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The paper identifies a necessary and sufficient condition for a deterministic local optimum to be locally improved upon by a stochastic deviation. When this condition is satisfied, a method to construct the stochastic allocations that increase the objective is provided. This technique is applied to a number of adverse selection and moral hazard problems.

Introduction

In most economic models, concave objectives on convex sets lead to nonrandom choices. However asymmetric information and self-selection considerations introduce nonconvexities that may render randomization useful. The paper provides a necessary and sufficient condition for a deterministic optimum to be improved upon locally by a stochastic deviation. The result is applied to standard moral hazard and adverse selection problems. This result allows for a similar treatment of both models, pointing out their common underlying structure.

The paper considers an abstract optimization program, with a finite number of constraints which possibly define a nonconvex set of admissible choices in a finite dimension Euclidean space. When choices are restricted to be deterministic, a condition satisfied by a local optimum is that the second derivative of the Lagrangian be negative for all deviations in the tangent space to the active constraints. In the associated random problem, where choices may be random and the functions defining the objective and constraints are the mathematical expectations of those of the deterministic program, the set of admissible deviations is larger than in the deterministic problem. Admissible deviations in the random problem which are not allowed in the deterministic problem may be exploited to improve the objective. The main technical result of the paper is that the deterministic optimum, when associated with a regular Hessian of the Lagrangian, can locally be improved upon through a random deviation if and only if the Hessian has a positive eigenvalue. We also give a constructive method to build an improving deviation.

We first apply the above result to a multidimensional static moral hazard problem with a finite number of effort levels and outcomes. Generalizing [START_REF] Arnott | Randomization with Asymmetric Information[END_REF], we find that when the agent utility is separable in effort and wages an optimal interior deterministic contract cannot be improved upon by local randomization. This property extends to the non separable preferences used by [START_REF] Grossman | An Analysis of the Principal Agent Problem[END_REF] and also to more general non separable preferences which exhibit a multidimensional measure of risk aversion that increases with effort. This yields results of [START_REF] Bennardo | Bertrand and Walras Equilibria under Moral Hazard[END_REF] in the unidimensional case. Therefore, for a deterministic optimum to be improved upon through local random deviations, it is necessary that the agent utility be non separable in effort and wages and that risk aversion be nonincreasing in effort.

We then consider a general class of adverse selection models, with spe-cialization to a taxation and a monopoly pricing setups. It is known that a random tax on low incomes may discourage the more able workers from mimicking the less able and thus alleviate the incentive constraints [START_REF] Stiglitz | Self-selection and Pareto Efficient Taxation[END_REF]). The more general results on the usefulness of random taxation have been obtained in a two good economy by [START_REF] Brito | Randomization in optimal income tax schedules[END_REF]. Our technique provides a simple way of deriving their result and allows for a transparent economic interpretation.

Our other adverse selection application concerns discrimination strategies of a monopolist through differential risk exposure. The quality of a good often depends on future contingencies, e.g., the journey has random features associated with strikes, equipment malfunction or unreliable aircrafts. Risk averse customers facing such alternatives will usually seek some form of insurance. Firms can exploit differences in the risk aversion of their customers by a suitable design of risk exposure. Airline companies thus offer high price tickets ensuring business men who want to be on time against random delays. Following [START_REF] Maskin | Monopoly with incomplete information[END_REF], in a [START_REF] Mussa | Monopoly and Product Quality[END_REF] setup, we provide the condition under which a monopolist facing customers with different risk aversions should randomize the quality of service.

The paper is organized as follows. Section 2 presents the mathematical properties that underlie the paper. Section 3 deals with the moral hazard model. Finally Section 4 studies adverse selection, with applications to taxation and monopoly pricing.

A mathematical result

Consider the following constrained optimization problem:

   max x f (x) g n (x) ≥ 0, n = 1, . . . , N
where x is in R M . The functions f (•) and g n (•), n = 1, . . . , N , are twice continuously differentiable. We do not impose convexity restrictions on the objective f (•), nor on the constraints g n (•). We shall refer to this program as the deterministic problem. The associated Lagrangian L(x, λ) is the function

f (x) + λ ′ g(x)
, where λ is a vector of R N + . Some of our results require qualification of the constraints. The nth constraint is active at some point x of the domain when g n (x) = 0. The constraints are qualified at x when the gradient vectors ∇g n (x) of the active constraints at x are linearly independent.

The following property is drawn from Simon and Blume (1994), Th. 18.4 and 19.8. Theorem 1. Let x * be an interior local maximum of the deterministic problem where the constraints are qualified.

1. There exists λ * ≥ 0 such that ∇ x L(x * , λ * ) = 0, and the complementary slackness conditions λ * n g n (x * ) = 0 hold for all n.

2. The Hessian ∇ 2 x L(x * , λ * ) is negative semi-definite on the tangent space to the active constraints at x * , i.e., x ′ ∇ 2

x L(x * , λ * )x ≤ 0 for all x such that ∇g n (x * ) ′ x = 0 for all constraints n with g n (x * ) = 0. Let x * in R M be a point that satisfies the first order conditions given in part 1 of Theorem 1. We prove a converse to Theorem 1. Suppose that the condition given in part 2 of Theorem 1 is not satisfied in the following sense: there is a direction x + in the tangent space to the active constraints such that x +′ ∇ 2

x L(x * , λ * )x + > 0. We are interested in the feasible deviations which improve the objective in this circumstance. A deterministic deviation from x * is a continuous function h(t) from [0, 1] into R M such that h(0) = 0 and

g n (x * + h(t)) = g n (x * ) = 0 (1)
for all n such that g n (x * ) = 0.

Theorem 2. Let x * be a point where the constraints are qualified and the first order conditions of Theorem 1.1 are satisfied. Suppose that there is a direction x + in the tangent space to the active constraints such that

x +′ ∇ 2 x L(x * , λ * )x + > 0.
Then there exists a deterministic deviation h(t) = tx + + β(t) satisfying

∇g n (x * ) ′ β(t) + 1 2 t 2 x +′ ∇ 2 g n (x * ) ′ x + = o(t 2 ),
for all the active constraints n with g n (x * ) = 0, such that f (x * +h(t)) > f (x * ) for small enough t different from 0.

Consider now the following maximization problem:

   max x Ef (x) Eg n (x) ≥ 0, n = 1, . . . , N
where x is a random variable with values in R M , such that the mathematical expectations of f (x) and the g n (x), n = 1, . . . , n are well defined. We shall refer to this program as the random problem. Let x * be a point in R M which satisfies the constraints. A random deviation h(t) from x * is an application from [0, 1] into the random variables in R M which satisfies

Eg n (x * + h(t)) = g n (x * ) = 0 (2)
for all active constraints, such that h(0) = 0 and the diameter of the support of h(t) is a continuous function of t. Then we have:

Theorem 3. Let x * be a point where the constraints are qualified, the first order conditions of Theorem 1.1 are satisfied, and the Hessian ∇ 2

x L(x * , λ * ) is of full rank. 1 1. If ∇ 2
x L(x * , λ * ) is negative definite, x * is a local maximum of the random problem: there exists an open neighbourhood V (x

* ) of x * in R M such that f (x * ) > Ef (x)
for all random variables x, x = x * , with support contained in V (x * ) such that Eg n (x) = g n (x * ) = 0 for the active constraints.

2. Suppose that ∇ 2 x L(x * , λ * ) has a positive eigenvalue. To any vector x + such that x +′ ∇ 2

x L(x * , λ * )x + > 0, one can associate a random deviation h(t) equal to tx + + β(t) and to -tx + + β(t) with equal probabilities satisfying

∇g n (x * ) ′ β(t) + 1 2 t 2 x +′ ∇ 2 g n (x * )x + = o(t 2 )
for all the active constraints, such that Ef (x * + h(t)) > f (x * ) for small enough t different from 0.

We have therefore:

Corollary 1. Suppose that the Hessian ∇ 2 x L(x * , λ * ) is of full rank. There exists a random deviation that locally improves upon the deterministic x * if and only if this Hessian has a positive eigenvalue.

Theorems 1 to 3 provide a detailed picture of the local properties of a solution x * to the first order conditions of the deterministic constrained optimization problem. From Theorem 1, if x * cannot be improved upon by deterministic moves in the constrained set, the second derivative of the Lagrangian is semi negative definite on the tangent plan to the active constraints. Conversely, from Theorem 2, if there exists a direction in the tangent plan along which the Hessian of the Lagrangian is strictly positive, x * is not a local optimum of the deterministic problem, and there are local deterministic deviations in the constrained set which yield a higher value of the objective. Theorems 1 and 2 do not tell us anything on the behaviour of the second derivative of the Lagrangian out of the tangent plan to the active constraints, indeed a region which is forbidden territory to the deterministic problem. Our contribution in this respect is Theorem 3. It shows that any direction along which the Hessian of the Lagrangian is positive, belonging or not to the tangent plan to the active constraints, allows to build a feasible improving random deviation. If the number of active constraints is N a , the tangent plan to the active constraints has dimension M -N a and its complement of dimension N a is the size of the space in which the second derivative of the Lagrangian at a local deterministic optimum may be positive and generate improving random deviations.

The argument yielding Theorem 3 is constructive. Consider a local deterministic maximum x * and small deviations dx such that all the active constraints at x * remain binding at the new point x * + dx. The change in the objective is therefore

Ef (x * + dx) -f (x * ) = L -L, (3) 
where the Lagrangian L is evaluated at x * and the Lagrangian L at the new point. Since x * satisfies the first order conditions in Theorem 1.1, the reform yields at most a second order change to the objective,

L -L = 1 2 E(dx) ′ H(dx) + o(||dx|| 2 ). ( 4 
)
One can build deviations dx that increase the objective when H has a positive eigenvalue. The deviation involves two parts: a lottery with zero expected value in the direction of the eigenvector x + associated with the positive eigenvalue of H, and a deterministic part β(t) chosen so that the binding constraints of the program at x * stay binding along the deviation. The deviation is parameterized with a small positive scalar t which measures the scale of the change along the direction x + . The deviation takes two values

dx 1 = tx + + β(t), dx 2 = -tx + + β(t),
drawn independently with equal probability. The proof of Theorem 3 shows that β(t) is of small order in t, so that for t close enough to 0, (3) and ( 4)

yield L -L = 1 2 t 2 x +′ Hx + + o(t 2 ) > 0.
Remark 1. Theorem 3 is shown under the assumption that the Hessian of the Lagrangian is of full rank. In practice this restriction may fail to hold in two different circumstances:

1. The Lagrangian may be linear in some directions, with all derivatives of order two and larger being equal to zero on these directions in a neighbourhood of x * . For x * to be the optimum, all the derivatives of the Lagrangian along these directions must be zero, and the problem is reduced to the complement directions. Generically the Hessian of the reduced system is of full rank and Theorem 3 then can be applied.

2. The Hessian is not of full rank, but the function is not locally linear, with some derivative of order larger than 2 not zero in the directions along which the Hessian is null. This is a non generic case, which is not covered by our analysis.

Remark 2. Theorem 3 has scope provided that some of the constraints in the random problem are written in expectation. If none of the constraints is written in expectation, then randomization is not valuable.2 Indeed, consider the (mixed) problem

   max x Ef (x) g n (x) ≥ 0, n = 1, . . . .N
Here the N a active constraints have to hold in all random events, so that given M -N a possibly random coordinates of x, the active constraints allow to compute locally the N a remaining ones as a deterministic function of the latter. Now substituting into the objective yields an unconstrained optimization in M -N -a unknowns. Therefore the mixed problem has the same optimum as the deterministic one.

3 Moral hazard

General setup

Consider an agent who can choose between a finite number of effort levels i (i = 1, . . . , I). Effort i induces a probability distribution on the set of possible outcomes s, s = 1, . . . , S. The probability of seeing s after taking effort i is p is , with p is ≥ 0 and s p is = 1 for all i. The principal has a von Neumann Morgenstern utility index u is (z) when the effort is i and the outcome is s, where z is a K-dimensional vector of transfers from the principal. In most of the literature, K equals 1, but larger Ks ease the comparison with adverse selection models. The von Neumann Morgenstern utility index of the agent is v is (z). We assume that u is (resp., v is ) is decreasing (resp. increasing) in any component z k of z. The outcome s is publicly observed and verifiable. The effort chosen remains private information to the agent. The principal sets a transfer schedule conditional on outcome to which she is committed. The schedule is said to be deterministic when each outcome s is associated with one K-dimensional vector of transfers z s only. It is random when the transfers take the form of a lottery (z s ) for some outcome s.

Assume that the principal wants the agent to undertake effort level h. The principal chooses a transfer schedule (z s ) for every outcome s that maximizes where the agent's utility when he breaks his relationship with the principal for his next-best opportunity is set to v. The Lagrangian function of the deterministic problem is

L = S s=1 p hs u hs (z s ) + ρ(v hs (z s ) -v) + i =h λ hi v hs (z s ) - p is p hs v is (z s ) .
The Lagrangian is the sum over the states of functions of z s . This separability over the states simplifies the analysis. The Hessian H of the Lagrangian associated with the deterministic optimum is a block diagonal matrix of dimension SK × SK whose sth block H s is the K × K matrix ∇ 2 zs L of the second derivatives of L with respect to z s

H s = p hs ∇ 2 u hs + ρ + i =h λ hi ∇ 2 v hs - i =h λ hi p is p hs ∇ 2 v is . (5) 
The SK eigenvalues of H are the eigenvalues of the matrices H s , s = 1, . . . , S.

A direct application of Theorem 3 yields Proposition 1. Suppose that the Hessian of the Lagrangian is of full rank at the deterministic optimum. A necessary and sufficient condition for local randomness to improve upon the optimum is that for some outcome s, one eigenvalue of the matrix H s be positive. Then the random deviation can be supported by the corresponding eigenvector, bearing on the transfers associated with outcome s.

In the case where the von Neumann Morgenstern utility indices are concave, the first two terms in (5) are negative definite, whereas the last sum is positive definite. Intuitively, a random z is useful in outcome s if this outcome is likely to occur when the agent has undertaken effort i rather than the desired effort level h (p is /p hs is high), and noise on the transfers discourages the agent to undertake effort i (the risk aversion of the agent when effort is i is greater than in the situation where effort is h, i.e., ∇ 2 v is (z s ) is large in absolute value compared with ∇ 2 v hs (z s )).

Proposition 2. Suppose that, at the deterministic optimum, the matrix

∂v is ∂z k ∇ 2 v hs - ∂v hs ∂z k ∇ 2 v is
is negative definite for all i = h and some kth coordinate z k of the vector of transfers. Then, local randomization of the transfers in outcome s decreases the utility of the principal.

Proof. The first order conditions in z s are

p hs ∇u hs + ρ + i =h λ hi ∇v hs - i =h λ hi p is p hs ∇v is = 0. ( 6 
)
The kth equation of this system can be used to get the expression of

ρ + i =h λ hi .
Reintroducing this expression into (5) shows that H s is negative definite, i.e., all its eigenvalues are non positive. This concludes the proof.

Local randomization is therefore unprofitable in the standard specification where the utility of the agent is separable in effort, ∇v is is independent of effort, in line with [START_REF] Arnott | Randomization with Asymmetric Information[END_REF].

The previous literature has usually considered the simpler case where z is a real number which represents the wage of the agent. In [START_REF] Grossman | An Analysis of the Principal Agent Problem[END_REF] the agent produces q s with probability p is when she undertakes effort i. The principal then gets q s -z s . The utility of the agent is v i (z s ) = G i + K i v(z s ), where G i and K i are real parameters possibly varying with effort. It is not separable in effort. For this specification, the matrix given in Proposition 2 reduces to

K i v ′ (z s )K h v ′′ (z s )-K h v ′ (z s )K i v ′′ (z s ), which equals 0.
Hence the Hessian is a S × S diagonal matrix with component (s, s) equal to

H s = p hs v ′′ h (z s )/v ′ h (z s ) < 0.
It is definite negative, and so there is no useful local randomization.

For more general preferences of the agent v is (z), with z a real number, Proposition 2 shows that local randomization is still useless in outcome s when the risk aversion of the agent, evaluated at the deterministic optimum, is higher when he undertakes the desired effort, i.e.,

- v ′′ hs (z s ) v ′ hs (z s ) > - v ′′ is (z s ) v ′ is (z s ) for all i = h.
This is the condition found by [START_REF] Bennardo | Bertrand and Walras Equilibria under Moral Hazard[END_REF]. Assuming that the principal wants to implement the highest effort level, useful randomization requires that the absolute risk aversion decreases with effort.

4 Adverse selection

General setup

The principal faces a continuum of agents of different types i, i = 1, . . . , I, with whom she contracts. A deterministic contract is a K dimensional vector z. When a type i agent chooses contract z, he gets utility v i (z) while the principal receives u i (z). The functions u i and v i are concave von Neumann Morgenstern utility indices, and we allow for ex ante random contracts. The ex ante utility of a type i agent receiving a random contract z is Ev i (z), while that of the principal is Eu i (z). His type is private information to the agent. The principal knows the distribution of types in the population but does not observe individual types.

Under the revelation principle, the principal chooses a menu of random contracts (z i ), i = 1, . . . , I, solution to the program P max

I i=1 n i Eu i (z i )
subject to individual rationality constraints

Ev i (z i ) ≥ vi for all i, (ρ i )
and incentive constraints

Ev i (z i ) ≥ Ev i (z j )
for all i and all j.

(λ ij )

The incentive constraints (λ ij ) make sure that when the principal announces a menu of contracts (z i ) type i agents voluntarily choose the transfer zi designed for them. In the examples that we analyse below, they are crucial in generating nonconvexities, through the presence of the utility of the other agents choices on the right hand side of the constraints. On the other hand the individual rationality constraints are not essential and could be replaced with other sorts of constraints, such as feasibility requirements.

Let L be the Lagrangian function associated with this program P . From Theorem 3, the usefulness of local randomization depends on the Lagrangian L associated with the deterministic program denoted P ,

L = I i=1 n i u i (z i ) + ρ i (v i (z i ) -vi ) + j =i λ ij (v i (z i ) -v i (z j )) . (7) 
A deterministic optimum satisfies the necessary first order conditions given in Theorem 1.1. The second order conditions in Theorem 1.2 involve the Hessian H of the Lagrangian evaluated at this point, which must be negative semidefinite on the tangent plan to the active constraints. In the current class of models the Hessian takes a specific form. Indeed H is a IK × IK symmetric matrix whose ith diagonal block is the K × K matrix

H i = n i ∇ 2 u i (z i ) + j =i λ ij + ρ i ∇ 2 v i (z i ) - j =i λ ji ∇ 2 v j (z i ) (8)
while all off diagonal blocks are zero.

A direct application of Theorem 3 yields Proposition 3. Suppose that the Hessian of the Lagrangian is of full rank at the deterministic optimum. A necessary and sufficient condition for local randomness to improve upon the optimum is that for some type i, one eigenvalue of the matrix H i be positive. Then the random deviation can be supported by the corresponding eigenvector, bearing on the transfers designed for type i.

The matrix H i is negative definite when the sum of the first two terms, a negative definite matrix from the concavity of utilities, dominates the last sum which is positive definite. This happens when the profile (z i ) generates no envy. The multipliers λ ji then are 0 for all j = i, so that the matrix H i defined in ( 8) is negative definite. Therefore the Hessian H is negative definite.

On the other hand, suppose that a type j envies a type i at the deterministic optimum. Useful local randomization requires that type i has a lower risk aversion than type j when both take the contract designed for i. The same arguments as those used to derive Proposition 2 yield: Proposition 4. Suppose that, at the deterministic optimum, the matrix

∂v j (z i ) ∂z k i ∇ 2 v i (z i ) - ∂v i (z i ) ∂z k i ∇ 2 v j (z i )
is negative definite for some kth component of z i and for all j = i such that λ ji > 0. Then, a local randomization of the transfers (z i ) designed for agent i does not improve the objective.

The necessary condition for useful randomization given in Proposition 4 appears in [START_REF] Hellwig | The undesirability of randomized income taxation under decreasing risk aversion[END_REF], where the weighted Hessian matrix is used as a multidimensional measure of risk aversion.

A taxation example

There are n i type i agents, i = 1, 2, n 1 + n 2 = 1. Type 1 agents are 'disabled' and cannot supply any labour. They consume c 1 units of consumption good, yielding a utility level u 1 (c 1 ), where u 1 is increasing and concave. Type 2 agents consume c 2 and produce y 2 units of good. Their preferences are represented by u 2 (c 2 ) -v 2 (y 2 ), with u 2 increasing and concave, v 2 (y 2 ) increasing, convex, and v 2 (0) = 0.

Let (a 1 , a 2 ) parameterize the redistributive tastes of the government. When type is private information, the deterministic second-best optimum (c * 1 , c * 2 , y * 2 ) maximizes

a 1 n 1 u 1 (c 1 ) + a 2 n 2 [u 2 (c 2 ) -v 2 (y 2 )]
subject to the feasibility constraint

n 1 c 1 + n 2 c 2 ≤ n 2 y 2 , (9) 
and the incentive constraint ensuring that type 2 workers must not want to fake type 1 disability,

u 2 (c 2 ) -v 2 (y 2 ) -u 2 (c 1 ) ≥ 0. ( 10 
)
Disabled agents cannot work, and therefore cannot imitate the workers. In this problem, there is a threshold a such that (10) binds for all a 2 /a 1 < a. For such a value of a 2 /a 1 , let (c * 1 , c * 2 , y * 2 ) be solution of the system formed by ( 9), (10) satisfied at equality, and the first order condition u ′ 2 (c 2 ) = v ′ 2 (y 2 ). This is a local deterministic maximum. 3 We can now apply the techniques developed in Section 2 to study whether a small random deviation from the deterministic second-best may increase the government objective. The Lagrangian of the deterministic problem is

L = a 1 n 1 u 1 (c 1 ) + a 2 n 2 [u 2 (c 2 ) -v 2 (y 2 )] + ρ [n 2 y 2 -n 1 c 1 -n 2 c 2 ] + λ [u 2 (c 2 ) -v 2 (y 2 ) -u 2 (c 1 )] ,
with Hessian

H =   a 1 n 1 u ′′ 1 (c 1 ) -λu ′′ 2 (c 1 ) 0 0 0 (a 2 n 2 + λ) u ′′ 2 (c 2 ) 0 0 0 -(a 2 n 2 + λ) v ′′ 2 (y 2 )   .
By Proposition 3 there is a profitable local random deviation if and only if

H evaluated at (c * 1 , c * 2 , y * 2 ) has a positive eigenvalue, i.e., a 1 n 1 u ′′ 1 (c * 1 ) - λu ′′ 2 (c * 1 ) > 0.
Proposition 5. A necessary and sufficient condition for the existence of an open interval of values of social weights where the deterministic second-best optimum is locally dominated by a random allocation is

r A 1 (c * 1 ) r A 2 (c * 2 ) 1 + n 1 n 2 u ′ 2 (c * 2 ) u ′ 2 (c * 1 ) < 1. ( 11 
)
3 One can check that the solution to this system is a local maximum, using Theorem 1.2. The tangent plane to the active constraints is

-n 1 -n 2 n 2 -u ′ 2 (c 1 ) u ′ 2 (c 2 ) -v ′ 2 (y 2 )   dc 1 dc 2 dy 2   = 0 0 .
For all deviations in this plane, it must be that

dc 1 dc 2 dy 2 H   dc 1 dc 2 dy 2   ≤ 0.
From the first order conditions, there is no distortion at the top for type 2 agents, u ′ 2 (c 2 ) = v ′ 2 (y 2 ). Therefore the only deviations (dc 1 , dc 2 , dy 2 ) from the deterministic extremum in the tangent plane to the constraints are proportional to (0, 1, 1). Since the sub-Hessian H 2 corresponding to c 2 and y 2 is negative definite, any local extremum of the Lagrangian is a local maximum.

subject to participation constraints, Ev i (θ i qi -pi ) ≥ 0 for all i = 1, . . . , I, and self-selection constraints, Ev i (θ i qi -pi ) ≥ Ev i (θ i qj -pj ) for all i, j = 1, . . . , I.

The study of the deterministic optimum follows [START_REF] Maskin | Monopoly with incomplete information[END_REF] and [START_REF] Guesnerie | Nonlinear Pricing in a Finite Economy[END_REF]. Provided that quality increases with valuation, q i increases with i, the individual rationality constraint of type 1 consumers (associated with Lagrange multiplier λ 1 ) and the local neighbouring downward incentive constraints are the only relevant constraints in the nonrandom problem. Thus the Lagrangian can be written

I i=1 n i [p i -c(q i )] + λ 1 v 1 (θ 1 q 1 -p 1 ) + I i=2 λ i [v i (θ i q i -p i ) -v i (θ i q i-1 -p i-1 )] .
The first order conditions yield

n i c ′ (q i ) = N i θ i -N i+1 θ i+1 , (12) 
where N i is the fraction of the population with valuation at least equal to θ i (N I+1 is set to 0). The solution obtained from (12) must satisfy non negativity and the monotonicity of q i to be economically meaningful. This is the case if the marginal cost of quality c ′ (q) is zero at the origin and goes to infinity when q goes to infinity, N i θ i > N i+1 θ i+1 for all i, and the sequence (N i θ i -N i+1 θ i+1 ) /n i is increasing in i. Then, the deterministic optimum is defined by a profile of qualities satisfying (12) while prices are given by the I binding constraints.

To see whether random deviations from this deterministic optimum can be profitable, we study the second derivative of the Lagrangian. Since λ i v ′ i = N i for all i, the Hessian of the Lagrangian is a diagonal matrix whose ith diagonal entry is

∂ 2 L ∂q 2 i = -n i c ′′ (q i ) + λ i θ 2 i v ′′ i -λ i+1 θ 2 i+1 v ′′ i+1 = -n i c ′′ (q i ) -N i θ 2 i r A i + N i+1 θ 2 i+1 r A i+1
, where r A i is the coefficient of absolute risk aversion of type i at the deterministic optimum. Theorem 3 implies: Proposition 6. Suppose that the Hessian is of full rank at the deterministic optimum. It is worthwhile to locally randomize the quality designed for type i consumers if and only if

N i+1 θ 2 i+1 r A i+1 > N i θ 2 i r A i + n i c ′′ (q i ). ( 13 
)
Condition ( 13) confirms some of the intuitions seen earlier in the taxation example. From N I+1 = 0, it follows that it is never optimal to randomize the quality offered to the highest type: this comes from the fact that no other agents envy people at the top. The more convex the cost function, the higher the right hand side of ( 13), and the more reluctant the seller will be to randomize quality. The risk aversions of the consumers matter as expected. It is never worthwhile to randomize the quality offered to risk neutral agents.

Remark 3. In the specification used by [START_REF] Mussa | Monopoly and Product Quality[END_REF] or [START_REF] Maskin | Monopoly with incomplete information[END_REF], the utility of type i consumers is separable and quasi-linear in price, v(q i , θ i )-p i . Then the monopolist cannot increase its expected profit with a local random deviation. To see this, recall that, by Theorem 1.2, second order conditions for a local maximum only involve deviations in the tangent space to the I binding constraints. Since the consumers' preferences are separable, these constraints allow to derive all the I expected prices as functions of the I qualities and to substitute them in the expression giving the monopolist profit. One gets an unconstrained optimization problem with respect to the qualities. It follows that at the deterministic optimum the Hessian is negative definite for all quality deviations, and by Theorem 3 local randomness cannot be profitable. 4Since the constraints are qualified, the N a × M matrix of derivatives ∇g n (x * ) of the active constraints is of full rank.

Since by assumption the constraints are qualified, the rank of this matrix is N a . We fix M -N a components of β(t) at zero, so that the N a non zero components of β(t) form a vector β(t) which can be solved for locally by applying the implicit function theorem to the system made of the N a active constraints. For each active constraint, let G n be the 1 × N a subvector of ∇g n (x * ) associated with the components of β(t). From the implicit function theorem, the function β(t), with β(0) = 0, is well defined and continuously differentiable in a neighbourhood of the origin. Since ∇g n (x * ) ′ β(t) = G n β(t), the Taylor expansion of ( 14) can be rewritten as

G n β(t) + 1 2 t 2 x +′ ∇ 2 g n (x * )x + + 1 2 β(t) ′ ∇ 2 g n (x * )β(t) = o(t 2 ),
for every n in N a . The expression in the left hand side of this equation is of smaller order than t 2 when t is in a neighbourhood of the origin since

β(t) ± tx + is at most O(t). Stacking up these N a equalities gives G β(t) + 1 2 t 2 a + 1 2 b = o(t 2 ), (15) 
where a and b are two N a × 1 vectors,

a =    . . . x +′ ∇ 2 g n (x * )x + . . .    , b =    . . . β(t) ′ ∇ 2 g n (x * )β(t) . . .    ,
and G is the (N a × N a ) matrix obtained by stacking up the N a subvectors G n of the active constraints. From the qualification of the active constraints G is of full rank and invertible. Multiplying through by the inverse of G shows that b can be neglected in (15). Indeed, t 2 a is O(t z ) for some z ≥ 2, so that β(t) is at most O(t z ), and thus b is at most O(t 2z ). As a result, one gets

G β(t) + 1 2 t 2 a = o(t 2 ), (16) 
or equivalently, for all active constraint n,

∇g n (x * ) ′ β(t) + 1 2 t 2 x +′ ∇ 2 g n (x * )x + = o(t 2 ),
where the M -N a components of β(t) associated with inactive constraints at x * are zero, and the N a remaining components of this vector are obtained from ( 16). This is the expression given in the statement of Theorem 3 that is satisfied by the deterministic component β(t) of the deviation. Now, by the property ( 14 From the qualification of constraints, we know that stacking up the vectors ∇g n (x * ) ′ for the active constraints n gives a matrix of rank N a . As in the proof of Theorem 3, we fix M -N a components of β(t) at zero, and denote β(t) the N a non zero components, chosen so that the extracted matrix is of full rank. For each active constraint, let G n be the 1 × N a subvector of ∇g n (x * ) associated with the components of β(t) and J n the 1 × N a subvector of x +′ ∇ 2 g n (x * ) also associated with the non zero components of β. The Taylor expansion becomes [G n + tJ n ] β(t) + 1 2 t 2 x +′ ∇ 2 g n (x * )x + + 1 2 β(t) ′ ∇ 2 g n (x * )β(t) = o(t 2 ).

Let G and J be the N a × N a matrices obtained by stacking up the G n and J n over the active constraints. By the qualification of constraints, G is of full rank, so that G + tJ is invertible for small enough t. The second and third terms on the left hand side are respectively O(t z ) and O(t 2z ) at most for all active constraints, where z ≥ 2. Therefore the terms β(t) ′ ∇ 2 g n (x * )β(t) are negligible, β(t) is at most O(t z ), and the expression in the statement of the Theorem holds.

Finally the expansion of L(x * + tx + + β(t), λ * ) -L(x * , λ * ) = f (x * + tx + + β(t)) -f (x * ) yields ∇ x L(x * , λ * )(tx + +β(t))+ 1 2 t 2 x +′ ∇ 2 x L(x * , λ * )x + +o(t 2 ) = 1 2 t 2 x +′ ∇ 2 x L(x * , λ * )x + +o(t 2 ), a positive quantity, which completes the proof.

p

  hs Eu hs (z s ) subject to the incentive constraints S s=1 p hs Ev hs (z s ) ≥ S s=1 p is Ev is (z s ) for all i = h, (λ hi ) and the individual rationality constraint S s=1 p hs Ev hs (z s ) ≥ v, (ρ h )

  -tx + + β(t)) -f (x * ) + tx + + β(t), λ * ) + 1 2 L(x * -tx + + β(t), λ * ) -L(x * , λ * ) = ∇ x L(x * , λ * ) ′ β(t) + 1 2 t 2 x +′ ∇ 2 x L(x * , λ * )x + + 1 2 β(t) ′ ∇ 2 x L(x * , λ * )β(t) + o(t 2 ). Since x * is a local deterministic maximum, ∇ x L(x * , λ * ) = 0. Moreover, by (16), β(t) = O(t z ) at most, so that β(t) ′ ∇ 2 x L(x * , λ * )β(t) is at most O(t 2z ). As a result, Ef (x * + h(t)) -f (x * ) = 1 2 t 2 x +′ ∇ 2 x L(x

	) of the random deviation,
	1 2 f (x = f (x * + tx + + β(t)) + 1 2 1 2 L(x

* * * , λ * )x + + o(t 2 ) > 0, (17) by the choice of x + .

Proof of Theorem 2. The deviation is deterministic, h(t) = tx + + β(t), and a Taylor expansion of (1) gives

∇g n (x * ) ′ β(t)+ 1 2 t 2 x +′ ∇ 2 g n (x * )x + +tx +′ ∇ 2 g n (x * )β(t)+ 1 2 β(t) ′ ∇ 2 g n (x * )β(t) = o(t 2 ), or ∇g n (x * ) ′ + tx +′ ∇ 2 g n (x * ) β(t)+ 1 2 t 2 x +′ ∇ 2 g n (x * )x + + 1 2 β(t) ′ ∇ 2 g n (x * )β(t) = o(t 2 ).

This last assumption is discussed in Remark 1 below.

We are grateful to a referee for pushing us to investigate this question.

This is an instance of a more general phenomenon which is at work in[START_REF] Strausz | Deterministic versus stochastic mechanisms in principal-agent models[END_REF]. When some variables linearly enter the Lagrangian function, the corresponding entries of the Hessian of the Lagrangian are identically zero and the structure of the problem may simplify drastically. In the model studied by[START_REF] Strausz | Deterministic versus stochastic mechanisms in principal-agent models[END_REF], there are I known active constraints with I associated transfers entering linearly both the constraints and the objective. The procedure sketched in Remark 3 then implies that there is no scope for improvement through local random deviations.
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where r A i (c) = -u ′′ i (c)/u ′ i (c) is the coefficient of absolute risk aversion of type i when consuming c.

Proof. Eliminating the multiplier ρ between the two first order conditions ∂L/∂c 1 = ∂L/∂c 2 = 0 yields the multiplier λ,

The positivity of the eigenvalue is equivalent to

, which gives the desired result. Remark that in this specific example the second-best allocation (c * 1 , c * 2 , y * 2 ) does not depend on the social weights (a 1 , a 2 ), whenever it differs from the first-best.

Since the positive eigenvalue is associated with the eigenvector with all weight on c 1 , the deviation can put randomness on the disability allowance c 1 only. For randomness to be worthwhile, (11) requires that type 2 be substantially more risk averse than type 1.

Discrimination through risk exposure

The general framework used in Section 4.1 also applies to monopoly pricing, as analysed in [START_REF] Mussa | Monopoly and Product Quality[END_REF] and [START_REF] Maskin | Monopoly with incomplete information[END_REF]. The principal is a monopolist producing a commodity in different qualities. The unit cost c(q) of one good of quality q is increasing and convex, with c(0) = 0. Each agent buys at most one good. A type i agent buying a quality q good at price p has utility v i (θ i q -p), with v i increasing and concave. Tastes, represented by the function v i and the valuation θ i for quality, are private information. By convention valuations increase with i, θ i < θ i+1 for all i ≤ I -1.

Prices and/or quality may be random. The problem of the seller is to choose a profile (p i , qi ), i = 1, . . . , I, which maximizes her expected revenue

Appendix

Proof of Theorem 3. We start with part 1. The mathematical expectation of a Taylor expansion of L in a suitable neighborhood of x * is

where x is a point on the segment [x * , x]. From part 1 of Theorem 1, the second term on the right hand side is equal to zero. The third one is strictly negative in the chosen neighbourhood since ∇ 2 x L(x * , λ) is negative definite by assumption. Therefore, for x = x * ,

The active constraints at x * are satisfied at equality, while the inactive constraints stay inactive in a suitable neighbourhood of x * . It follows that λ * ′ g(x * ) = λ * ′ g(x) = 0, and consequently

We now prove part 2. By assumption ∇ 2

x L(x * , λ) has one positive eigenvalue and the associated eigenvector is a suitable x + . From part 2 of Theorem 1, note that x + cannot belong to the tangent space to the active constraints, i.e., g n (x * ) ′ x + = 0 for some n such that g n (x * ) = 0.

By (2) the deviations h(t) are such that Eg n (x * + h(t)) = g n (x * ) for the active constraints, i.e.

We are going to show that there is a β(t) satisfying ( 14) which is at most O(t z ) for some z ≥ 2. If there are N a active constraints, ( 14) is a system of N a equations in the unknown β(t). A Taylor expansion of ( 14) yields, for all active constraints n, ∇g n (x * ) ′ β(t) + 1 4 (tx + + β(t)) ′ ∇ 2 g n (x * )(tx + + β(t))

+ 1 4 (-tx + + β(t)) ′ ∇ 2 g n (x * )(-tx + + β(t)) = o(t 2 ).