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Abstract: We have extended Laser Doppler holographic microscopy to

transmission geometry. The technique is validated with living fish embryos

imaged by a modified upright bio-microcope. By varying the frequency of

the holographic reference beam, and the combination of frames used to

calculate the hologram, multimodal imaging has been performed. Doppler

images of the blood vessels for different Doppler shifts, images where

the flow direction is coded in RGB colors or movies showing blood cells

individual motion have been obtained as well. The ability to select the

Fourier space zone that is used to calculate the signal, makes the method

quantitative.

© 2014 Optical Society of America
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16. U. Schnars and W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl.

Opt. 33, 179–181 (1994).

17. A. Lozano, J. Kostas, and J. Soria, “Use of holography in particle image velocimetry measurements of a swirling

flow,” Exp. Fluids 27, 251–261 (1999).

18. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,”

Appl. Opt. 44, 7697–7708 (2005).

19. J.-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt.

Express 16, 5471–5480 (2008).
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1. Introduction

Blood flow imaging techniques are widely used in biomedical studies, since they can assess

physiological processes or can be used for early detection of disease [1–3]. However, many

blood flow studies require, for imaging purposes, the use of a contrast agent, making the blood

flow characterization invasive [4, 5]. Scanning Doppler imaging techniques can be considered

to alleviate this issue, but due to the scanning step, acquisition of an image is a time consum-

ing process [6]. An overview of the main techniques has been proposed by J. D. Briers [7].

Among these, one can outline two ways of monitoring the blood flow: performing measure-

ments either in spatial domain (speckle analysis) or in temporal domain (Doppler analysis).

Blood flow monitoring has been demonstrated by Laser Speckle Contrast Analysis/Imaging

(LASCA/LSCI) [8]. Here, spatial statistics of the dynamic speckle are used to obtain blood

flow images [9, 10]. Improvement of the acquired constrast image have been achieved through

exposure time optimization [11], or intensity fluctuation analysis [12] resulting in high quality

perfusion images. However, these techniques are only limited to perfusion monitoring and do

not allow to assess other quantities such as amplitude or phase contrasts.

Originally proposed by Gabor [13] as an optimization of electron microscopy, classical

holography aims at recording, on a photo-sensitive material, the interference between a ref-

erence field and a diffracted object field. However, within the proposed common-path interfer-

ometric configuration, holographic imaging suffer from the so-called twin-image noise [14].

In 1962, Leith and Upatnieks propose to introduce an off-axis reference field, which lead to

a separation of the object and its twin image contribution in spatial frequencies domain [15].

Development and democratization of high resolution CCD/CMOS sensors paid a major role in

holographic imaging spreading out, making possible both digital recording and processing of

holographic images [16]. Therefore, due to its intrinsic properties, digital holographic imag-

ing is used in a wide variety of studies in fluid mechanics [17–21], biomedical imaging and

microscopy [22–26], or mechanical inspection [27–29].

Further development led to the introduction of heterodyne digital holography [30]. Here,

the reference field is dynamically phase shifted with respect to the object field. Therefore, the

recorded hologram is time modulated, thus enabling phase-shifted interferometric measure-

ments [31]. Moreover, this data acquisition scheme as been demonstrated to be shot-noise



limited [32, 33]. Temporal modulation feature of digital heterodyne holography can also be

used to investigate dynamic phenomena, and being considered as a laser Doppler imaging tech-

nique [34]. The ability of heterodyne digital holography to perform Doppler imaging has been

demonstrated in various domains such as microfluidics [35], vibration motion characteriza-

tion [36–38], in vivo vasculature assessment, without contrast agent [39–41] and motion of

biological objects [42–44].

In this paper, we combine laser Doppler holography [34] and transmission microscopy to

analyze blood flow in fish embryos. We have adapted a laser Doppler holographic setup to a

standard bio-microscope by carrying the two beams of the holographic interferometer (illu-

mination of the object and reference), whose frequency offset is controlled, by optical fibers.

Multimodal acquisition and analysis of the data is made by acting on the frequency offset of the

two beams, and on the location of the Fourier space filtered zone. With the same set of data, we

have imaged, with amplitude contrast, the whole fish embryo, or only the moving blood ves-

sels. In that last case, we have obtained images where the flow direction is coded in RGB color.

For large vessels, the dependance of the holographic signal with the frequency offset yields the

Doppler frequency shift, and thus the flow velocity. For small vessels, individual Red Blood

Cells (RBC) can be imaged, and movies showing the RBC motion are obtained.

2. Materials

2.1. Heterodyne holographic microscopy setup

Fig. 1. Heterodyne digital holographic microscopy experimental arrangement (a) Injection

part of the interferometer. HWP: half wave plate; PBS: polarizing beam splitter; AOM1,

AOM2: acousto optic modulators (Bragg cells). (b) Classical upright microscope used for

the off-axis recombinaison of reference and object beams. BS: cube beam splitter; CCD:

CCD camera.

Our off-axis digital holography set-up is a Mach-Zehnder interferometer in which the recom-

bining cube beam splitter is angularly tilted. To fit our set-up into regular upright microscope,

the interferometer is split into an injection (a) and a recombination (b) part, which are connected

together with optical fibers (Fig. 1).

The injection part (Fig. 1(a)) is mounted on a separate breadboard, and is used to build

both object illumination (field EI) and reference (or local oscillator (LO) ELO) beams. Laser

light is provided by a 785 nm, 80 mW Sanyo® DL7140-201S continuous mono-mode laser

diode (angular frequency ωI). Laser beam is split by a polarizing beam splitter (PBS), which

in combination with the first half wave plate (HWP) allows to adjust the optical power in both

reference and object arms of the interferometer. To enable phase shifting interferometry and



frequency scanning of the holographic detection frequency, we control the frequency ωLO of

the reference beam by using the heterodyne holography method [30]. The reference arm is

thus frequency shifted by using two acousto-optic modulators AOM1 and AOM2 (80 MHz AA

electronics®), operating at ω1 and ω2 respectively, so that ωLO = ωI +∆ω with ∆ω = ω2−ω1.

Reference and object fields are finally injected into two mono-mode optical fibers (Thorlabs®

P1-780A-FC-2 fiber patch).

Both reference (ELO) and object illumination (EI) fibers are brought to an upright microscope

(Olympus® CX41) working in transmission configuration (Fig. 1(b)). The object is imaged by

an Olympus DPlan microscope objective (MO: NA= 0.25, G=10, corrected at 160 mm). The

illumination field (EI) is scattered by the studied living object (the zebrafish embryo) yield-

ing the object signal field (E). Signal (E) and reference field (ELO) are combined together by

a cube beam splitter (BS) that is angularly tilted thus introducing an off-axis angle in the in-

terferometric arrangement. Interferences (i.e. E + e j∆ωtELO) between both fields are recorded

on a 1360×1024 pixel (6.45 µm square pitch) 12-bits CCD camera (Jenoptik ProgRes MF®)

operating at a framerate of ωS/(2π)≤ 10 Hz. Recorded data are cropped to 1024× 1024 and

FFT (Fast Fourier Transform) are made on a 1024× 1024 calculation grid. The CCD to MO

distance is such that the effective MO enlargement factor is G′ = 10.4 (instead of G = 10). In

order to perfectly control the phase and frequency of the ELO reference beam, the CCD cam-

era is triggered at frequency ωCCD, and the ω1, ω2 and ωCCD signals are generated by digital

synthesizers driven by a common 10 MHz clock.

Zebrafish (Danio rerio, wild type AB line) were maintained according to standard protocols

[45]. Larvae were mounted on a standard glass slide under a 22 mm 1.5 round coverslip with a

0.5 mm thick caoutchouc ring as a spacer and sealant. They were embeded in a drop of cooling

1.5% low melting point agarose at 37◦C and oriented before gelation. The chamber was filled

with 100 mg/l tricaine in filtered tank water and imaging was performed at room temperature.

Blood vessels nomenclature is according to [46].

3. Laser Doppler holography mode

Fig. 2. Detection of zebrafish embryo blood flow in transmission geometry. (a) Illustration

of the spectral broadening of light encountering moving scattering objects (here, red blood

cells). (b) Principles of the spectral measurement by heterodyne digital holography.

Due to motions within the sample (mainly the RBC motion within the embryo vasculature),

the incident field EI (of wave vector kI ) that is scattered to wave vector kS (yielding ES)

undergoes a Doppler shift

ωS −ωI = q .v (1)

where v is the velocity of the scatterer and q = kS −kI the scattering vector (see Fig. 2(a)) and

q.v the inner product of vectors q and v. As detection is made for all wave vectors kS within



the MO collection cone, the frequency spectrum of the moving scatterers signal is broadened.

One then gets two components: a sharp narrow peak from the photons that are not scattered

(ballistic photons) or scattered by objects that do not move, and a broad pedestal from the

photons that are scattered by moving objects and that are collected by MO. The width of the

pedestal is proportional to the MO numerical aperture NA since |q| ∼NA|kI|. With NA = 0.25,

the Doppler broadening we observe here is much smaller (10 to 100 Hz) than the one (100

to 1000 Hz) observed in previous in vivo Doppler holographic experiments made in reflection

configuration [41, 47–49], where |q| ∼ 2|kI|. Since our camera operates at ωS/(2π) = 10 Hz,

the bandwidth of our holographic detection (±5 Hz around ωLO/(2π)) in not enough to ac-

quire the moving scatterer Doppler signal. As in previous works, the frequency ωLO = ωI +∆ω
(with ∆ω = ω1 −ω2) is swept in order to acquire the whole Doppler signal and to analyze its

spectrum.

4. Experimental results

Fig. 3. Spatial filtering and reconstruction principle. Holograms H(x,y) (a), H1(kx,ky) (b),

H2(kx,ky) (c) and H3(x,y,z = 0) (d): see Media 1. The display is made in arbitrary Log

scale for the average intensity 〈|HX |
2〉. This average is calculated made by making the

reconstruction with I0..I3, with I1..I4... and with I28..I31, and by averaging the resulting

|HX |
2. Images (a) and (d) show a side view of a 6 days old zebrafish embryo. Ventral side

in on the right and anterior is up.

The holographic information is acquired by sweeping the frequency shift ∆ω/(2π) from 0 up

to ∼ 100 Hz by step of ωCCD/2π (i.e. ∆ω = mωCCD with m integer) except in section 4.1 where

∆ω = ωCCD/4. On the other hand, the movies Media 1 and Media 2 have been recorded with

∆ω = 0. To optimize sensitivity and selectivity, the illumination beam versus local oscillator

ratio is adjusted in order to have |ELO|
2 > |E|2, with |E|2 as large as possible. Exposure time

and frame rate are Texp = 50 ms and ωCCD/(2π) = 1/TCCD = 10 Hz. For each frequency shift

∆ω/(2π), sequences of N = 32 (or N = 96) CCD camera frames (i.e. I0, I1...IN−1) are recorded.



4.1. Spatial filtering and reconstruction.

The reconstruction procedure is similar to the one used in previous works [50, 51]. To illus-

trate reconstruction, let us consider 4 phase detection of the ballistic peak signal (no Doppler

shift). We have thus adjusted ω1 and ω2 to have ∆ω = ωCCD/4, and calculated the demodulated

hologram by:

H(x,y) = [I0(x,y)− I2(x,y)] + j [I1(x,y)− I3(x,y)] (2)

Figure 3(a) shows the holographic signal |H(x,y)|2 displayed in log scale. To select the +1

holographic grating order by the Cuche et al. method [52], we have performed the holographic

reconstruction of the MO pupil by the Schnars et al. method [16] yielding H1(kx,ky) with:

H1(kx,ky) = FFT
[

H(x,y) e j|k|(x2+y2)/2d
]

(3)

where FFT is the Fast Fourier transform operator, and e j|k|(x2+y2)/2d the phase factor that makes

the pupil image sharp (see Fig. 3(b)). For a plane wave reference, the parameter d is equal to

the MO pupil to CCD camera distance. Optimal spatial filtering is then made by cropping the

MO pupil disk on its sharp circular edge, and by moving the cropped zone in the center of the

Fourier space (see Fig. 3(c)) yielding H2(kx,ky). The reconstructed hologram H3(x,y,z) is then

calculated by the angular spectrum method that involves 2 FFT from FFT−1[H2(kx,ky)]. We

have thus:

H3(x,y,z) = FFT−1
[

H2(kx,ky) e j(k2
x+k2

y )/2z
]

(4)

where e j(k2
x+k2

y )/2z is the phase factor that describe the propagation of the field from the CCD

plane z = 0 to the location z of the zebrafish image (via MO). In most cases, the embryo is

in focus on the camera, and z = 0. Here, the selection of the +1 grating order is made by the

crop, the compensation of the MO phase curvature by the e j|k|(x2+y2)/2d phase factor, and the

compensation of the off axis tilt by the translation of the cropped zone.

We have calculated the so called instantaneous intensity signal |H3|
2 by using data of succes-

sive sequences of 4 frames, i.e. by calculating |H3|
2 with I0..I3, then with I1..I4... and to the end

with I28..I31). The movie of the instantaneous intensity signal |H3|
2 (see Media 1) shows that

the time varying components of |H3(t)|
2 are extremely low. We have then averaged |H3(t)|

2

over the sequence of n frames, getting 〈|H3|
2〉 that is displayed on Fig. 3(d).

The images show a side view of the zebrafish embryo. Due to the use of coherent light illu-

mination, the image exhibits some speckle noise but anatomical details such as the notochord,

somite boundaries and pigment cells are distinguished. In the corresponding movie Media 1,

motion of blood can be barely seen in the caudal artery and vein but none is observe in the

smaller capillaries.

4.2. Holographic Doppler images of the moving scatterers.

To select the moving scatterer signal that corresponds to the Doppler pedestal, we have swept

the detection frequency shift ∆ω by step ωCCD, and calculated 2 phase holograms from the

recorded data. We have thus:

∆ω = ωLO −ωI = mωCCD (5)

H(x,y) = I0(x,y)− I1(x,y)

where m is integer. Note that H(x,y) is defined by Eq. 2 for 4 phase holograms, and by Eq. 5 for

2 phase holograms. We have kept the same notation (i.e. H(x,y)), because the reconstruction

equations Eq. 3 and Eq. 4 are the same in both cases.



Fig. 4. Two phase detection efficiency |η|2 as a function of the LO versus signal frequency

offset: x. Calculation is made by Eq.6 with TCCD = 100 ms and Texp = 50 ms.

We have calculated the 2 phase holographic detection efficiency (i.e. η for the field and |η |2

for the intensity) as a function of the frequency ωS of the scattered field. This calculation is

similar to the one done in previous works [31, 32]. We get:

η(x) =
1

2Texp

1

∑
k=0

(−1)k

∫ kTCCD+Texp/2

t=kTCCD−Texp/2
e j2πxt dt (6)

=
1

2
sinc(πxTexp)

[

1− e j2πxTCCD
]

where TCCD = 2π/ωCCD is the frame time interval, and x=(ωS−ωLO)/2π the LO versus signal

frequency offset. The efficiency η2 is plotted on Fig.4. As seen, the 2 phase detection selects

scattered field components with x close to zero (i.e. with ωS ≃ ωLO). Moreover, since |η |2 is

null for x = −20,−10,0,10,20... Hz, the holographic detection efficiency |η |2 remains null

at the illumination frequency ωI, whatever the frequency shift ∆ω = mωCCD is. The ballistic

peak (whose frequency is ωI), which is much bigger than the Doppler pedestal, is thus not seen

during the sweep.

Figure 5 shows the Doppler average reconstructed holograms 〈|H3(x,y)|
2〉 obtained with fre-

quency shifts ∆ω/(2π) varying from 0 Hz (a) to 80 Hz (i) by step of 10 Hz. The recorded

hologram H(x,y), and the reconstructed intensity hologram |H3(x,y)|
2 are calculated from suc-

cessive sequence of 2 frames (In and In+1) within the sequence of N = 32 frames (with N = 0 to

30), the displayed signal 〈|H3(x,y)|
2〉 corresponding to the average of |H3(x,y)|

2 over n. Since

the ballistic peak is not seen, the contrast of the Fig. 5 images is reversed with respect to Fig. 3

(d), and vessels where blood flows are therefore seen in white on a black background. In image

(a) caudal vein (A) and caudal artery (B,C) are seen as well as intersegmental vessels (D, E)

and dorsal longitudinal anastomotic vessels. An abnormal shunt between caudal artery and vein

in seen near arrow (C).

The reconstructed images (a) to (i) are displayed with the same Log scale for the average

intensity 〈|H3|
2〉. One thus clearly see the decrease of the holographic signal with the frequency

shift (ωLO −ωI)/(2π) that is expected. Figure 6 analyzes this decreases for the zones of the

reconstructed image marked by arrows (A) to (F) in Fig. 5(a). All curves are calculated by

applying on the holographic signal 〈|H3|
2〉 a gaussian low pass filter (of 10 pixels width for

curves A,B,C and F curves, and 4 pixels width for curves D and E), and by summing the

filtered holographic signal over 8× 8 pixels. On curve (A), which corresponds to the flow in

caudal vein, the holographic signal decreases regularly with the frequency offset ∆ω . The same



Fig. 5. Reconstructed hologram H3(x,y,z = 0) made for (ωLO −ωI)/(2π) = 0 Hz (a): see

also Media 2, 10 Hz (b) ... to 80 Hz (i). Images (a) to (i) are displayed with the same Log

scale for the average intensity 〈|H3|
2〉. The sample is the same as the one in Fig. 3.

Fig. 6. Dependance of the Doppler holographic signal 〈|H3(x,y)|
2〉 with the frequency off-

set (ωLO −ωI)/(2π) for different location A to F of the reconstructed image of Fig. 3(a).

Curves are drawn with linear (a) and logarithmic (b) scales.



occurs in (B) and (C), but the decrease is slower showing faster velocities for the blood cells in

the caudal artery.

In intersegmental vessels (curves D and E), the signal 〈|H3|
2〉 is much lower than the one

of larger artery and vein. The corresponding frequency spectrum (Fig. 6D and E) exhibit a

decrease of the signal at ∆ω/(2π) = 40 and 80 Hz offset followed by an increase at 60 and

100 Hz. This might be related to the instrumental response of our holographic detection [31].

A fine analysis shows that the signal fluctuates a lot within each sequence of N frames, and

from one sequence to the next, since the flowing blood cells can be visualized individually on

the instantaneous intensity signal |H3(t)|
2 reconstructed with successive sequence of 2 frames.

Movie Media 2 shows |H3(t)|
2 for the sequence of N = 32 frames recorded at 0 Hz (i.e. without

frequency offset) that has been used to display 〈|H3|
2〉 on Fig. 5(a). Movie Media 3 shows

|H3(t)|
2 for a sequence of N = 96 frames that image the embryo shown in Fig. 8(h) and (i).

The RBCs individual motion in intersegmental vessels is clearly seen on Media 2 and Media 3.

These two movies are very similar to those seen in reference [53]. They can be used to measure

the RBC velocity by Particule Image Velocimetry (PIV).

4.3. RGB holographic Doppler images yielding direction of motion.

Fig. 7. Fourier space reconstructed hologram H2(kx,ky) made without (a) and with (b,c)

selection of the scattered wave vector kS. In (b) the selected zone is oriented toward uϕ=0.

In (c), three zones oriented along uϕ with ϕ = 0 (blue), 2π/3 (green) and 4π/3 (red) are

selected. Display is made in arbitrary log scale for 〈|H2|
2〉. Frequency shift is (ωLO −ωI) =

0 .

The holographic experiment made in transmission configuration gives here a Doppler signal

corresponding to single scattering events like in Dynamic Light Scattering (DLS) experiments.

The Doppler shift is thus simply q.v where q = kS − kI. The illumination (or incident) wave

vector kI is fixed by the geometry of the experimental setup. In transmission geometry, kI is

parallel to uz (where ux, uy and uz are the unit vectors in the x,y and z directions). On the

other hand, kS = (kx,ky,kz) with |kS| = 2π/λ is measured by our holographic experiment. In

the reconstruction procedure, the cropped and translated zone seen on Fig. 3(c) and on Fig 7(a)

is a map of the holographic signal as a function of kx and ky.

It is then possible to select kS by spatial filtering in the Fourier space, and to reconstruct

images corresponding to given intervals of kS. To illustrate this idea, we have selected three

kS zones covering half of the Fourier space. These zones are oriented toward uϕ=0, uϕ=2π/3

and uϕ=4π/3 with uϕ = cosϕ ux + sinϕ uy. With the holographic signal H2(kx,ky) of each

zone, we have reconstructed a Red, Green or Blue colored image 〈|H3(x,y,z)|
2〉, and we have

combined these three images to get RGB images sensitive to the direction of kS (and thus to the

direction of q and v). Figure 7 (b) shows the |H2(kx,ky)|
2 signal, filtered by the ϕ = 0 spatial

filter, which corresponds to the blue image. Figure 7 (c) shows the Fourier space RGB image

of the |H2(kx,ky)|
2 signal obtained by combining the three colored images corresponding to the



ϕ = 0, ϕ = 2π/3 and ϕ = 4π/3 filters.

One must notice here, that the wave vector of ballistic light remains parallel to uz yielding

a bright peak near the center of the Fourier space (kx,ky ≃ 0). Although most of the ballistic

light is removed in 2 phase holograms recorded without frequency offset, this peak still remains

visible in that case as seen on Fig. 7(a). To fully eliminate the ballistic light, the center of the

Fourier space (i.e. kx,ky ≃ 0) has thus been removed from the selected zones as shown on Figure

7(b) and (c).

Fig. 8. Colored reconstructed hologram H3(x,y,z = 0) made for (ωLO −ωI)/(2π) = 0 Hz

(a), 10 Hz (b) ... to 60 Hz (g), and for -20 Hz (h) and + 20 Hz (i). Images (a) to (g) are

made with same zebrafish sample and same viewpoint as Fig. 3 and Fig. 5. Images (h) to

(i) correspond to another fish embryo. Images (a) to (g) (and (h) and (i)) are displayed with

the same color RGB Log scale for the average intensity 〈|H3|
2〉. Media 3 corresponds to

images (h) and (i).

Figure 8(a) to (g) shows the RGB colored reconstructed image of the zebrafish sample ob-

tained with the holographic data of Fig. 5(a) to (g). Without frequency offset (Fig. 8(a) with

∆ω = 0), the RGB colored reconstructed image is very similar to the black and white one (Fig.

5(a)), but with lower resolution, since half of the Fourier space information is used in the re-

construction. The images of Fig. 8 are obtained from a sequence of 32 images (i.e. with an

acquisition time of 3.2 s). The reconstruction is made on GPU in less than one second for the

32 images. Since the detection shift ∆ω is null, the detection efficiency does not depend on the

sign of the Doppler shift of the signal ωS −ωI. Detection is not sensitive to the sign of q.v, nor

to the v direction (even if q direction is selected in the Fourier space). The colors in the recon-

structed image of Fig. 8(a) are thus the same whatever the motion direction is. With increasing



frequency shifts ∆ω , signal decreases but colors change, depending on the flow direction. On

figure 8(d), with ∆ω = 30 Hz, caudal artery appears in cyan, while caudal vein, where blood

flows in opposite direction, is seen in orange. The flow direction corresponds here to the Fig. 8

color wheel. This wheel corresponds to the colored image of the Fourier space filtered signal

|H2(kx,ky)|
2 of Fig. 7(d) rotated by 180◦.

To verify that the RGB colored images give a realistic information on the direction of the

velocity v, we have recorded, with another embryo, holograms for both sign of the frequency

offset ∆ω . Figure 8(h) and (i) shows the reconstructed RGB images obtained for ∆ω/(2π) =
±20 Hz. Here again, the colors of the reconstructed image depend on the flow direction, but

the color coding is reversed for negative frequency offsets: ∆ω < 0. The correspondence of the

motion direction with the color wheel is only valid for positive shifts ∆ω > 0.

5. Conclusion

In this paper, we have shown that an upright commercial bio-microscope can be transformed

into a powerful holographic setup, by coupling the microscope to an heterodyne holographic

[30] breadboard with optical fibers. By controlling the frequency offset ∆ω of the reference

beam, and by using different combinations of frames to calculate the hologram H, we have

imaged a living zebrafish embryo under different modalities. With ∆ω = 0 and H = (I0 − I2)+
j(I1 − I3), we have calculated the amplitude and the phase of the transmitted light. Although

the phase can be qualitatively explored, we have not displayed phase images because the phase

variation is too fast (the thickness of the embryo is hundreds of microns).

With ∆ω = mωCCD (where m 6= 0 is integer) and H = (I0 − I1), we have selected the signal

whose Doppler shift ωS −ωI is close to ∆ω according to Eq. 4 and Fig. 4) and imaged the

blood flow. With ∆ω = 0 and H = (I0 − I1), we have visualized individual moving bloods cells

in intersegmental vessels, getting movies that show their instantaneous motion.

Since the scattering is moderate like in DLS (Dynamic Light Scattering) experiment, the

Doppler shift is directly related to the scatterers (i.e. blood cells) velocity v by ωS −ωI = q.v

with q = kS −kI. Since kI ‖ uz is known, and since kS can be selected in the Fourier space, the

scatterers velocity v can be measured quantitatively by a proper choice of both the frequency

offset ∆ω and the Fourier space selected zone. To illustrate one of the numerous possibilities of

Doppler holography in transmission, we have imaged the blood cell motion direction in RGB

colors.

In the present paper, we have not used the possibilities for numerical refocusing to image

different z layers of our sample. This could be useful, since all blood vessels are not in the same

z plane. For instance, in Fig. 5 and Fig. 8(a)-8(g), the caudal artery is roughly on focus, while

the caudal vein is out of focus by about 100 µm. Refocusing could thus be used to reconstruct

the embryo vascular system in 3D.

We intend to further improve the method by using a faster camera (to better analyze the

motion of individual blood cells) and a higher numerical aperture objective (for better optical

sectioning).
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