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Abstract

The paper identifies a necessary and sufficient condition for a de-
terministic local optimum to be locally improved upon by a stochastic
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technique is applied to a number of adverse selection and moral hazard
problems.

JEL classification numbers: C61, D82, D86, H21.

Keywords: second order conditions, constrained optimization, in-
centive constraints, random contracts.

*We are most grateful to Helmut Bester, Bernard Salanié, and Roland Strausz for nu-
merous comments. The editor, Alessandro Pavan, and three anonymous referees made a
number of suggestions which lead us to improve and better focus the manuscript. We also
benefited from the remarks of seminar participants at INSEE-CREST, the 2011 Econo-
metric Society European Meeting in Oslo, Bocconi University, Humboldt University of
Berlin and University College London. This work has benefited from the financial support
of the European Research Council under grant WSCWTBDS.

"Paris School of Economics and University of Paris 1.

tSciences-Po, University College London and Institute for Fiscal Studies.



1 Introduction

In most economic models, concave objectives on convex sets lead to nonran-
dom choices. However asymmetric information and self-selection considera-
tions introduce nonconvexities that may render randomization useful. The
paper provides a necessary and sufficient condition for a deterministic opti-
mum to be improved upon locally by a stochastic deviation. The result is
applied to standard moral hazard and adverse selection problems. This re-
sult allows for a similar treatment of both models, pointing out their common
underlying structure.

The paper considers an abstract optimization program, with a finite num-
ber of constraints which possibly define a nonconvex set of admissible choices
in a finite dimension Euclidean space. When choices are restricted to be de-
terministic, a condition satisfied by a local optimum is that the second deriva-
tive of the Lagrangian be negative for all deviations in the tangent space to
the active constraints. In the associated random problem, where choices may
be random and the functions defining the objective and constraints are the
mathematical expectations of those of the deterministic program, the set of
admissible deviations is larger than in the deterministic problem. Admissible
deviations in the random problem which are not allowed in the determinis-
tic problem may be exploited to improve the objective. The main technical
result of the paper is that the deterministic optimum, when associated with
a regular Hessian of the Lagrangian, can locally be improved upon through
a random deviation if and only if the Hessian has a positive eigenvalue. We
also give a constructive method to build an improving deviation.

We first apply the above result to a multidimensional static moral hazard
problem with a finite number of effort levels and outcomes. Generalizing
Arnott and Stiglitz (1988), we find that when the agent utility is separa-
ble in effort and wages an optimal interior deterministic contract cannot be
improved upon by local randomization. This property extends to the non
separable preferences used by Grossman and Hart (1983) and also to more
general non separable preferences which exhibit a multidimensional measure
of risk aversion that increases with effort. This yields results of Bennardo
and Chiappori (2003) in the unidimensional case. Therefore, for a determin-
istic optimum to be improved upon through local random deviations, it is
necessary that the agent utility be non separable in effort and wages and that
risk aversion be nonincreasing in effort.

We then consider a general class of adverse selection models, with spe-



cialization to a taxation and a monopoly pricing setups. It is known that
a random tax on low incomes may discourage the more able workers from
mimicking the less able and thus alleviate the incentive constraints (Stiglitz
(1982)). The more general results on the usefulness of random taxation
have been obtained in a two good economy by Brito, Hamilton, Slutsky, and
Stiglitz (1995). Our technique provides a simple way of deriving their result
and allows for a transparent economic interpretation.

Our other adverse selection application concerns discrimination strategies
of a monopolist through differential risk exposure. The quality of a good of-
ten depends on future contingencies, e.g., the journey has random features
associated with strikes, equipment malfunction or unreliable aircrafts. Risk
averse customers facing such alternatives will usually seek some form of in-
surance. Firms can exploit differences in the risk aversion of their customers
by a suitable design of risk exposure. Airline companies thus offer high price
tickets ensuring business men who want to be on time against random delays.
Following Maskin and Riley (1984), in a Mussa and Rosen (1978) setup, we
provide the condition under which a monopolist facing customers with dif-
ferent risk aversions should randomize the quality of service.

The paper is organized as follows. Section 2 presents the mathematical
properties that underlie the paper. Section 3 deals with the moral hazard
model. Finally Section 4 studies adverse selection, with applications to tax-
ation and monopoly pricing.

2 A mathematical result

Consider the following constrained optimization problem:
max f(x)
gn(x) >0, n=1,...,N

where z is in RM. The functions f(-) and g,(-), n = 1,..., N, are twice
continuously differentiable. We do not impose convexity restrictions on the
objective f(-), nor on the constraints g, (-). We shall refer to this program as
the deterministic problem. The associated Lagrangian £(z, ) is the function
f(z) 4+ Ng(z), where X is a vector of RY.

Some of our results require qualification of the constraints. The nth
constraint is active at some point = of the domain when g,(x) = 0. The
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constraints are qualified at « when the gradient vectors Vg, (z) of the active
constraints at x are linearly independent.

The following property is drawn from Simon and Blume (1994), Th. 18.4
and 19.8.

Theorem 1. Let x* be an interior local maximum of the deterministic prob-
lem where the constraints are qualified.

1. There exists \* > 0 such that V, L(x*, \*) = 0, and the complementary
slackness conditions \:g,(x*) = 0 hold for all n.

2. The Hessian V2L(x*, \*) is negative semi-definite on the tangent space
to the active constraints at z*, i.e., ¥’ V2L(x*, N )z < 0 for all x such
that Vg, (x*)'x = 0 for all constraints n with g,(x*) = 0.

Let z* in R™ be a point that satisfies the first order conditions given
in part 1 of Theorem 1. We prove a converse to Theorem 1. Suppose that
the condition given in part 2 of Theorem 1 is not satisfied in the following
sense: there is a direction ™ in the tangent space to the active constraints
such that z7'V2L(z*, A\*)z* > 0. We are interested in the feasible deviations
which improve the objective in this circumstance. A deterministic deviation
from x* is a continuous function h(t) from [0, 1] into R™ such that h(0) = 0
and

gn(z" + h(t)) = gn(z") = 0 (1)

for all n such that g,(z*) = 0.

Theorem 2. Let x* be a point where the constraints are qualified and the
first order conditions of Theorem 1.1 are satisfied. Suppose that there is a
direction x in the tangent space to the active constraints such that

e VEL(2*, N ot > 0.

Then there exists a deterministic deviation h(t) = txt 4 5(t) satisfying

1
Vg (z*) B(t) + §t2x+'v29n(:p*)':v+ = o(t?),

for all the active constraints n with g, (z*) = 0, such that f(z*+h(t)) > f(x*)
for small enough t different from 0.



Consider now the following maximization problem:
maxEf (7)
Eg.(z) > 0, n=1,...,N

where 7 is a random variable with values in RM | such that the mathematical
expectations of f(Z) and the ¢,(%), n = 1,...,n are well defined. We shall
refer to this program as the random problem.

Let z* be a point in RM which satisfies the constraints. A random devi-
ation h(t) from z* is an application from [0, 1] into the random variables in
RM which satisfies )

Ega(” + h(t)) = gal") = 0 2)

for all active constraints, such that iL(O) = 0 and the diameter of the support
of h(t) is a continuous function of ¢. Then we have:

Theorem 3. Let z* be a point where the constraints are qualified, the first
order conditions of Theorem 1.1 are satisfied, and the Hessian V2L(z*, \*)
is of full rank.!

1. IfV2L(x*, \*) is negative definite, * is a local maximum of the random
problem: there exists an open neighbourhood V(x*) of z* in RM such
that

fa®) > Ef(z)
for all random wvariables T, & # x*, with support contained in V (x*)
such that Eg,(Z) = gn(z*) = 0 for the active constraints.

2. Suppose that V2L(z*,\*) has a positive eigenvalue. To any vector x™
such that x'V2L(x*, A\*)x™ > 0, one can associate a random deviation
h(t) equal to tzt + B(t) and to —tz™ + B(t) with equal probabilities
satisfying

Vgn(x*) B(t) + %t2317+'V2gn(:c*)31:'+ = o(t?)

for all the active constraints, such that Bf (z* +h(t)) > f(x*) for small
enough t different from 0.

We have therefore:

! This last assumption is discussed in Remark 1 below.



Corollary 1. Suppose that the Hessian V2L(z*,\*) is of full rank. There
exists a random deviation that locally improves upon the deterministic x* if
and only if this Hessian has a positive eigenvalue.

Theorems 1 to 3 provide a detailed picture of the local properties of
a solution x* to the first order conditions of the deterministic constrained
optimization problem. From Theorem 1, if * cannot be improved upon
by deterministic moves in the constrained set, the second derivative of the
Lagrangian is semi negative definite on the tangent plan to the active con-
straints. Conversely, from Theorem 2, if there exists a direction in the tan-
gent plan along which the Hessian of the Lagrangian is strictly positive, x*
is not a local optimum of the deterministic problem, and there are local de-
terministic deviations in the constrained set which yield a higher value of
the objective. Theorems 1 and 2 do not tell us anything on the behaviour of
the second derivative of the Lagrangian out of the tangent plan to the active
constraints, indeed a region which is forbidden territory to the deterministic
problem. Our contribution in this respect is Theorem 3. It shows that any
direction along which the Hessian of the Lagrangian is positive, belonging or
not to the tangent plan to the active constraints, allows to build a feasible
improving random deviation. If the number of active constraints is N,, the
tangent plan to the active constraints has dimension M — N, and its comple-
ment of dimension N, is the size of the space in which the second derivative
of the Lagrangian at a local deterministic optimum may be positive and
generate improving random deviations.

The argument yielding Theorem 3 is constructive. Consider a local de-
terministic maximum z* and small deviations dz such that all the active
constraints at * remain binding at the new point #* + dz. The change in
the objective is therefore

Ef(z* +di) — f(z*) = L - L, (3)

where the Lagrangian £ is evaluated at z* and the Lagrangian £ at the new
point.

Since z* satisfies the first order conditions in Theorem 1.1, the reform
yields at most a second order change to the objective,

f—r-— %E(d:&)’H(di) + o(|[di]]?). (@)



One can build deviations dZ that increase the objective when H has a pos-
itive eigenvalue. The deviation involves two parts: a lottery with zero ex-
pected value in the direction of the eigenvector ™ associated with the posi-
tive eigenvalue of H, and a deterministic part 3(t) chosen so that the binding
constraints of the program at z* stay binding along the deviation. The de-
viation is parameterized with a small positive scalar ¢ which measures the
scale of the change along the direction x*. The deviation takes two values

dit =tz + B(t), di? = —tzt + B(t),

drawn independently with equal probability. The proof of Theorem 3 shows
that G(t) is of small order in ¢, so that for ¢ close enough to 0, (3) and (4)
yield

~ 1
L—L= §t2x+’Hx+ + o(t?) > 0.

Remark 1. Theorem 3 is shown under the assumption that the Hessian of
the Lagrangian is of full rank. In practice this restriction may fail to hold in
two different circumstances:

1. The Lagrangian may be linear in some directions, with all derivatives
of order two and larger being equal to zero on these directions in a
neighbourhood of z*. For x* to be the optimum, all the derivatives of
the Lagrangian along these directions must be zero, and the problem is
reduced to the complement directions. Generically the Hessian of the
reduced system is of full rank and Theorem 3 then can be applied.

2. The Hessian is not of full rank, but the function is not locally linear,
with some derivative of order larger than 2 not zero in the directions
along which the Hessian is null. This is a non generic case, which is
not covered by our analysis.

Remark 2. Theorem 3 has scope provided that some of the constraints in
the random problem are written in expectation. If none of the constraints is
written in expectation, then randomization is not valuable.? Indeed, consider
the (mixed) problem

max E f(7)

gn(z) >0, n=1,....N

2We are grateful to a referee for pushing us to investigate this question.
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Here the N, active constraints have to hold in all random events, so that
given M — N, possibly random coordinates of =, the active constraints allow
to compute locally the N, remaining ones as a deterministic function of the
latter. Now substituting into the objective yields an unconstrained optimiza-
tion in M — N — a unknowns. Therefore the mixed problem has the same
optimum as the deterministic one.

3 Moral hazard

3.1 General setup

Consider an agent who can choose between a finite number of effort levels ¢
(t=1,...,I). Effort i induces a probability distribution on the set of possible
outcomes s, s = 1,...,5. The probability of seeing s after taking effort i is
Pis, With p;g > 0 and > p;s = 1 for all i. The principal has a von Neumann
Morgenstern utility index w;s(z) when the effort is 7 and the outcome is s,
where z is a K-dimensional vector of transfers from the principal. In most of
the literature, K equals 1, but larger K's ease the comparison with adverse
selection models. The von Neumann Morgenstern utility index of the agent
is vis(z). We assume that u;s (resp., v;s) is decreasing (resp. increasing) in
any component z* of z.

The outcome s is publicly observed and verifiable. The effort chosen re-
mains private information to the agent. The principal sets a transfer schedule
conditional on outcome to which she is committed. The schedule is said to
be deterministic when each outcome s is associated with one K-dimensional
vector of transfers z, only. It is random when the transfers take the form of
a lottery (Z;) for some outcome s.

Assume that the principal wants the agent to undertake effort level h. The
principal chooses a transfer schedule (Z,) for every outcome s that maximizes

S
Z phs]Euhs (28)
s=1

subject to the incentive constraints

S S
> pnsBons(3) > pisBuia(,) for all i # b, (Ani)

s=1 s=1



and the individual rationality constraint

S
thsEvhs(gs) 2 l_], (Ph)

s=1

where the agent’s utility when he breaks his relationship with the principal
for his next-best opportunity is set to .
The Lagrangian function of the deterministic problem is

L= ph [uhs(zs) + p(vns(2) =) + ) A (vhs(zs) - %ws(zs))] :

s=1 i£h Phs

The Lagrangian is the sum over the states of functions of z,. This separability
over the states simplifies the analysis. The Hessian H of the Lagrangian
associated with the deterministic optimum is a block diagonal matrix of
dimension SK x SK whose sth block H, is the K x K matrix V2 L of the

second derivatives of £ with respect to z

Hy = phs [V2uhs + (P +> )\hi) V20hs = > Aui Dis VQUis] SN ©)
ith izn  Phs
The SK eigenvalues of H are the eigenvalues of the matrices Hy, s = 1,..., 5.

A direct application of Theorem 3 yields

Proposition 1. Suppose that the Hessian of the Lagrangian is of full rank
at the deterministic optimum. A necessary and sufficient condition for local
randomness to improve upon the optimum is that for some outcome s, one
eigenvalue of the matriz Hy be positive. Then the random deviation can be
supported by the corresponding eigenvector, bearing on the transfers associ-
ated with outcome s.

In the case where the von Neumann Morgenstern utility indices are con-
cave, the first two terms in (5) are negative definite, whereas the last sum is
positive definite. Intuitively, a random 2z is useful in outcome s if this out-
come is likely to occur when the agent has undertaken effort ¢ rather than the
desired effort level h (p;s/pps is high), and noise on the transfers discourages
the agent to undertake effort ¢ (the risk aversion of the agent when effort is
i is greater than in the situation where effort is h, i.e., VZv;,(z,) is large in
absolute value compared with V2w, (z,)).
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Proposition 2. Suppose that, at the deterministic optimum, the matriz

8Uis 8vhs
0zk 0zk
is negative definite for all i # h and some kth coordinate z* of the vector of

transfers. Then, local randomization of the transfers in outcome s decreases
the utility of the principal.

V2Uhs — VQUiS

Proof. The first order conditions in z, are

Viups + (P + Z Ahi) Vups — Z Ahi%vws =0. (6)

i+h izn  Phs

Dhs

The kth equation of this system can be used to get the expression of

p+ Z Ahi-
i#h
Reintroducing this expression into (5) shows that H; is negative definite, i.e.,
all its eigenvalues are non positive. This concludes the proof. O

Local randomization is therefore unprofitable in the standard specification
where the utility of the agent is separable in effort, Vu;, is independent of
effort, in line with Arnott and Stiglitz (1988).

The previous literature has usually considered the simpler case where z
is a real number which represents the wage of the agent. In Grossman and
Hart (1983) the agent produces g5 with probability p;s when she undertakes
effort 7. The principal then gets g5 — z,. The utility of the agent is v;(zs) =
G; + Kv(zs), where G; and K; are real parameters possibly varying with
effort. It is not separable in effort. For this specification, the matrix given in
Proposition 2 reduces to K;v'(zs) Kpv" (z5) — Kpv'(2s) K;v"(zs), which equals 0.
Hence the Hessian is a S x S diagonal matrix with component (s, s) equal to
Hy = ppsvil(z5) /vy, (zs) < 0. It is definite negative, and so there is no useful
local randomization.

For more general preferences of the agent v;s(z), with z a real number,
Proposition 2 shows that local randomization is still useless in outcome s
when the risk aversion of the agent, evaluated at the deterministic optimum,
is higher when he undertakes the desired effort, i.e.,

i 1
CUhalE) o ) po e,
hs(2s) — vis(2s)
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This is the condition found by Bennardo and Chiappori (2003). Assuming
that the principal wants to implement the highest effort level, useful random-
ization requires that the absolute risk aversion decreases with effort.

4 Adverse selection

4.1 General setup

The principal faces a continuum of agents of different types i, i = 1,...,1,
with whom she contracts. A deterministic contract is a K dimensional vec-
tor z. When a type i agent chooses contract z, he gets utility v;(z) while the
principal receives u;(z). The functions u; and v; are concave von Neumann
Morgenstern utility indices, and we allow for ex ante random contracts. The
ex ante utility of a type i agent receiving a random contract Z is Ev;(Z), while
that of the principal is Ew;(2). His type is private information to the agent.
The principal knows the distribution of types in the population but does not
observe individual types.

Under the revelation principle, the principal chooses a menu of random
contracts (Z;), ¢ =1,..., I, solution to the program P

I
max Z niEu;(Z;)

i=1
subject to individual rationality constraints
Ev;(2;) > v for all 7, (pi)
and incentive constraints
Ev;(%;) > Ev;(Z5) for all ¢ and all j. (Aij)

The incentive constraints ();;) make sure that when the principal an-
nounces a menu of contracts (Z;) type i agents voluntarily choose the transfer
Z; designed for them. In the examples that we analyse below, they are crucial
in generating nonconvexities, through the presence of the utility of the other
agents choices on the right hand side of the constraints. On the other hand
the individual rationality constraints are not essential and could be replaced
with other sorts of constraints, such as feasibility requirements.
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Let £ be the Lagrangian function associated with this program P. From
Theorem 3, the usefulness of local randomization depends on the Lagrangian
L associated with the deterministic program denoted P,

L= Z (n wi(z;) + pi (vi(z) )+ Z)\U vi(z;) — (zj))) ) (7)

=1 J#i

A deterministic optimum satisfies the necessary first order conditions given
in Theorem 1.1. The second order conditions in Theorem 1.2 involve the
Hessian H of the Lagrangian evaluated at this point, which must be negative
semidefinite on the tangent plan to the active constraints. In the current
class of models the Hessian takes a specific form. Indeed H is a IK x [K
symmetric matrix whose ith diagonal block is the K x K matrix

H; = n;V?u;(2) (Z Nij + ,01) V2ui(2) Z/\JZV%] 2i) (8)

J#i j#i

while all off diagonal blocks are zero.
A direct application of Theorem 3 yields

Proposition 3. Suppose that the Hessian of the Lagrangian is of full rank
at the deterministic optimum. A necessary and sufficient condition for lo-
cal randomness to improve upon the optimum is that for some type i, one
eigenvalue of the matriz H; be positive. Then the random deviation can be
supported by the corresponding eigenvector, bearing on the transfers designed

for type 1.

The matrix H; is negative definite when the sum of the first two terms,
a negative definite matrix from the concavity of utilities, dominates the last
sum which is positive definite. This happens when the profile (z;) generates
no envy. The multipliers A;; then are 0 for all j # 4, so that the matrix
H; defined in (8) is negative definite. Therefore the Hessian H is negative
definite.

On the other hand, suppose that a type j envies a type ¢ at the determin-
istic optimum. Useful local randomization requires that type i has a lower
risk aversion than type j when both take the contract designed for . The
same arguments as those used to derive Proposition 2 yield:
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Proposition 4. Suppose that, at the deterministic optimum, the matriz

9v;(2i) o2 e _avi(zi)
ozF Viu(z) ozF

3 K3

V2vj(zi)

is negative definite for some kth component of z; and for all j # i such that
Aji > 0. Then, a local randomization of the transfers (z;) designed for agent
1 does not tmprove the objective.

The necessary condition for useful randomization given in Proposition 4
appears in Hellwig (2007), where the weighted Hessian matrix is used as a
multidimensional measure of risk aversion.

4.2 A taxation example

There are n; type ¢ agents, 1 = 1,2, n; +ny = 1. Type 1 agents are ‘disabled’
and cannot supply any labour. They consume ¢; units of consumption good,
yielding a utility level u;(c;), where w; is increasing and concave. Type 2
agents consume ¢y and produce ¥y, units of good. Their preferences are repre-
sented by us(cy) — v2(y2), with us increasing and concave, vy(ys) increasing,
convex, and vy(0) = 0.

Let (ai1,as) parameterize the redistributive tastes of the government.
When type is private information, the deterministic second-best optimum
(¢4, cb,y3) maximizes

arniuy(cr) + agns [ua(cy) — va(ys)]
subject to the feasibility constraint
nicy + Naca < Nalyo, 9)

and the incentive constraint ensuring that type 2 workers must not want to
fake type 1 disability,

us(c2) — va(ya) — ua(cy) > 0. (10)

Disabled agents cannot work, and therefore cannot imitate the workers.
In this problem, there is a threshold @ such that (10) binds for all ay/a; <
a. For such a value of as/ay, let (¢}, ch,y3) be solution of the system formed

13



by (9), (10) satisfied at equality, and the first order condition u)(cs) = v5(y2).
This is a local deterministic maximum.?

We can now apply the techniques developed in Section 2 to study whether
a small random deviation from the deterministic second-best may increase
the government objective. The Lagrangian of the deterministic problem is

L = ainquq(cr) + agng [ug(ca) — v2(ya)]
+ p [naye — nici — naca] + A [ua(ca) — va(y2) — ua(cr)],

with Hessian

arniuy(c1) — Auj(cq) 0 0
H= 0 (agng + X) uf(cz) 0
0 0 — (agng + \) vl (y2)

By Proposition 3 there is a profitable local random deviation if and only
if H evaluated at (cj,ch,ys) has a positive eigenvalue, i.e., ayniuf(c}) —
Aug(cr) > 0.

Proposition 5. A necessary and sufficient condition for the existence of an
open interval of values of social weights where the deterministic second-best
optimum 1s locally dominated by a random allocation is

M) (1 mub(c)
() (1 o u;@)) <t 1

30ne can check that the solution to this system is a local maximum, using Theorem 1.2.
The tangent plane to the active constraints is

dCl
(-t s ) (£)-C
—dher) uhlea) —vhlye) ) | G

Y2

For all deviations in this plane, it must be that

dCl
( de1  dco  dys )H dcsy <O0.
dys

From the first order conditions, there is no distortion at the top for type 2 agents, u)(ca) =
vh(y2). Therefore the only deviations (dcy, dea, dys) from the deterministic extremum in
the tangent plane to the constraints are proportional to (0,1,1). Since the sub-Hessian
Hj corresponding to co and ys is negative definite, any local extremum of the Lagrangian
is a local maximum.

14



where r(c) = —u(c)/ul(c) is the coefficient of absolute risk aversion of

type © when consuming c.

Proof. Eliminating the multiplier p between the two first order conditions

OL/0cy = OL/Dcy = 0 yields the multiplier A,
), i

o s } A = auy(c}) — agub(cy).

The positivity of the eigenvalue is equivalent to

aul(ey) %%DQ+@%@U

aui(c) () N us(cy)

which gives the desired result. Remark that in this specific example the
second-best allocation (¢}, ¢4, y3) does not depend on the social weights (ay, az),
whenever it differs from the first-best. 0]

Since the positive eigenvalue is associated with the eigenvector with all
weight on ¢y, the deviation can put randomness on the disability allowance
c; only. For randomness to be worthwhile, (11) requires that type 2 be
substantially more risk averse than type 1.

4.3 Discrimination through risk exposure

The general framework used in Section 4.1 also applies to monopoly pricing,
as analysed in Mussa and Rosen (1978) and Maskin and Riley (1984). The
principal is a monopolist producing a commodity in different qualities. The
unit cost ¢(q) of one good of quality ¢ is increasing and convex, with ¢(0) = 0.
Each agent buys at most one good. A type i agent buying a quality ¢ good
at price p has utility v;(6;¢ — p), with v; increasing and concave. Tastes,
represented by the function v; and the valuation 6; for quality, are private
information. By convention valuations increase with 7, 6; < 6;., for all
1< I—1

Prices and/or quality may be random. The problem of the seller is to
choose a profile (p;, q;), ¢ = 1,..., I, which maximizes her expected revenue

Z niE[p; — c(G)]
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subject to participation constraints,
Ev;(0;G; — p;) >0 foralli=1,...,1,
and self-selection constraints,
Ev;(0;G; — pi) > Ev;i(0:q; — p;) foralli,j=1,... 1.

The study of the deterministic optimum follows Maskin and Riley (1984)
and Guesnerie and Seade (1982). Provided that quality increases with val-
uation, ¢; increases with ¢, the individual rationality constraint of type 1
consumers (associated with Lagrange multiplier ;) and the local neighbour-
ing downward incentive constraints are the only relevant constraints in the
nonrandom problem. Thus the Lagrangian can be written

I

an c(@)] + Mvi(hqr — p1) + Z Ai [vi(0ig; — pi) — vi(0igi—1 — pi-1)] .-

=2

The first order conditions yield
1 C( i) = Nitli — Nit10i41, (12)

where N; is the fraction of the population with valuation at least equal to
0; (Ny4q1 is set to 0). The solution obtained from (12) must satisfy non
negativity and the monotonicity of ¢; to be economically meaningful. This is
the case if the marginal cost of quality ¢/(q) is zero at the origin and goes to
infinity when ¢ goes to infinity, N;0; > N; 10,1 for all ¢, and the sequence
(N;0; — Nj116;41) /n; is increasing in i. Then, the deterministic optimum is
defined by a profile of qualities satisfying (12) while prices are given by the
I binding constraints.

To see whether random deviations from this deterministic optimum can be
profitable, we study the second derivative of the Lagrangian. Since \;v} = N;
for all 7, the Hessian of the Lagrangian is a diagonal matrix whose ith diagonal
entry is

e
0q?

(2

= —nc ( i)+ A 92 - )‘Z+191+1Uz+1
= —nd"(q) — Nﬂ??‘fl + Ni+19i2+lrék17

where r#! is the coefficient of absolute risk aversion of type i at the determin-
istic optimum. Theorem 3 implies:
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Proposition 6. Suppose that the Hessian is of full rank at the deterministic
optimum. It is worthwhile to locally randomize the quality designed for type
1 consumers if and only if

Ni+16i2+17a;'i1 > Nﬂfrf‘ + nl-c"(qi). (13)

Condition (13) confirms some of the intuitions seen earlier in the taxation
example. From N;.; = 0, it follows that it is never optimal to randomize
the quality offered to the highest type: this comes from the fact that no
other agents envy people at the top. The more convex the cost function, the
higher the right hand side of (13), and the more reluctant the seller will be to
randomize quality. The risk aversions of the consumers matter as expected.
It is never worthwhile to randomize the quality offered to risk neutral agents.

Remark 3. In the specification used by Mussa and Rosen (1978) or Maskin
and Riley (1984), the utility of type ¢ consumers is separable and quasi-linear
in price, v(¢;, 0;) —p;- Then the monopolist cannot increase its expected profit
with a local random deviation. To see this, recall that, by Theorem 1.2,
second order conditions for a local maximum only involve deviations in the
tangent space to the I binding constraints. Since the consumers’ preferences
are separable, these constraints allow to derive all the I expected prices as
functions of the I qualities and to substitute them in the expression giving
the monopolist profit. One gets an unconstrained optimization problem with
respect to the qualities. It follows that at the deterministic optimum the
Hessian is negative definite for all quality deviations, and by Theorem 3
local randomness cannot be profitable.
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Appendix

Proof of Theorem 3. We start with part 1. The mathematical expectation
of a Taylor expansion of £ in a suitable neighborhood of x* is

EL(E,N) = L(a*,\) + Vo L2 \)(EE — o)

1
+§]E(i —*)'V2L(T, \) (% — 2¥),
where T is a point on the segment [z*,Z]. From part 1 of Theorem 1, the
second term on the right hand side is equal to zero. The third one is strictly
negative in the chosen neighbourhood since V2L(z*, \) is negative definite
by assumption. Therefore, for T # x*,

L(a*,\) > EL(T, ).

The active constraints at z* are satisfied at equality, while the inactive con-
straints stay inactive in a suitable neighbourhood of z*. It follows that
Ag(z*) = Ag(z) = 0, and consequently

f(x™) > Ef(2).

We now prove part 2. By assumption V2£(z*, \) has one positive eigen-
value and the associated eigenvector is a suitable z*. From part 2 of The-
orem 1, note that x* cannot belong to the tangent space to the active con-
straints, i.e., g,(x*)axt # 0 for some n such that g,(z*) = 0.

By (2) the deviations h(t) are such that Eg, (z* 4+ h(t)) = g,(z*) for the
active constraints, i.e.

S0l a4 B0) + ale” — tat +BW) =) (10

We are going to show that there is a §(t) satisfying (14) which is at most
O(t?) for some z > 2. If there are N, active constraints, (14) is a system of
N, equations in the unknown £(¢). A Taylor expansion of (14) yields, for all
active constraints n,

Vo (a*Y(E) + 5 (1 + () Vgula) 12 + 5(1)

et B0 V)t 1 80) = ol
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Since the constraints are qualified, the N, x M matrix of derivatives Vg, (z*)
of the active constraints is of full rank.

Since by assumption the constraints are qualified, the rank of this matrix
is N,. We fix M — N, components of 3(t) at zero, so that the N, non zero
components of 3(t) form a vector 3(t) which can be solved for locally by
applying the implicit function theorem to the system made of the N, active
constraints. For each active constraint, let G, be the 1 x N, subvector of
Vgn(z*) associated with the components of 4(t). From the implicit function
theorem, the function /3 (t), with B (0) = 0, is well defined and continuously
differentiable in a neighbourhood of the origin. Since Vg, (z*)'3(t) = GnA(t),
the Taylor expansion of (14) can be rewritten as

GuB(t) + 30T, (a")a + 2 BV gu(a")5(1) = o),

for every m in N,. The expression in the left hand side of this equation is
of smaller order than #*> when ¢ is in a neighbourhood of the origin since
B(t) £ tz™ is at most O(t). Stacking up these N, equalities gives

GA(t) + %t2a + %b = o(t?), (15)

where a and b are two N, x 1 vectors,
a= | z"Vg,(2")2" |, b= [ B{)V?g.(x*)B() |,

and G is the (N, x N,) matrix obtained by stacking up the N, subvectors G,
of the active constraints. From the qualification of the active constraints GG
is of full rank and invertible. Multiplying through by the inverse of G' shows
that b can be neglected in (15). Indeed, t?a is O(t*) for some z > 2, so that
B(t) is at most O(¢7), and thus b is at most O(t%). As a result, one gets

GB(t) + %tQG — o82), (16)

or equivalently, for all active constraint n,
*\/ 1 2 _4Iv72 *\ 4+ 2
V(@) B(t) + 577 Vga(a®)a™ = o(t7),
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where the M — N, components of 5(t) associated with inactive constraints
at x* are zero, and the N, remaining components of this vector are obtained
from (16). This is the expression given in the statement of Theorem 3 that
is satisfied by the deterministic component 5(t) of the deviation.

Now, by the property (14) of the random deviation,

SF 4t 4 B(0) + 3 f (@ — b + (1) — (&)
= %E(w* + txt + B(t), \*) + %E(z* —tzt + B(t), \*) — L(x*, \*)

= V.L(x*, \*)B(t) + %t%*’ViE(m’ Nzt + ;ﬁ( )V2L(x*, \)B(t) + o(t?).

Since z* is a local deterministic maximum, V,L(z*, A\*) = 0. Moreover, by
(16), B(t) = O(t?) at most, so that B(t)'V2L(x*, \*)S(t) is at most O(t%*).
As a result,

Ef(z" + h(t) — f(z") = %t%*’Viﬁ(w*, M)zt o) >0, (17)

by the choice of z™. O

Proof of Theorem 2. The deviation is deterministic, h(t) = ta™ + 5(¢),
and a Taylor expansion of (1) gives

Vgn(x*)'ﬂ(t)—i—%thJr'Van (z¥)zt+tr Vg, (:E*),B(t)—i—%ﬁ(t)'Van (%) B(t) = o(t?),

or

(Vo) + 27V gu(a)] B0+ 20V 200 ()t 4 (1) gu(a)B(0) = o).

2
From the qualification of constraints, we know that stacking up the vectors
Vgn(z*)" for the active constraints n gives a matrix of rank N,. As in the
proof of Theorem 3, we fix M — N, components of 3(t) at zero, and denote
B(t) the N, non zero components, chosen so that the extracted matrix is
of full rank. For each active constraint, let GG,, be the 1 x N, subvector of
Vg, (z*) associated with the components of 5(¢) and J,, the 1 x N, subvector
of 27V?3g,(z*) also associated with the non zero components of 3. The
Taylor expansion becomes

(G 1LIB(E) + G Vgula) + S T ga(a)B(1) = o).
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Let G and J be the N, x N, matrices obtained by stacking up the GG,, and
J, over the active constraints. By the qualification of constraints, G is of full
rank, so that G + t.J is invertible for small enough ¢. The second and third
terms on the left hand side are respectively O(¢*) and O(¢**) at most for all
active constraints, where z > 2. Therefore the terms (t)'VZ3g,(z*)5(t) are
negligible, 4(t) is at most O(¢7), and the expression in the statement of the
Theorem holds.
Finally the expansion of L(z* +ta™ + (), \*) — L(z*, \*) = f(a* +taT +
A(t)) — f(z7) yields
V. L(z, /\*)(tx++ﬁ(t))+%t2x+’V§/J(x*, M)t +o(t?) = %t2x+’Vi£(x*, M)zt +o(t?),

a positive quantity, which completes the proof. O
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