, f ◦α〉
by setting

〈µ, f ◦ α〉 := 〈µ, ϕ〉 =

∫

I

f ◦ α ◦ γ(t)|γ̇(t)|dt.

By performing the change of variable a = α ◦ γ(t), da = |α(γ̇(t))|dt, A = α ◦ γ(I), we
obtain

〈µ, f ◦ α〉 =

∫

A

f(a)
da

|α(τ(a))|
,

where τ(a) is the tangent vector to Γ: τ(α ◦ γ(t)) = γ̇(t)/|γ̇(t)|. We see that we can
extend this definition by replacing f by a Dirac mass δa at some value a ∈ A. We
then get 〈µ, α∗δa〉 = 1/|α(τ(a))| = 1/|p · τ(a)|, a smooth function of a. However it
appears clearly that this quantity becomes singular when α(τ(a)) = p · τ(a) = 0: this
corresponds to points of Γ such that TxΓ is contained in the kernel of α.

Note that we may replace α by α̃(x) = p̃ ·x, for p̃ ∈ Rn close to p: by choosing U
suitably we can show that the previous computation remains valid for (α̃, a) close to
(α, α(x0)). Geometrically 〈µ, α̃∗δa〉 corresponds to the integral of µ on the hyperplane
Hα̃,a (more precisely a neighborhood in Hα̃,a of x0), i.e. the value of the local Radon
transform at this hyperplane.

5.2. The Radon transform of the characteristic function of the half-plane

We go back to the distribution u introduced in Section 4.1, i.e. the characteristic
function of the upper half-plane Ω in R2. Any half-line {(x, λk)|λ ∈ (0,+∞)} in the
wavefront set of u is characterized by a point x and a unit direction k. Consider a
straight line perpendicular to k and move it along k. Then, something should happen
to the restriction of u to the line when the line crosses the point x. To be more precise,
consider a straight line Lk,a defined by the equation k ·x = a (the line perpendicular to
k that goes through the point (a/k1, 0) if k1 6= 0). By changing the value of a we move
the line along k. The integral of fu over the line Lk,a is R(fu)(k, a) =

∫
Lk,a∩Ω

f(x)dℓ

is the value of the Radon transform of fu at (k, a). Let us check in this case the result
which will be proved in section 5.3, i.e. that the wavefront set of u can be obtained
by looking at the points where the Radon transform R(fu)(k, a) =

∫
Lk,a∩Ω

f(x)dℓ is

not a smooth function of a. This means here that if a line Lk,a is not parallel to the
step, then a small variation of a is smooth, while it will jump at the step if Lk,a is
the x1 axis (see Fig. 5). To prove this, let k be a unit vector and v a unit vector
perpendicular to k. Then the points of the straight line Lk,a are x = ak + tv and

R(fu)(k, a) =

∫ ∞

−∞

f(ak + tv)θ(ae2 · k + te2 · v)dt,

where e2 is the unit vector along the x2 axis. If we choose an angle −π/2 < φ ≤ π/2
such that k = e1 sinφ+ e2 cosφ and v = e1 cosφ− e2 sinφ (where e1 is the unit vector
along the x1 axis) we obtain R(fu)(k, a) =

∫∞

−∞ f(ak + tv)θ(a cosφ − t sinφ)dt. We
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Figure 5. The upper half-plane is green. An integration over the blue lines
(which are not parallel to the edge) gives a smooth function of the distance from
the first line. An integration over the red lines (parallel to the edge) jumps when
the line reaches the edge.

must consider three cases.

R(fu)(k, a) =

∫ ∞

acotgφ

f(ak + tv)dt if φ > 0,

R(fu)(k, a) = θ(a)

∫ ∞

−∞

f(ae2 + te1)dt if φ = 0 and a 6= 0,

R(fu)(k, a) =

∫ acotgφ

−∞

f(ak + tv)dt if φ < 0.

We indeed see that R(fu)(e2, a) jumps from 0 for a = 0− to
∫∞

−∞ f(te1)dt for a = 0+.

5.3. The wavefront set up to sign and the Radon transform

Let us start with the following definition:

Definition 21. For any distribution u the wavefront set up to a sign of u is the set

WF±(u) := {(x, p)|(x, p) ∈ WF(u) or (x,−p) ∈ WF(u)}.

This notion is slightly coarser than the wavefront set. However it gives interesting
information about its geometry. Note that T ∗M \ WF±(u) is the set of absolutely
regular directed points. These are the points (x, p) such that there exists f ∈ D(Rn)

satisfying f(x) = 1 and a closed conic neighborhood V ⊂ R
n of p such that f̂u is fast

decreasing on V ∪ (−V ). The set WF±(u) or equivalently its complementary set can
be characterized by using the Radon transform.

Radon transform is defined by averaging functions on affine subspaces. Here we
use affine hyperplanes of Rn. First consider the case of a continuous function with
compact support u ∈ C0

c (R
n). For any (ν, s) ∈ Sn−1 × R, let Hν,s be the hyperplane

of equation ν · x = s and set

R(u)(ν, s) :=

∫

Hν,s

u(x)dσ(x),

where σ is the Lebesgue measure on Hν,s. This defines a function R(u) on Sn−1 ×R,
the Radon transform of u. This function is linked to the Fourier transform of u by

û(p) =

∫

Rn

dx eip·xu(x) =

∫

R

ds eis|p|R(u) (p/|p|, s)

= F

(
R(u)

(
p

|p|
, ·

))
(|p|),
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hence conversely

R(u)(ν, s) =
1

2π

∫

R

dk e−iksû(kν).

Now consider a distribution u ∈ D′(Rn), let (x, p) be an absolutely regular directed
point of u. Let f ∈ D(Rn) such that f(x) = 1 and a closed conic neighborhood V ⊂ Rn

of p such that f̂u is fast decreasing on V . For any ν ∈ V ∩ Sn−1, k 7−→ f̂u(kν) is
a smooth fast decreasing function of k ∈ R. We can thus define its inverse Fourier
transform and set

R(fu)(ν, s) =
1

2π

∫

R

dk e−iksf̂u(kν).

Note, for any fixed ν, s 7−→ R(fu)(ν, s) has a compact support because f has a

compact support. Since ∀N ∈ N, ∃Cn > 0 such that ∀q ∈ V , |f̂u(q)| ≤ CN (1 + |q|)N ,

it implies that, ∀m ≤ N − 2, ∀ν ∈ V ∩ Sn−1,
∣∣∣ dm

(ds)mR(fu)(ν, s)
∣∣∣ ≤ C′CN , for

C′ = 1
2π

∫
R

dk
(1+|k|)2 . Hence R(fu) is uniformly smooth in s on (V ∩ Sn−1)× R.

Conversely let u be a distribution and assume that, for some (x, ν) ∈ Rn× Sn−1,
there exists f ∈ D(Rn) and a closed neighborhood V ∩ Sn−1 of ν in Sn−1 such
that we can make sense of the Radon transform R(fu) of fu on (V ∩ Sn−1) × R

(e.g. by proving that there exists a sequence (fu)ε of smooth functions with compact
support which converges to fu in D′(Rn) and that the sequence R((fu)ε) converges
also in D′(Sn−1 × R) to a distribution which we call R(fu)). Conversely let u be
a distribution and observe that, for any f ∈ D(Rn) and any closed neighborhood
V ∩ Sn−1 of ν in Sn−1, we can make sense of the Radon transform R(fu) of fu
on (V ∩ Sn−1) × R, e.g. by noticing that fu is a compactly supported distribution,

thus f̂u is real analytic with polynomial growth by Paley–Wiener–Schwartz, therefore

the restriction f̂u(kν) is analytic with polynomial growth in k ∈ R uniformly
in ν ∈ V ∩ Sn−1, hence a tempered distribution in S ′(R). Its inverse Fourier
transform R(fu)(ν, s) is thus a tempered distribution in s.). Assume moreover,

∀N ∈ N, ∃ΓN > 0 such that ∀η ∈ V ,
∣∣∣ dm

(ds)mR(fu)(ν, s)
∣∣∣ ≤ ΓN . Then, since

∀η ∈ V ∩ Sn−1, s 7−→ R(fu)(η, s) is compactly supported we can define its Fourier

transform in s and set f̂u(p) =
∫
R
ds ei|p|sR(fu)(p/|p|, s), ∀p ∈ V . It follows then that

|f̂u(p)| ≤ ΓN |suppR(fu)(p/|p|, ·)||p|−N and hence f̂u is fast decreasing in V . As a
conclusion:

Theorem 22. Let u ∈ D′(U) be a distribution and (x, k) ∈ U × (Rn \ {0}). Then
(x, k) does not belong to WF±(u) iff there exists f ∈ D(U) such that R(fu) is smooth
on a neigborhood of (k/|k|, k · x/|k|) in U × (V ∩ Sn−1).

6. Oscillatory integrals

In proposition 20, the singular support of the characteristic distribution is the
submanifold S. Hörmander gives another example of a distribution where the singular
support is a submanifold [32, p. 261]. This example is important because it exhibits
a distribution defined by an oscillatory integral (as the Wightman propagator).

Example 23. Let M be a smooth submanifold of Rn defined near a point x0 ∈ M
by φ1(x) = . . . = φk(x) = 0 where dφ1, . . . , dφk are linearly independent at x0. If
the function a ∈ D(Rn) has support near x0, we define the distribution 〈u, f〉 =
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(2π)k
∫
dxa(x)δ(φ1, . . . , φk)f(x), where δ is the delta function in Rk. This can be

rewritten

〈u, f〉 =

∫

Rn

dxf(x)

∫

Rk

dξ a(x)eiφ(x,ξ),

where φ(x, ξ) =
∑k
i=1 φi(x)ξi and ξi ∈ R. Then WF (u) = {(x,−dxφ(x, ξ));φ1(x) =

. . . = φk(x) = 0, x ∈ supp a}, where

dxφ(x, ξ) =
∂φ(x, ξ)

∂x1
dx1 + . . .+

∂φ(x, ξ)

∂xn
dxn.

We can use this result to recover the wavefront set of example 20 when n = 2, Ω is
the unit disk and S is the unit circle. We have a single function φ1(x1, x2) = x21+x

2
2−1,

so that φ(x, ξ) = (x21 + x22 − 1)ξ, the critical set is given by dξφ(x, ξ) = φ1(x1, x2) = 0
and dxφ(x, ξ) = (2x1dx1 + 2x2dx2)ξ. If we switch to polar coordinates, we obtain
dxφ(x, ξ) = 2ρξdρ, which is a direction perpendicular to the unit circle at x. Note
that ξ can have both signs, thus both dρ and −dρ belong to the wavefront set. This
example confirms an important characteristics of the wavefront set. The direction k
are not vectors but covectors. Indeed, dxφ(x, ξ) can be expanded over the (covector)
basis dx1, . . . , dxn of T ∗

xM and not over the vector basis ∂x1
, . . . , ∂xn

of TxM . To
determine the nature of the directions k in the wavefront set, we can also look at
the way the wavefront set transforms under a smooth mapping Rn → Rn. The
detailed calculation [37, p. 195] confirms that k are covectors because they transform
covariantly. This point is important for distributions on manifolds.

The previous result can be extended to more generaly oscillatory integrals (in the
following we always assume that the phase function φ is homogeneous of degree 1, i.e.
φ(x, λξ) = λφ(x, ξ), ∀λ > 0, see [32, p. 260] for details):

Theorem 24. If a distribution u is defined by an oscillatory integral

u(f) =

∫

Rn

dxf(x)

∫

Rs

dξ a(x, ξ)eiφ(x,ξ)dξ,

where φ is a phase function and a an asymptotic symbol, then WF (u) ⊂
{(x;−dxφ(x, ξ)) | dξφ(x, ξ) = 0}.

We refer to the literature for a precise definition of phase functions and
asymptotic symbols [32, p. 236][35, p. 99]. We can give a hand-waving argument
to understand the origin of this wavefront set. The Fourier transform of u is given by∫
dx

∫
dξa(x, ξ)eiφ(x,ξ)+ik·x. By using the stationary-phase method, we see that the

directions of slow decrease are the directions where the phase φ(x, ξ) + k · x is critical
with respect to (x, ξ). They are determined by the equations k + dxφ(x, ξ) = 0 and
dξφ(x, ξ) = 0.

6.1. The Wightman propagator

With the help of theorem 24 we can calculate the wavefront set of a fundamental
distribution of quantum field theory: the Wightman propagator in Minkowski
spacetime [35, p. 66]

W2(f, g) =

∫

R3×R3

dxdy〈0|ϕ(x)ϕ(y)|0〉f(x)g(y)

= − i

∫

R3×R3

dxdy∆+(x− y)f(x)g(y),
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Figure 6. Wavefront set of ∆+: the wavefront set at the origin is an upper cone.
Note that, in this figure, three different spaces are identified: the configuration
space R3, the tangent space and the cotangent space over each point of the
configuration point. The tangent and cotangent spaces are identified through
the Euclidian metric. This implies that the covectors in WF(u) are perpendicular
to the tangent planes.

where [35, p. 70]

∆+(x) =
i

2(2π)3

∫

R3

dk

k0
e−ik·x,

with k = (k1, k2, k3), k0 =
√
|k|2 +m2, k = (kµ) = (k0,k) and k · x =

∑3
µ=0 kµx

µ.
The analytic form of ∆+(x) is given by Scharf [54, p. 90]. We can write ∆+(f)

in the oscillatory integral form of Theorem 24 by setting, for ξ ∈ R3, [35, p. 100]

φ(x, ξ) = − x0|ξ| − xjξj , a(x, ξ) =
e−ix

0(ωξ−|ξ|)

ωξ
,

where |ξ| =
√
(ξ1)2 + (ξ2)2 + (ξ3)2, ωξ =

√
|ξ|2 +m2 and xjξj =

∑3
j=1 x

jξj . To prove
this, just write

−ik · x = − i(xjkj + x0k0) = i(−x0|k| − xjkj)− ix0(k0 − |k|),

and replace k by ξ. The modification of the phase is necessary to make a(x, ξ)
an asymptotic symbol. We can now calculate the wavefront set of the Wightman
propagator [35, p. 106]

Proposition 25. The wavefront set of ∆+ is WF(∆+) = S0 ∪ S+ ∪ S−, where

S0 = {(0; |k|,k) |k ∈ (R3\{0})},

S± = {(±|x|,x;λ|x|,∓λx) |x ∈ (R3\{0}), λ > 0}.

More compactly [39, p. 118], WF(∆+) = {(x; k) ; k0 = |k|, x0 = λk0, x
i = −λki, λ ∈

R}.

The advantage of the physical convention for the Fourier transform is that
positive energies correspond to k0 > 0. The wavefront set of ∆+ for curved (globally
hyperbolic) spacetime is given by Strohmaier [39].

Proof. According to Theorem 24, we first calculate the set of critical points {dξφ = 0}

for φ(x, ξ) = −x0|ξ|−xiξi. We find −x0
(∑3

i=1
ξidξi
|ξ|

)
−
∑3
i=1 x

idξi = 0, which implies
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Figure 7. Wavefront set of ∆F , the wavefront set at the origin is a ball.

xi = −x0 ξi|ξ| and thus x0 = λ|ξ| and xi = −λξi for λ = x0

|ξ| . Conversely, if we plug

x0 = λ|ξ|, xi = −λξi in dξφ for any λ ∈ R, we find dξφ =
∑3
i=1(λξi − λξi)dξi = 0.

Then Theorem 24 claims that WF (∆+) is a subset of {(x; dxφ) ; dξφ(x; ξ) = 0}:

WF (∆+) ⊂ {(x0,x; |ξ|, ξi)|x
0 = λ|ξ|, xi = −λξi, λ ∈ R}

⊂ {(x0,x; k0, ki)|k0 = |k|, x0 = λk0, x
i = −λki, λ ∈ R}.

We leave to the reader the proof of the decomposition {(x0,x; k0, ki)|k0 = |k|, x0 =
λk0, x

i = −λki, λ ∈ R} = S0 ∪ S+ ∪ S−.
Note that theorem 24 states only that WF(∆+) ⊂ S0 ∪S+ ∪ S−. We refer to the

literature to show that ⊂ can be replaced by = [35, p. 107]. The singular support of
∆+ is the light cone x0 = ±|x|, the cotangent vectors k are light-like, have positive
energy k0 and are perpendicular to x.

6.2. The Feynman propagator

Proposition 26. The Feynman propagator ∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x)
exists and its wavefront set is WF(∆F ) = D∗ ∪ CF , where D

∗ = {(0; k) | k 6= 0} is
the wavefront set of the Dirac delta function and CF = {(x; k) | (x0)2 − |x|2 = 0, x0 6=
0, k0 = λx0, ki = −λxi, λ > 0}.

Proof. θ(x0)∆+(x) is a product of distributions, we must first show that it exists.
As a distribution in R4, θ(x0) is defined by θ(x0)(f) =

∫
x0>0

f(x)dx. Therefore,

it is the tensor product of the Heaviside distribution in the variable x0 by the
unit distribution in the variables x1, . . . , x3: θ(x0) = θ ⊗ 1. The distribution 1 is
smooth and its wavefront set is empty. Thus, by property (i) of section 7, we have
WF(θ(x0)) ⊂ {(0,x;±λ, 0) |x ∈ R3, λ > 0}. In fact, the inclusion can be replaced by
an equal sign [35, p. 108]. By theorem 13, we see that the product θ(x0)∆+(x) exists.
Indeed, sing supp θ(x0) ∩ sing supp∆+ = {0} and, at x = 0, the allowed cotangent
vectors are k = (±λ, 0) with λ > 0 for θ(x0) and q = (|k|,k) with k 6= 0 for ∆+.
Thus, q+k 6= 0 and the product exists. A similar calculation for θ(−x0)∆F (−x) shows
that ∆F is a well defined distribution on R

4. However, the estimate of the wavefront
set given by the Product Theorem is not precise enough because of the contribution
of WF(θ). To calculate the wavefront set of ∆F , we use the causality method of
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Bogoliubov. Let x = (x0,x) ∈ R4 \ {0}. If x0 > 0 then there is a neighborhood U
of x such that ∀y ∈ U, y0 > 0. Therefore, ∆F |U = θ(x0)∆+(x)|U = ∆+(x)|U thus
WF (∆F |U ) =WF (∆+|U ) = S+|U and by definition of S+:

WF (∆F |U ) = {(x; k) ;x0 = |x|, x0 = λk0, x
i = −λki, λ > 0, x ∈ U}.

If x0 < 0 then there is a neighborhood U of x such that ∆F |U = θ(−x0)∆+(−x)|U =
∆+(−x)|U . Thus

WF (∆F |U ) = {(x; k) ; (−x;−k) ∈ S+, x ∈ U}

= {(x; k) ;x0 = −|x|, x0 = λk0, x
i = −λki, λ > 0, x ∈ U}.

If x0 = 0, then x is space-like because x 6= 0. Thus, there exists some orthochronous
Lorentz transformation R ∈ SO↑(1, 3) such that (Rx)0 > 0. From the definition
of ∆F we deduce that ∆F (Rx) = θ((Rx)0)∆+(Rx) + θ(−(Rx)0)∆+(−Rx). Since
∆F and ∆+ are invariant by orthochronous Lorentz transformations, this implies
∆F (x) = θ((Rx)0)∆+(x) + θ(−(Rx)0)∆+(−x). Hence we recover the case x0 > 0
and ∆F is smooth on a neighborhood of x because x is not light-like. This gives
us WF(∆F )|x 6=0 = CF . To complete the proof of the proposition, recall that
(� + m2)∆F = −iδ [44, p. 124]. Thus property (h) of section 7 implies WF(δ) =
D∗ ⊂ WF(∆F ). Since no wavefront set at x = 0 can be larger than D∗, we obtain
WF(∆F )|x=0 = D∗ and the proposition is proved.

The calculation of WF(∆F ) was first made by Duistermaat and Hörmander [55]
after discussion with Wightman. The analytic expression for the Feynman propagator
in position space is given by Zhang et al. [56]. The wavefront set of the advanced and
retarded solutions to the wave equation is calculated in [55] and [39, p. 115].

7. Properties of the wavefront set

We now give without proof a number of properties of the wavefront set. Let u and
v ∈ D′(Rn). Then

(a) WF(u) is a closed subset of Rn × (Rn\{0}) [35, p. 92].

(b) For each x ∈ Rn, WFx(u) = {k ; (x, k) ∈ WF(u)} is a cone, i.e. k ∈ WFx(u) and
λ > 0 implies λk ∈ WFx(u) [35, p. 92].

(c) WF(u+ v) ⊂ WF(u) ∪WF(v) [35, p. 92].

(d) sing suppu = {x ;WFx(u) 6= ∅} [35, p. 93].

(e) If u is a tempered distribution and û has support in a closed cone C, then for
each x, WFx(u) ⊂ C [35, p. 93].

(f) Let U ⊂ Rm and V ⊂ Rn be two open sets. For any smooth (C∞) map
f : U −→ V we define

Nf := {(f(x), k) ∈ V × R
n ; k ◦ dfx = 0},

where k ◦ dfx := (kidy
i) ◦ dfx := kidf

i
x. Consider the pull-back operator

u 7−→ f∗u := u ◦ f defined on smooth maps u on V . Then it is possible
to extend this operator to the space of distributions u ∈ D′(V ) which satisfy
Nf ∩WF (u) = ∅ in an unique way (if we furthermore require some continuity
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assumptions, see [32, Thm 8.2.4]). Moreover the wavefront set of f∗u is contained
in the set

f∗WF (u) := {(x, k ◦ dfx)|(f(x), k) ∈WF (u)}.

[32, Thm 8.2.4] (beware that, in the definition of the inverse image of a
distribution by a diffeomorphism in [35, p. 93], the expression for the wavefront
set of f∗u is not correct.)

(g) If u ∈ D′(U) and f ∈ C∞(U), then WF(fu) ⊂ {supp f × (Rn\{0})}∩WF(u) [41,
p. 344].

(h) If u ∈ D′(U) and P is a partial differential operator with smooth coefficients,
then WF(Pu) ⊂ WF(u) [32, p. 256].

(i) If u ∈ D′(U) and v ∈ D′(V ), then WF(u ⊗ v) ⊂
(
WF(u)×WF(v)

)
∪
(
(supp u×

{0})×WF(v)
)
∪
(
WF(u)× (supp v × {0})

)
[32, p. 267].

(j) If u ∈ D′(U × U) is such that (formally) u(x, y) = v(x − y) for some v ∈ D′(V ),
then WF(u) = {(x, y; k,−k) ; (x− y; k) ∈ WF(v)} [39, p. 118] and [32, p. 270].

As an application of the pull-back theorem, we calculate the wavefront set of ∆F for
a massless particle, whose analytic expression is [44, p. 133]

∆F (x) =
1

4π2

1

x2 − i0
,

where x2 = (x0)2−|x|2. We first prove that this distribution is well defined on R4\{0}.

So ∆F is just the pull–back of (2π)−2 (t− i0)
−1

by the C∞ map.

f : x ∈ R
4 \ {0} 7−→ (x0)2 − |x|2 ∈ R. (5)

Indeed, this map is smooth and Nf = {(f(x), k) ; 2k(x0dx0 − xidxi) = 0}. We know
that WF(1/(t− i0+)) = {(0; k) ; k > 0}. Thus, the condition Nf ∩WF (u) = ∅ implies
x 6= 0 and ∆F is therefore well defined in D′(R4 \ {0}). Furthermore, by property (f)
WF (∆F |x 6=0) is included in the pull–back of WF(1/(t− i0+)) by f . We obtain:

WF (∆F |x 6=0) ⊂ {(x;λ ◦ df) ; (f(x);λ) ∈WF (t− i0)
−1}.

Therefore, WF (∆F |x 6=0) = {(x; k)|f(x) = 0, k = λdf(x) ⊂ λ(x0,−x), λ > 0, x 6= 0}.
To conclude, observe that ∆F is a homogeneous distribution, therefore by a theorem
of Hörmander ([32, Thm 3.2.4]), it admits an extension in D′(R4). The wavefront set
of ∆F at x = 0 is calculated as in the proof of Prop. 26 by using �∆F = −iδ and we
recover Prop. 26 for m = 0.

8. The many faces of the wavefront set

In this section we give several definitions of the wavefront set. Each of them can be
useful in specific contexts.

8.1. The frequency set

It is possible to define the wavefront set in terms of the frequency set of distributions
u, denoted by Σ(u) [32, p. 254], which is the projection of the wavefront set of u on
the momentum (i.e. cotangent) space:

Definition 27. Let u ∈ E ′(Rn), we define Σ(u) to be the closed cone in Rn\{0}
having no conic neighborhood V such that, |û(k)| ≤ CN (1 + |k|)−N for k ∈ V and for
all N = 1, 2, . . ..



Introduction to the wavefront set 25

Friedlander and Joshi define the frequency set Σ(u) by

Definition 28. Let u ∈ E ′(Rn), then the direction k0 is not in Σ(u) ⊂ Rn\{0} iff
there is a conic neighborhood V of k0 such that, for all N , there is a C′

N such that
|û(k)| ≤ C′

N 〈k〉−N , for all k in V , where 〈k〉 = (1 + |k|2)1/2.

Duistermaat (implicitly) proposed a third definition

Definition 29. Let u ∈ E ′(Rn), then the direction k0 is not in Σ(u) ⊂ Rn\{0} iff
there is a neighborhood W of k0 such that, for all N , there is a constant DN such that
|û(τk)| ≤ DNτ

−N for τ → ∞ uniformly in k ∈ W .

The proof of the equivalence of these definitions is left to the reader.

8.2. Several definitions of the wavefront set

The frequency set is used in several definitions of the wavefront set. According to
Hörmander [32, p. 254]

Definition 30. Let U be an open set of Rn, u ∈ D′(U) and Σx(u) =
⋂
φ Σ(φu), where

φ runs over all elements of D(U) such that φ(x) 6= 0. The wavefront set of u is the
closed subset of U × (Rn\{0}) defined by

WF (u) = {(x; k) ∈ U × (Rn\{0}) ;k ∈ Σx(u)}.

For Duistermaat [33, p. 16] the wavefront set is:

Definition 31. If u ∈ D′(U), then WF (u) is defined as the complement in U ×
(Rn\{0}) of the collection of all (x0, k0) ∈ (Rn\{0}) such that for some neighborhood

U of x0, V of k0 we have for each φ ∈ D(U) and each N : φ̂u(τk) = O(τ−N ) for
τ → ∞, uniformly in k ∈ V .

An equivalent definition was used by Chazarain and Piriou [34, p. 501], who use
the name singular spectrum but the notation WFu.

For Friedlander and Joshi [36, p. 145] (after correction of a misprint) and
Strichartz [37, p. 191]

Definition 32. Let Y be an open set of Rn and u ∈ D′(U), then we shall say that
(x0, k0) ∈ U × (Rn\{0}) is not in WF(u) iff there exists φ ∈ D(U) such that ϕ(x0) 6= 0
and k0 /∈ Σ(φu).

For Eskin [40, p. 58]

Definition 33. Let U be an open set of Rn and u ∈ D′(U), then we shall say that
(x0, k0) ∈ U × (Rn\{0}) is not in WF(u) iff there exists φ ∈ D(U) such that ϕ(x0) 6= 0

and |φ̂u(k)| ≤ CN (1 + |k])−N for all N and all k 6= 0 satisfying | k|k| −
k0
|k0|

| < δ for

some δ > 0.

The proof of the equivalence of these definitions is left to the reader.

8.3. More definitions of the wavefront set

In this section we gather alternative definitions of the wavefront set, which show that
the wavefront set is the single solution of many different problems.
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8.3.1. Coordinate invariant definition A coordinate invariant definition of the
wavefront set was given by Duistermaat [33, p. 16], following a first attempt by
Gabor [58]. We consider a smooth n-dimensional manifold M , its cotangent bundle
T ∗M and the zero section Z of T ∗M (i.e. Z = {(x; k) ∈ T ∗M ; k = 0}). Then, the
wavefront set of a distribution u ∈ D′(M) is a closed conic subset of Ṫ ∗M = T ∗M\Z:

Definition 34. If M is a smooth n-dimensional manifold, u ∈ D′(M) and (x0; k0) ∈
Ṫ ∗M , then (x0; k0) /∈ WF(u) iff, for any smooth function ψ : M × R

p → R, with
dxψ(x0, a0) = k0, there are open neighborhoods U of x0 and A of a0 such that, for any
φ ∈ D(U) we have for all N ≥ 1: 〈u, eiτψ(·,a)φ〉 = O(τ−N ) for τ → ∞, uniformly in
a ∈ A.

This definition is surprisingly general because the phase function ψ is only
required to be smooth and to satisfy dxψ(x0, a0) = k0. The usual definition of the
wavefront set is recovered by choosing A = Rn, a = k and ψ(x, a) = k · x. In the
coordinate invariant definition, the open set A is used to parametrize the covectors
k0 of the wavefront set but its dimension p is not necessarily equal to n. Still, this
general definition is equivalent to the standard one (see Refs. [33, p. 17], [34, p. 542]
and [59]).

8.3.2. Pseudo-differential operators The original definition of the wavefront set was
given by Hörmander in terms of pseudo-differential operators [60],[61, p. 89]:

WF(u) =
⋂

{charP ;Pu ∈ C∞(Rn)},

where P runs over the pseudo-differential operators of all orders [61, p. 85]. If pm(x, k)
is the principal symbol of P , then charP = {(x, k) ∈ Rn × (Rn\{0}) ;pm(x, k) = 0} is
the set of characteristic points of P [61, p. 87]. A proof of the equivalence with the
other definitions can be found in [62, p. 307] (see also [38, p. 78]).

8.3.3. Wavelets and Co In the usual definitions of the wavefront set, the distribution
u is multiplied by a large family of test functions f and the product is Fourier
transformed. It is in fact possible to use a single function f and to scale it. More
precisely, let f be an even Schwartz function that does not vanish at zero and, for any
α with 0 < α < 1, form the family of Schwartz functions ft(y) = tαn/2f

(
tα(y − x)

)

for t > 0. Then, (x, k) is not in the wavefront set of the tempered distribution u iff

there exists an open subset U of Rn such that ûft(tq) is fast decreasing in the variable
t > 0 uniformly in q ∈ U [63, p. 159]. This definition was first proposed by Córdoba
and Fefferman for α = 1/2 and f a Gaussian function [64]. It is then similar to
the FBI-transform (see Ref. [65] for a nice presentation and Ref. [66] for a geometric
version).

Although wavelets cannot be used to measure the wavefront set because they are
isotropic, some variants of them, known as curvelets [51] or shearlets [67] provide an
interesting resolution of the wavefront set.

9. Conclusion

We have presented a review of the various guises of the wavefront set. These
different points of view should help grasp the meaning of this concept. We also
proposed two new descriptions of the wavefront set of a characteristic distribution.
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Physically, we saw that the wavefront set is related to the fact that, in some directions,
destructive interferences in Fourier space become weaker than for smooth functions.
The wavefront set also describes the directions along which the singularities of the
distribution propagate. We hope that we have convinced the reader that the wavefront
set is a subtle but natural object. Its use should not be limited to quantum field theory
or many-body physics because, as stressed by Martinez, it is also related to the semi-
classical limit [65, p. 134].

It is ironic that, although the standard wavefront set is sufficient to build a
quantum theory of gauge fields and gravitation, it is not enough to describe the optics
of crystals (in particular the conical refraction). Higher order wavefront sets were
proposed [68] to solve that problem.

Finally, note that we have restricted our discussion to the classical wavefront
set. Many variations have been devised: analytic wavefront set (see [69] and [70] for
a recent comparison of various definitions), homogeneous wavefront set [71], Gabor
wavefront set [72], global wavefront set [73, 74], etc.
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[34] Chazarain J and Piriou A 1981 Introduction à la théorie des équations aux dérivées partielles
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