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Introduction
Actual taxes may be random when the tax base is not fully known by the

tax authority:

There may be administration errors, or successful tax evasion with

imperfect auditing.

Customers often buy goods and services whose quality and/or price

depend on future contingencies:

Quality of a journey is random when strikes, equipment malfunction or

unavailable aircrafts.

Online travel intermediaries offer non-refundable ‘opaque’ low price hotel

rooms (some characteristics are revealed after payment).

Both quality and price may be random when firms use overselling or

overbooking combined with consolation rewards.

In most economic models, concave objectives on convex sets lead to

nonrandom choices.

But asymmetric information and self-selection in principal agent models

introduce nonconvexities.

This paper studies whether a deterministic optimum can locally be

improved upon through random deviations.



Intuitions
A random tax system may be optimal when taxpayers differ in their

attitudes towards risk

Tax randomization enables the government to separate agents who

otherwise would have been treated equally.

Consider an economy with two types of agents:

1. One is skilled and displays a high level of risk aversion,

2. The other is unskilled and has a lower level of risk aversion.

Assume that redistribution favors the unskilled (poor) agent.

If neither skills nor risk aversions are publicly observed, the skilled would

pretend to be unskilled if they faced too high a tax.

With a random tax on the unskilled workers, the risk averse skilled types

are discouraged to pretend being unskilled.

This may yield a social gain possibly overcoming the efficiency loss due to

risk bearing on the unskilled.

The most general results on the usefulness of random taxation appear in

[?].

In the airline case, exposure to risk discourages business men (who want

to be on time) to buy second class tickets.



A rudimentary principal-agent setup

The principal faces two agents i = 1, 2.

Utility of agent i is ui (·) defined on two goods.

The VNM utility index ui (·) is increasing and concave.

A ‘contract’ specifies the quantities of each good.

Ex ante utility of i receiving a random contract z̃i is Eui (z̃i ).

The principal chooses a profile (z̃1, z̃2) which maximizes Eu1(z̃1).

Preferences are private information to the agent.

If too much is given to type 1, type 2 will pretend to be of type 1.

Incentive compatibility requires Eu2(z̃2) ≥ Eu2(z̃1).

Other constraints, e.g., feasibility, is irrelevant to the argument.



Local optimality

Let (z∗1 , z
∗
2 ) be the optimal deterministic contract.

This contract maximizes u1(z1) s.t. u2(z2) ≥ u2(z1).

The associated Lagrangian is L(z) = u1(z1) + λ21 [u2(z2)− u2(z1)].

First-order conditions: An interior optimum z∗ satisfies ∇zL(z∗) = 0.

Second-order conditions involve:

1. the 4× 4 Hessian H = ∇2
zL(z∗) at z∗,

2. the tangent space to the active constraints at z∗,

i.e., all z s.t. ∇z [u2(z∗2 )− u2(z∗1 )]′ z = 0.

Local optimality requires that z ′H z ≤ 0 for all z in this space.

Here there is one binding constraint whereas z is a 4× 1 vector.

One eigenvalue of the 4× 4 Hessian H must be non positive.

Local optimality is consistent with the other eigenvalues being positive.



Nonconcave Lagrangian

The Hessian is H = ∇2
zu1(z1) + λ21

[
∇2

zu2(z2)−∇2
zu2(z1)

]
.

Since the utility indices are concave, ∇2
zui (zi ) is negative definite.

A nonconcave Lagrangian is more likely to obtain when:

1. The optimum z∗ is far from the first-best optimum.

2. Agent 2 is strongly risk-averse when she mimicks agent 1.

Of course all these quantities are determined endogenously.

They must be compatible with optimality of the deterministic program.



Consider now a profile of random contracts (z̃1, z̃2).

Say that z̃i is distributed according to cdf Fi on support Zi .

The optimal random contract maximizes Eu1(z̃1) s.t. Eu2(z̃2) ≥ Eu2(z̃1).

The associated Lagrangian is L̃(z) = Eu1(z̃1) + λ21 [Eu2(z̃2)− Eu2(z̃1)].

This Lagrangian is crucial in assessing whether randomness may be useful.



Useful randomization: Step 1

Consider a local maximum (z∗) among the nonrandom contracts.

Consider deviations (dz̃) s.t. IC is binding at (z∗ + dz̃).

The change in the objective is

Eu1(z∗1 + dz̃1)− u1(z∗1 )) = L̃ − L.

The initial deterministic optimum satisfies the first-order conditions.

Thus the reform yields at most a second-order change to the objective:

L̃ − L =
1

2
Edz̃ ′Hdz̃ + o(||dz̃ ||2).



Useful randomization: Step 2

Consider a deviation from z∗ taking two values:

dz̃1 = tv + β(t), dz̃2 = −tv + β(t),

drawn independently with equal probability.

This deviation has two parts:

1. A deterministic part β(t) ensuring that the constraint is binding

2. A lottery with zero mean in some direction v of the Hessian.

The small positive scalar t measures the scale of the change.



Useful randomization: Step 3

From Steps 1 and 2, Eu1(z∗1 + dz̃1)− u1(z∗1 )) equals

1

2

2∑
i=1

1

2

[
(−1)i tv + β(t)

]′
H
[
(−1)i tv + β(t)

]
+ o(||dz̃ ||2).

It can be shown that β(t) is O(t2) at most: For t ' 0,

Eu1(z∗1 + dz̃1)− u1(z∗1 )) ' t2

2
v ′Hv + o(t2).

Taking v an eigenvector of H yields our main result:

Proposition 1. Consider a nonrandom optimum among the nonrandom

contracts. The objective can be improved upon through local random

contracts if the Hessian H of the nonrandom Lagrangian has at least one

positive eigenvalue.



General statements 1: Deterministic problem

Consider the deterministic constrained optimization problem:

max
x∈RM

{f (x) | gn(x) ≥ 0 for n = 1, . . . ,N} .

The functions f (·) and gn(·) are twice continuously differentiable.

The Lagrangian L(x , λ) is f (x) + λ′g(x), where λ ∈ RN
+.

1. There exists λ∗ ≥ 0 s.t. ∇xL(x∗, λ∗) = 0, and the complementary

slackness conditions λ∗ngn(x∗) = 0 hold for all n.

2. The Hessian H = ∇2
xL(x∗, λ∗) is s.t. x ′Hx ≤ 0 for all x such that

∇gn(x∗)′x = 0 for all n with gn(x∗) = 0.



General statements 2: Random problem

Consider the random optimization problem:

max
x̃
{Ef (x̃) | Egn(x̃) ≥ 0 for n = 1, . . . ,N} ,

where x̃ is a random variable with values in RM .

1. If H is negative definite, then x∗ is a local maximum of the random

problem.

2. If H has a positive eigenvalue, then there is a vector v such that

v ′Hv > 0, and Ef (x∗ + h̃(t)) > f (x∗) for the random deviation h̃(t)

equal to tv + β(t) and to −tv + β(t) with equal probabilities, for

small enough t different from 0, and β(t) satisfying

∇gn(x∗)′β(t) +
1

2
t2v ′∇2gn(x∗)v = o(t2),

for all the active constraints.



Remarks

All our results would apply if there were also equality constraints.

1. Qualification of the (binding) constraints

2. Zero eigenvalues



A taxation example

Two types of agents, n1 of type 1 and n2 of type 2, n1 + n2 = 1.

Type 1 agents are ‘disabled’ and do not supply any labor.

They consume c1 and get a utility u1(c1), with u1 increasing and concave.

Type 2 consumes c2 and produces y2 goods.

Their utility is u2(c2)− v2(y2), u′2 > 0, u′′2 < 0, and v2(0) = 0, v ′2, v
′′
2 > 0.

The government chooses (c1, c2, y2) which maximizes

a1n1u1(c1) + a2n2 [u2(c2)− v2(y2)]

subject to

n1c1 + n2c2 ≤ n2y2 and u2(c2)− v2(y2) ≥ u2(c1).



When a2/a1 is low enough, the incentive constraint binds at the optimum.

Then, the optimum is s.t.

n1c1 + n2c2 = n2y2,

u2(c2)− v2(y2) = u2(c1),

and the first-order condition

u′2(c2) = v ′2(y2)

holds.

One can check that the solution is always a local maximum.



Can we improve upon the deterministic optimum through random taxes?

The Hessian is a1n1u
′′
1 (c1)− λu′′2 (c1) 0 0

0 (a2n2 + λ) u′′2 (c2) 0

0 0 − (a2n2 + λ) v ′′2 (y2)

 .

There is a profitable local random deviation iff a1n1u
′′
1 (c1)− λu′′2 (c1) > 0.



Proposition 2. A necessary and sufficient condition for the existence of

an open interval of values of social weights where the deterministic

second-best optimum is locally dominated by a random allocation is

rA1 (c∗1 )

rA2 (c∗2 )

(
1 +

n1
n2

u′2(c∗2 )

u′2(c∗1 )

)
< 1.

where rAi (c) = −u′′i (c)/u′i (c) is the coefficient of absolute risk aversion

of type i when consuming c .

1. The positive eigenvalue is associated with c1 ⇒ random disability

allowance c1.

2. The incentive constraint yields u2(c∗2 ) > u2(c∗1 )⇒ c∗2 > c∗1 . Hence,

useful randomization if rA1 (c∗1 ) < n2r
A
2 (c∗2 ), i.e., 2 is much more risk

averse than 1.



Example 2: Monopoly pricing

The principal produces a commodity in different qualities.

One good of quality q costs c(q), with c(0) = 0, and c ′, c ′′ > 0.

Each agent buys at most one good.

A type i agent buying a quality q good at price p has utility vi (θiq − p).

By convention valuations increase with i , θi < θi+1 for all i ≤ I − 1.

The problem of the seller is to choose a profile (p̃i , q̃i ) which maximizes

I∑
i=1

niE[p̃i − c(q̃i )]

s.t.

Evi (θi q̃i − p̃i ) ≥ 0 for all i

Evi (θi q̃i − p̃i ) ≥ Evi (θi q̃j − p̃j) for all i , j .



Deterministic optimum

The single crossing condition is satisfied.

If qi ↑ with i , then IR of type 1 and neighboring downward IC bind.

The interior optimum satisfies

nic
′(qi ) = Niθi − Ni+1θi+1 with Ni =

I∑
j=i

nj for i ≤ I ,

and NI+1 has been set to zero.

In the sequel, we assume that:

1. Niθi > Ni+1θi+1 for all i

2. The sequence (Niθi − Ni+1θi+1) /ni is increasing with i

3. c ′(0) = 0 and c ′(∞) =∞.



Random deviations

The Hessian H is a diagonal matrix whose ith diagonal entry is

∂2L
∂q2i

= −nic ′′(qi )− Niθ
2
i r

A
i + Ni+1θ

2
i+1r

A
i+1,

where rAi is the coefficient of absolute risk aversion of type i at the

deterministic optimum.

Proposition 3. Suppose that H is of full rank at the deterministic

optimum. It is worthwhile to locally randomize the quality designed for

type i consumers if and only if

Ni+1θ
2
i+1r

A
i+1 > Niθ

2
i r

A
i + nic

′′(qi ).

NI+1 = 0 ⇒ quality offered to the highest type is nonrandom.

More generally the risk aversions of the consumers matter as expected.

↑ c ′′ ⇒ the seller is reluctant to randomize quality.


