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Gauss-compatible Galerkin schemes for time-dependent Maxwell equations

In this article we propose a unified analysis for conforming and non-conforming finite element methods that provides a partial answer to the problem of preserving discrete divergence constraints when computing numerical solutions to the time-dependent Maxwell system. In particular, we formulate a compatibility condition relative to the preservation of genuinely oscillating modes that takes the form of a generalized commuting diagram, and we show that compatible schemes satisfy convergence estimates leading to long-time stability with respect to stationary solutions. These findings are applied by specifying compatible formulations for several classes of Galerkin methods, such as the usual curl-conforming finite elements and the centered discontinuous Galerkin (DG) scheme. We also propose a new conforming/non-conforming Galerkin (Conga) method where fully discontinuous solutions are computed by embedding the general structure of curl-conforming finite elements into larger DG spaces. In addition to naturally preserving one of the Gauss laws in a strong sense, the Conga method is both spectrally correct and energy conserving, unlike existing DG discretizations where the introduction of a dissipative penalty term is needed to avoid the presence of spurious modes.

Introduction

Preserving a discrete version of the Gauss laws has always been an important issue in the development of numerical schemes for the time-dependent Maxwell equations. At the continuous level indeed, an important property of the Ampere and Faraday equations

∂ t E -curl B = -J ∂ t B + curl E = 0 (1.1)
is to preserve the divergence constraints on the fields div E = ρ div B = 0 (1.2) provided they are satisfied at initial time and the sources ρ and J satisfy the so-called continuity equation ∂ t ρ + div J = 0.

(1.3)

However when numerical approximations are involved this may not be true.

In that regard, the different classes of Galerkin approximations do not come with equal properties. For instance curl-conforming finite element methods present a rather favorable situation, in that they usually preserve the Gauss laws in a natural finite element sense, see e.g., [START_REF] Rieben | A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids[END_REF][START_REF] Pinto | Charge conserving fem-pic schemes on general grids[END_REF]. This is not the case with non-conforming methods such as finite volume or Discontinuous Galerkin (DG) schemes where it is known that on general meshes the most natural discrete version of the divergence constraints cannot hold [START_REF] Gjonaj | Conservation Properties of the Discontinuous Galerkin Method for Maxwell Equations[END_REF]. A practical consequence of that theoretical weakness is the development of small errors in the computed electromagnetic field which accumulate to large deviations for long simulation times [START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF][START_REF] Stock | Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods[END_REF].

When the sources themselves are obtained by a numerical treatment, as is the case with particle simulations of the Vlasov-Maxwell system, such numerical artifacts are often designated as a lack of charge conservation. Indeed the growing inconsistencies that one observes in the fields may be related, through the Gauss laws, to a lack of charge separation: particles tend to stick together, which is normally prevented by Gauss's law. Nevertheless, part of the problem lies in the discretization of the Maxwell equations themselves, as can be seen in e.g. [START_REF] Stock | Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods[END_REF] where such unphysical behavior appears with analytical sources that do satisfy the balance equation (1.3).

In order to make DG -and other schemes lacking a proper discrete charge conservationphysically acceptable, one usually resorts to correction techniques such as projection methods or divergence cleaning methods based on generalized Lagrange multiplier formulations of the Maxwell equations [START_REF] Jacobs | Implicit-explicit time integration of a high-order particlein-cell method with hyperbolic divergence cleaning[END_REF][START_REF] Munz | Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model[END_REF][START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF]. This works well in many cases, in particular when the investigated problem is close to electrostatic. However it introduces an artificial non locality in the numerical scheme which can have disastrous effects in some situations, for example in laser plasma interaction problems where these non localities can trigger an instability before the laser hits the plasma.

We note that the preservation of the Gauss law for time dependent problems is strongly related to the non existence of spurious eigenvalues for the discrete curl curl operator, which has triggered a lot of efforts in the applied mathematics community, see e.g. [START_REF] Caorsi | Towards a good characterization of spectrally correct finite element methods in electromagnetics[END_REF][START_REF] Bossavit | Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism[END_REF][START_REF]Finite element approximation of eigenvalue problems[END_REF][START_REF] Boffi | Computational models of electromagnetic resonators: analysis of edge element approximation[END_REF]. The problem is that when Gauss's law is not explicitly applied, the eigenspace corresponding to the zero eigenvalue is infinite dimensional and not compact. Good numerical methods generally avoid mixing the eigenspaces corresponding to vanishing and non vanishing eigenvalues, but not all of them do.

Be it for the time dependent or the eigenvalue problem, solutions have been developed using appropriate exact sequences of discrete spaces along with commuting projections [START_REF]Solving Maxwell equations in a closed cavity, and the question of 'spurious modes[END_REF][START_REF]On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems[END_REF][START_REF] Costabel | Computation of resonance frequencies for Maxwell equations in non-smooth domains[END_REF][START_REF] Rieben | A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]. In addition to classical finite element spaces, this framework has been extended to spline finite elements in [START_REF] Buffa | Isogeometric analysis in electromagnetics: B-splines approximation[END_REF]. By construction, these solutions are restricted to conforming methods.

In this article we extend these results to non-conforming methods and propose a unified analysis. Our findings are twofold. First we formulate a compatibility condition for semi-discrete schemes with sources that takes the form of a generalized commuting diagram, and we show that methods verifying this condition are long-time stable with respect to exact stationary solutions, which solves most of the large deviation problems described in the literature without resorting to divergence cleaning techniques. Specifically, by applying this analysis to conforming and nonconforming Galerkin methods we describe several approximation operators for the sources that make the usual curl-conforming finite element method and the centered DG scheme compatible in the above sense.

Second, we propose a new conforming/non-conforming Galerkin (Conga) method that closely follows the structure of the curl-conforming finite element schemes but uses fully discontinuous spaces just as standard DG schemes. In contrast to existing DG discretizations where the introduction of a dissipative penalty term is necessary to avoid the presence of spurious modes [START_REF] Hesthaven | High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[END_REF][START_REF] Warburton | The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem[END_REF][START_REF] Buffa | Discontinuous Galerkin Approximation of the Maxwell Eigenproblem[END_REF] the Conga method is shown to be both spectrally correct and energy conserving, just as curl-conforming finite element schemes. Moreover, it naturally preserves one of the Gauss laws in a strong sense.

The outline is as follows. In Section 2 we express the time-dependent Maxwell system ∂ t U -AU = -F in the abstract setting of Hilbert complexes with exact sequences of differential operators, and we ask ourselves in which sense a numerical method of the form ∂ t U h -A h U h = -F h should be compatible with the Gauss laws. By studying first the homogeneous case F = 0 we observe that in this abstract setting the Gauss laws is naturally interpreted as a constraint relative to the existence of stationary modes, for which it is straightforward to derive a discrete analog that can be imposed on the numerical solutions.

In Section 3 we then extend this constraint to the case with sources by formulating a compatibility condition of the form F h = Π h F with Π h A = A h Πh and we show that compatible schemes are long-time stable with respect to exact stationary solutions. In this abstract setting we then provide compatible formulations for several conforming and non-conforming Galerkin methods, including a novel Conga method that is shown to be spectrally correct in Section 4. Finally, compatible operators for the current approximation are provided in Section 5 for several explicit semi-discretizations of the 3d Maxwell equations. Numerical results using an elementary test-case in 2d validate the effectiveness of the proposed approach.

An abstract setting for time-dependent Maxwell problems

Because our analysis relies on the spectral properties of the Maxwell evolution operator and that of its approximation by mixed methods, we reformulate the problem in the abstract setting of Hilbert complexes, following the framework and notation from Ref. [START_REF]Finite element exterior calculus: from Hodge theory to numerical stability[END_REF].

Exact sequences in Hilbert complexes

We consider a Hilbert complex (W, d) = (W l , d l ) l=0,...,n consisting of a finite sequence of Hilbert spaces W l with closed and densely-defined linear operators d l : W l → W l+1 that satisfy d l d l-1 = 0.

(2.1)

In particular, the range of d l-1 is contained in the domain of d l , denoted V l . We further assume that the sequence (V, d) is exact, in the sense that the range of d l-1 actually coincides with the null space of d l , which we denote by Z l . Thus, we have

Z l := ker d l = d l-1 V l-1 . (2.2)
In our applications the W l 's will be L 2 spaces, and the d l 's will correspond to differential operators such as -grad, curl or div. To reformulate the time-dependent Maxwell system in this abstract setting, following [START_REF]Finite element exterior calculus: from Hodge theory to numerical stability[END_REF] we let d * l+1 be the adjoint of d l : it is a closed, densely-defined operator from W l+1 to W l and its domain is denoted 3 with domain V l = H(curl; Ω), its adjoint d * l+1 will also be a curl operator but with domain V * l+1 = H 0 (curl), see e.g. [START_REF] Picard | On a selfadjoint realization of curl and some of its applications[END_REF]Sec. 0]. And the reverse situation is also possible since the closed, densely-defined d l coincides with (d * l+1 ) * . In particular, we have

V * l+1 . For instance if d l is the unbounded operator curl : L 2 (Ω) 3 → L 2 (Ω)
d * l+1 v, u = v, d l u , v ∈ V * l+1 , u ∈ V l . (2.3)
Here we use the same notation •, • for the scalar products in any of the (L 2 ) spaces W l , and accordingly we shall use • for the corresponding norms. Applying (2.3) to u = d l-1 ϕ with ϕ ∈ V l-1 , we infer from (2.1) that d * l+1 maps V * l+1 to V * l and

d * l d * l+1 = 0. (2.4)
Using the density of V l-1 in W l-1 we then see that

d * l u = 0 holds iff u, d l-1 ϕ = 0 for all ϕ ∈ V l-1 , hence (2.2) yields ker d * l = Z l ⊥ W (2.5)
where the ⊥ W exponent denotes an orthogonal complement in the proper space from the complex W , here W l . Note that in the sequel we will use the ⊥ exponent alone to denote an orthonal complement in (the proper space from) the complex V , see e.g. (2.6) or (2.13) below. We next verify the following estimates.

Lemma 2.1 (Poincaré inequalities).

There is a constant

c P = c P (V, d) such that u ≤ c P d l u , u ∈ Z l ⊥ W ∩ V l =: Z l ⊥ (2.6) and w ≤ c P d * l+1 w , w ∈ Z l+1 ∩ V * l+1 . (2.7)
Proof. The first estimate is given in [3, Eq. ( 16)]. It is obtained by observing first that Z l ⊥ is the orthogonal complement of Z l in the Hilbert space V l equipped with the scalar product u, v V := u, v + du, dv , and second that d l defines a bounded bijection between the Hilbert spaces (Z l ⊥ , •, • V ) and (Z l+1 , •, • ), the latter being closed according to (2.2). Estimate (2.6) then follows by Banach's bounded inverse theorem. To obtain estimate (2.7) we finally consider w ∈ Z l+1 ∩ V * l+1 and let ū ∈ Z l ⊥ be such that d l ū = w. The definition of the adjoint operator gives then

d * l+1 w = sup u∈V l w, d l u u ≥ w, d l ū ū = w d l ū ū ≥ c -1 p w
where the last inequality is (2.6).

Our analysis will use some of the properties of the inverse K of the abstract Hodge Laplacian operator L = d k-1 d * k + d * k+1 d k corresponding to a particular index k that will be chosen so that both d k and its adjoint d * k+1 correspond to curl operators. To do so we will assume in Section 4 that the inclusion from the dense intersection

V k ∩ V * k in W k is compact.
According to [3, Sec. 3] we then know that K is compact and selfadjoint, as an operator from W k to itself.

The space discretization methods studied in this article will involve finite-dimensional subcomplexes (V h , d) of (V, d), i.e., sequences of conforming discrete spaces satisfying V l h ⊂ V l and d l V l h ⊂ V l+1 h . These spaces will serve either as primary discretization spaces in conforming methods, or as auxiliary discretization spaces in the considered non-conforming methods. It is well-known (see, e.g., [START_REF]Computational electromagnetism: variational formulations, complementarity, edge elements[END_REF][START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF]Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]) that the quality of a mixed method based on the subcomplex (V h , d) strongly relies on the existence of projection operators π l h mapping some conforming domains V l ⊂ V l to the discrete spaces V l h , such that the following diagram commutes

• • • V l V l+1 • • • • • • V l h V l+1 h • • • d l-1 π l h d l π l+1 h d l+1 d l-1 d l d l+1 (2.8)
in the sense that

d l π l h = π l+1 h d l holds on V l .
(2.9)

Here the projection operators may be bounded in V or in W , but for some applications they do not need to be so, and the V l 's can be proper subspaces of the V l 's. Either way, it can be verified that if the diagram (2.8) commutes then the discrete subcomplex inherits the exactness of (V, d), in the sense that

Z l h := Z l ∩ V l h = ker d l | V l h = d l-1 V l-1 h . (2.10)
An important tool in the study of mixed methods is the adjoint

d * l+1,h : V l+1 h → V l h of the operator d l restricted to V l h . It is characterized by d * l+1,h v, u = v, d l u , v ∈ V l+1 h , u ∈ V l h . (2.11) Using (2.1) we then find d * l,h d * l+1,h v, ϕ = d * l+1,h v, d l-1 ϕ = v, d l d l-1 ϕ = 0 for all v ∈ V l+1 h and ϕ ∈ V l-1 h . Thus, d * l,h d * l+1,h = 0. (2.12)
Finally, one easily derives from (2.10) a characterization of the adjoint kernel,

Z l ⊥ h := Z l ⊥ W h ∩ V l h = ker d * l,h . (2.13)

The abstract Maxwell evolution system

In the above setting, an abstract version of the time-dependent Maxwell system can be given in a form that is standard in the literature, see e.g., [START_REF] Adam | Study of an implicit scheme for integrating Maxwell's equations[END_REF][START_REF] Cessenat | Mathematical methods in electromagnetism[END_REF]. It reads

∂ t U -AU = -F U (0) = U 0 ∈ V, (2.14) 
where A is the linear operator defined from W := W k × W k+1 to itself by

A = 0 -d * k+1 d k 0 , with dense domain V := D(A) = V k × V * k+1 . (2.15)
Indeed in the applications k will be chosen such that both d k and its adjoint d * k+1 are curl operators. The source F = (f, g) t corresponds to a generalized current density. In Section 5 we will consider either terms of the form F = (0, J) t corresponding to a strong formulation of the Ampere equation (in which case U represents (B, E) t ), or terms of the form F = (J, 0) t that correspond to a strong formulation of the Faraday equation (in which case U represents (E, -B) t ).

From the properties of d k and d * k+1 we can see that A is closed and skew-symmetric. Indeed for any 

U = (u, v) t and U = (u , v ) t in V, (2.3) gives AU, U = d k u, v -d * k+1 v, u = u, d * k+1 v -v, d k u = U, -AU . ( 2 
U ∈ C 0 ([0, T [; V) that is continuously differentiable on ]0, T [.
In addition to the evolution equation (2.14), the Maxwell system consists of a two-component Gauss law

DU (t) = R(t), t ≥ 0, with D = d * k 0 0 d k+1 .
(2.17)

Here D corresponds to a two-components divergence operator and R = (θ, ρ) t ∈ W corresponds to a generalized charge density. In particular, (2.17) implies that U (t) belongs to the domain of D, V * k × V k+1 . From the cochain (2.1) and chain (2.4) relations one sees that DA = 0, hence (2.17) actually amounts to a property being satisfied by the data. Namely,

F ∈ C 0 ([0, T ]; D(D)) U 0 ∈ D(D) = V * k × V k+1 and ∂ t R + DF = 0 DU 0 = R(0). (2.18)
Before studying the Galerkin approximations to (2.14), we verify the following result.

Lemma 2.3. The kernel of A reads

ker A = Z k × Z k+1 ⊥ W (2.19)
and its orthogonal complement in W = W k × W k+1 coincides with the range of A,

Im(A) = (ker A) ⊥ W = Z k ⊥ W × Z k+1 . (2.20)
Proof. The identity (2.19) simply follows from (2.5) and the definition of Z k . To prove (2.20) we can show that the range of A is closed. The claimed identity will then follow from the closed range theorem and the fact that

A * = -A. Thus, let (u n , v n ) t be a sequence in V such that (u n , v n ) t := A(u n , v n ) t converges to some U in W.
Setting ūn := (I -P Z k )u n and vn := P Z k+1 v n we then infer from (2.2) and (2.5) that

-d * k+1 vn d k ūn = -d * k+1 v n d k u n = u n v n and ūn ∈ Z k ⊥ vn ∈ V * k+1 ∩ Z k+1 .
The convergence of the sequence (ū n , vn ) t to some Ū (in W) follows then from the Poincaré inequalities (2.6)-(2.7), and since A is closed ( Ū , U ) is in the graph of A. Hence Im(A) is closed and the identity follows.

Conforming Galerkin approximations and the Gauss law

To derive Galerkin approximations to the abstract Maxwell evolution system (2.14), we write the latter in variational form using (2.3), as

   ∂ t u, z + v, d k z = -f, z z ∈ V k ∂ t v, w -d k u, w = -g, w w ∈ V * k+1 .
(2.21)

Here the standard Galerkin approach (see, e.g., [START_REF] Ch | Time-discrete finite element schemes for Maxwell's equations[END_REF][START_REF] Rieben | A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids[END_REF][START_REF] White | Development and application of compatible discretizations of Maxwell's equations, Compatible Spatial Discretizations[END_REF])

defines (u h , v h ) in C 1 (]0, T [; V k h ×V k+1 h ), solution to    ∂ t u h , z + v h , d k z = -f h , z z ∈ V k h ∂ t v h , w -d k u h , w = -g h , w w ∈ V k+1 h , (2.22) 
with proper approximations (f h , g h ) and (u 0 h , v 0 h ) to the source terms and initial data. Clearly, the embedding V k h ⊂ V k is required for (2.22) to be well defined, and for this reason the method is said conforming. As for v h , we note that other spaces could be chosen, and indeed in Refs. [START_REF] Monk | A mixed method for approximating Maxwell's equations[END_REF][START_REF]An analysis of Nédélec's method for the spatial discretization of Maxwell's equations[END_REF] similar schemes are considered, where v h is sought for in a fully discontinuous space. For additional examples and literature on conforming approximations, see e.g. [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF]Computational electromagnetism: variational formulations, complementarity, edge elements[END_REF].

Here, the motivation for taking v h (and w) in V k+1 h comes from the fact that the method preserves a strong discrete version of the second Gauss law in (2.17). Indeed, if the discrete data v 0 h and g h are in V k+1 h and if they satisfy a strong discrete version of the second equations in (2.18), namely

∂ t ρ h + d k+1 g h = 0 d k+1 v 0 h = ρ h (0)
for some approximation ρ h to ρ, then ∂ t v h is also in V k+1 h , and using (2.1) we find

d k+1 v h (t) = ρ h (t), t ≥ 0. (2.23)
As for the first Gauss law in (2.17), it can only be satisfied in a weak sense since ∂ t u h has no reason to be in V * k . Specifically, the first equation from (2.22) reads

∂ t u h + d * k+1,h v h = -f h where d * k+1,h : V k+1 h → V k h is the adjoint of d k | V k h
, see (2.11). Thus if the data u 0 h and f h satisfy

∂ t θ h + d * k,h f h = 0 d * k,h u 0 h = θ h (0)
for some approximation θ h to θ, then using (2.12) we obtain

d * k,h u h (t) = θ h (t), t ≥ 0. (2.24) 
Now, as for any weak equation, the question arises as to whether (2.24) should be considered too weak to be numerically relevant. A partial answer to that question is obtained by observing that (2.24) amounts to satisfying

u h , d k-1 ϕ = θ h , ϕ for all ϕ ∈ V k-1 h . (2.25) 
In the applications d k-1 will be a -grad operator, hence (2.24) is a standard finite element version of the Gauss law involving H 1 test functions. In particular, if

u h = d k-1 φ h is an electric field deriving from a discrete potential φ h ∈ V k-1 h
, then (2.24) simply means that φ h solves a conforming Galerkin approximation of the abstract Poisson equation (d k-1 ) * d k-1 φ h = θ h , which in itself can be considered as numerically relevant.

The fundamental homogeneous Gauss law

To give another argument that validates the relevance of the above discrete Gauss laws, we rewrite the conforming approximation (2.22) as an evolution equation

∂ t U h -A h U h = -F h U h (0) = U 0 h ∈ V h , (2.26) 
where the skew-symmetric operator

A h := 0 -d * k+1,h d k 0 maps V h := V k h × V k+1 h to itself. (2.27)
The discrete Gauss laws (2.23)-(2.24) read then

D h U h = R h with D h = d * k,h 0 0 d k+1 (2.28)
and here R h = (θ h , ρ h ) t is a generalized discrete charge density. The preservation of this twocomponent Gauss law by the conforming scheme is then expressed by the relation D h A h = 0. Parallel to (2.26), one also finds non-conforming Galerkin approximations to (2.14), of the form

∂ t Ũh -Ãh Ũh = -Fh Ũh (0) = Ũ 0 h ∈ Ṽh , (2.29) 
where Ãh is a skew-symmetric operator approximating A on a non-conforming space of the form

Ṽh = Ṽ k h × Ṽ k+1 h with Ṽ k h ⊂ V k .
For example in TE 2d centered-flux DG schemes [START_REF] Hesthaven | High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[END_REF][START_REF] Fezoui | Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes[END_REF], the discontinuous scalar magnetic field ṽh ≡ B z is strongly divergence-free by construction and hence belongs to the conforming space V k+1 , whereas the electric field ũh ≡ (E x , E y ) belongs to some non-conforming approximation of V k . One can then show (see, e.g., [START_REF] Fezoui | Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes[END_REF]Prop. 3.7]) that ũh satisfies a weak Gauss law involving the same test functions as in (2.25). Thus, in the source-free case a two-component constraint of the form Dh Ũh = 0 (2.30)

holds with essentially the same discrete divergence operator than in (2.28), extended to Ṽh . Now, because ũh belongs to a presumably larger space than in the conforming case, one intuitively feels that in order to be numerically relevant, a weak Gauss law should also involve a larger space of test functions.

An algebraic argument supporting the relevance of (2.28) compared to (2.30) can then be obtained by observing that in the homogeneous case (R, F = 0), the Gauss law amounts to a constraint relative to the oscillating modes of the solutions to the Maxwell equation ∂ t U = AU .

Definition 2.4 (oscillating modes). Since A is skew-symmetric, all its eigenvalues are imaginary and correspond to solutions that oscillate. But not all are genuinely oscillating: the orthogonal decomposition W = ker A ⊕ (ker A) ⊥ W corresponds to a separation between the stationary solutions (∂ t U = 0) and those which really oscillate (∂ t U = iωU , ω = 0). Only the latter will be said oscillating.

Specifically, we observe that in addition to the inclusion Im(A) ⊂ ker D equivalent to DA = 0 which expresses the preservation of the Gauss law DU = 0 by the Maxwell equation, what we actually have is an identity: using (2.5), (2.19) 

and (2.20) we find indeed Im(A) = (ker

A) ⊥ W = Z k ⊥ W ×Z k+1 = ker D.
Thus in the absence of sources, the Gauss law (2.17) is equivalently rewritten as

U (t) ∈ (ker A) ⊥ W , t ≥ 0,
which states that U (t) can only be composed of oscillating modes. Since the discrete evolution operator is also assumed skew-symmetric, it is straightforward to formulate an analog property at the discrete level.

Definition 2.5. We say that a scheme of the form (2.29) satisfies the fundamental homogeneous Gauss law if the solutions to the homogeneous equation (F h = 0) are only composed of oscillating modes (see Def. 2.4) for the discrete evolution operator Ãh , i.e., if they verify

Ũh (t) ∈ (ker Ãh ) ⊥ W , t ≥ 0. (2.31)
We note that in addition to being a natural property to expect from the discrete solutions, (2.31) is related to a classical condition in the study of spectrally correct methods for the Maxwell eigenvalue problem, see e.g., [START_REF] Caorsi | Towards a good characterization of spectrally correct finite element methods in electromagnetics[END_REF][START_REF] Costabel | Computation of resonance frequencies for Maxwell equations in non-smooth domains[END_REF]. Turning back to the relevance of the discrete Gauss laws, we observe that:

(i) In the conforming case (2.26)-(2.27) the discrete operators satisfy a relation analog to the continuous one, namely

ker D h = Z k ⊥ h × Z k+1 h = (ker A h ) ⊥ W ∩ V h = Im(A h ). (2.32)
As a consequence, in the absence of sources the discrete Gauss law D h U h = 0 is strong enough to guarantee the fundamental Gauss law in the sense of Definition 2.5.

(ii) In the non-conforming case (2.29) where the discontinuous space Ṽh may be much larger, there is no reason why we should have ker Dh ⊂ (ker Ãh ) ⊥ W . Therefore the discrete Gauss law Dh Ũh = 0 is a priori too weak to guarantee the fundamental Gauss law in the sense of Definition 2.5.

In the remainder of the paper we will design non-conforming Galerkin methods of the form (2.29) that satisfy the fundamental homogeneous Gauss law, although no divergence constraint stronger than (2.30) is specified. And when sources are present, we will look for schemes that are compatible with the property stated in Definition 2.5, in the sense that they should satisfy

U (t) ∈ (ker A) ⊥ W , t ≥ 0 =⇒ Ũh (t) ∈ ker( Ãh ) ⊥ W , t ≥ 0. (2.33) 
In Section 3 below we shall give a somehow stronger definition for compatible schemes. But before doing so we observe that since Ãh is assumed skew-symmetric, solutions to (2.29) clearly satisfy

∂ t Ũh + Fh ∈ (ker Ãh ) ⊥ W .
In particular, it is easily seen that satisfying property (2.33) essentially relies on the data approximation. An obvious sufficient property reads indeed

U 0 , F ∈ (ker A) ⊥ W =⇒ Ũ 0 h , Fh ∈ (ker Ãh ) ⊥ W .
(2.34)

Compatible Galerkin approximations

In this section we propose an abstract compatibility property for generic approximations to (2.14), based either on conforming or on non-conforming spaces.

The Gauss law meets commuting diagrams

Following our observation that for skew-symmetric Galerkin approximations, being compatible with the fundamental Gauss law in the sense of (2.33) is essentially a matter of proper data approximation, we make the latter part explicit and consider semi-discrete schemes of the form

∂ t Ũh -Ãh Ũh = -Π h F Ũh (0) = Ũ 0 h ∈ Ṽh . (3.1)
Here,

• Ṽh is a discrete subspace of W = W k × W k+1 but not necessarily a subset of either V k × V k+1 or V = V k × V * k+1
, the domain of A ;

• Ãh : Ṽh → Ṽh is a skew-symmetric bounded operator approximating A ;

• Π h is a projection on Ṽh that may not be W-bounded but has a dense domain in W.

Thus, the conforming method corresponds to taking Ṽh = V h and Ãh = A h as in (2.27), i.e.,

A h := 0 -d * k+1,h d k 0 : V h → V h with V h := V k h × V k+1 h . (3.2)
Non-conforming methods are obtained with spaces Ṽh that consist of totally discontinuous functions, typically piecewise polynomials with no continuity constraint between neighboring elements. Note that the semi-group arguments used in Section 2.2 guarantee the well-posedness of (3.1).

We now specify the condition (2.34) for a scheme of the form (3.1). According to Lemma 2.3 and the identity Im(A) = (ker A) ⊥ W , what we may require is essentially that the data approximation maps the range of the continuous evolution operator A into that of the discrete one Ãh . In other terms, for any F = AZ with Z ∈ V there should be a discrete field Z h ∈ Ṽh such that Π h F = Π h AZ = Ãh Z h , at least when Z is sufficiently smooth. And because Ãh is meant to be an approximation to A, it is natural to ask that Z h be an approximation to Z.

In order to derive error estimates we formalize the above property in terms of an auxiliary approximation operator Πh . Definition 3.1 (Gauss-compatible schemes). A scheme of the form (3.1) is said compatible on a subspace V of V = D(A) if there exists an approximation operator Πh : V → Ṽh that converges pointwise to the identity as h → 0, and for which

V A V Ṽh Ṽh Πh A Π h Ãh (3.3) is a commuting diagram, in the sense that Π h A = Ãh Πh holds on V.
Interestingly enough, we observe that although (3.3) has been primarily derived to preserve the oscillating nature of the solutions at the discrete level (see Def. 2.4), it also yields a compatibility property relative to stationary solutions. Indeed, if the continuous source is associated to an exact steady state, i.e., if F = A Ū with Ū ∈ V, then its approximation Π h F is associated to the steady state Πh Ū ≈ Ū . Remark 3.2. In fact, the commuting diagram (3.3) implies two key embeddings for the involved projection operators. Specifically, we have

Π h ((ker A) ⊥ W ∩ A V) ⊂ (ker Ãh ) ⊥ W and Πh (ker A ∩ V) ⊂ ker Ãh . (3.4)
Following the discussion in Section 2.4, these relations can be interpreted by saying that "Π h maps the continuous divergence-free fields into discrete divergence-free fields", and " Πh maps the continuous curl-free fields into discrete curl-free fields".

It is then easily verified that compatible schemes enjoy the following properties.

Theorem 3.3. If the semi-discrete scheme (3.1) is compatible, then (i) when associated to the initial data Ũ 0 h = Π h U 0 , it satisfies Property (2.34) (on A V) and hence the fundamental homogeneous Gauss law ;

(ii) if the solution U to the Cauchy problem (2.14) 

is in C 0 ([0, T [; V), we have a W-error bound ( Ũh -Πh U )(t) ≤ Ũ 0 h -Πh U 0 + t 0 (Π h -Πh )∂ t U (s) ds, t ≥ 0 (3.5)
(iii) and an additional estimate for the discrete derivatives (again for t ≥ 0)

( Ãh Ũh -Π h AU )(t) ≤ Ãh Ũ 0 h -Π h AU 0 + t 0 Ãh (Π h -Πh )∂ t U (s) ds. (3.6)
Proof. Property (i) readily follows from the first embedding in (3.4) and the observation that (2.34) is a sufficient condition for (2.33). To show (ii) and (iii) we next observe that U satisfies

Π h ∂ t U = Π h AU -Π h F = Ãh Πh U -Π h F,
hence for the discrete solution we have

∂ t (U h -Πh U ) = (∂ t U h -Π h ∂ t U ) + (Π h -Πh )∂ t U = Ãh (U h -Πh U ) + (Π h -Πh )∂ t U.
Applying Ãh to the latter and using the commuting diagram (3.3) further gives 

∂ t ( Ãh U h -Π h AU ) = Ãh ( Ãh U h -Π h AU ) + Ãh (Π h -Πh )∂ t U
Ũh (t) -Πh Ū ≤ Ũ 0 h -Πh Ū and Ãh Ũh (t) -Π h A Ū ≤ Ãh Ũ 0 h -Π h A Ū . Remark 3.5.
A priori error estimates leading to long-time stability results with respect to steadystate solutions have already been obtained for conforming schemes, see e.g., [START_REF] Monk | A mixed method for approximating Maxwell's equations[END_REF][START_REF]An analysis of Nédélec's method for the spatial discretization of Maxwell's equations[END_REF][START_REF] Ch | Time-discrete finite element schemes for Maxwell's equations[END_REF]. One interest of our estimates is that they can be applied with similar success to non-conforming schemes, where we are not aware of such long-time stability results. Remark 3.6. We may emphasize that Theorem 3.3 and its corollary involve no assumptions on the discrete operator Ãh , other than the skew-symmetry and the existence of the commuting diagram (3.3). In particular the above estimates do not rely on any of the properties of the discrete complexes described in Section 2.

The case of conforming Galerkin approximations

Before designing non-conforming compatible schemes, we first show that the conforming Galerkin method (2.26)-(2.27) is compatible when equipped with a source approximation F h = Π h F that involves a projection π k+1 h from the commuting diagram (2.8). Theorem 3.7 (Compatibility of the conforming Galerkin method). If Ãh = A h is the conforming operator (3.2) defined on Ṽh = V h , the scheme (3.1) equipped with

Π h = P V k h 0 0 π k+1 h : (W k × V k+1 ) → V h (3.7)
is compatible. In particular, it satisfies the commuting diagram (3.3) with

Πh = π k h 0 0 P V k+1 h : V → V h where V := V k × V * k+1 . (3.8) Remark 3.8.
Here Πh is obviously defined on V k × W k , but for the diagram (3.3) to commute A must be defined on V, i.e., we need V ⊂ V = V k × V * k+1 , hence (3.8).

Proof. With the above operators, the compatibility relation (3.3) reads

π k+1 h d k = d k π k h on V k P V k h d * k+1 = d * k+1,h P V k+1 h on V * k+1 .
(3.9)

The first relation is simply (2.9). Using the properties (2.3) and (2.11) of the continuous and discrete adjoints of d k , we then compute for w ∈ V * k+1 and z

∈ V k h P V k h d * k+1 w, z = d * k+1 w, z = w, d k z = P V k+1 h w, d k z = d * k+1,h P V k+1 h w, z .
We end this section with a classical observation. Since

d k maps V k h to V k+1 h and π k+1 h maps into V k+1 h , the second equation from ∂ t U h -A h U h = -Π h F defined with (3.
2) and (3.7) holds in a strong sense in V k+1 h . Thus, an equivalent formulation of the compatible conforming approximation is (writing

U h = (u h , v h ) t ∈ V k h × V k+1 h ) ∂ t u h , ϕ h + v h , d k ϕ h = -f, ϕ h , for ϕ h ∈ V k h ∂ t v h -d k u h = -π k+1 h g (in V k+1 h
).

(3.10)

Conforming / non-conforming Galerkin (Conga) approximations

We now turn to the problem which first motivated this work, namely the design of compatible schemes based on discontinuous spaces Ṽh for which an explicit time discretization does not require to invert a global mass matrix. Although it is possible to make standard DG schemes Gausscompatible by equipping them with proper approximation operators for the data, as will be seen in Sections 3.4 and 5.4 below, in this section we begin by describing an approximation method that aims at preserving the computational structure of the conforming scheme (3.10), but in the framework of discontinuous function spaces. In this new scheme the fields are sought in a product space made of conforming and non-conforming functions, i.e.,

Ṽh := Ṽ k h × V k+1 h with V k h ⊂ Ṽ k h ⊂ V k .
Here the fact that the second space (V k+1 h

) is conforming should not be a concern: indeed our new scheme will preserve the fact that, just as in (3.10), the second equation holds strongly in V k+1 h . Hence it will involve no mass matrix in that space. Specifically, the Conga scheme is based on a projection operator

P k h : Ṽ k h → V k h ⊂ Ṽ k h (3.11)
seen as a bounded operator from the non-conforming space Ṽ k h ⊂ W k to itself. We ask that it satisfies a moment preserving property,

(I -P k h )u, z = 0, z ∈ M k h , (3.12) 
with spaces M k h that have a dense union in W k for h → 0, so that the adjoint operator satisfies

(P k h ) * P Ṽ k h v → v as h → 0 (3.13)
for all v ∈ W k . We then define the Conga evolution operator as

Ãh := 0 -(P k h ) * d * k+1,h d k P k h 0 : Ṽh → Ṽh with Ṽh := Ṽ k h × V k+1 h , (3.14) 
indeed this will guarantee that the second equation of

∂ t Ũh -Ãh Ũh = -Π h F holds strongly in V k+1 h . Since (P k h ) * d * k+1,h is the adjoint of d k P k h seen as an operator from Ṽ k h to V k+1 h
, we easily check that Ãh is skew-symmetric and bounded on Ṽh .

As for the data approximation, we consider

Π h := (P k h ) * P Ṽ k h 0 0 π k+1 h : (W k × V k+1 ) → Ṽh , (3.15) 
where

π k+1 h : V k+1 → V k+1
h is a projection operator that satisfies a commuting diagram of the form (2.8). We then have the following result. 

π k+1 h d k = d k P k h π k h on V k (P k h ) * P Ṽ k h d * k+1 = (P k h ) * d * k+1,h P V k+1 h on V * k+1 . (3.16)
Here the first equality follows from the commuting diagram (2.8) and the fact that π k h maps into V k h , where P k h = I. We next infer from the embedding

V k h ⊂ Ṽ k h that (P Ṽ k h -P V k h )P k h = 0, as well as the adjoint identity (P k h ) * (P Ṽ k h -P V k h ) = 0,
hence the second equality in (3.16) follows from the second one in (3.9).

We may now give an explicit form for the Conga scheme. Using (3.15), the source F = (f, g) is approximated by Π h F = ((P k h ) * P Ṽ k h f, π k+1 h g) and the first term gives

(P k h ) * P Ṽ k h f, φh = P Ṽ k h f, P k h φh = f, P k h φh for φh ∈ Ṽ k h .
Next, using the embedding

d k V k h ⊂ V k+1 h
we see that the second equation from ∂ t Ũh -Ãh Ũh = -Π h F holds strongly in V k+1 h , as announced. It follows that the compatible Conga scheme reads

(with Ũh = (ũ h , ṽh ) t ∈ Ṽ k h × V k+1 h ) ∂ t ũh , φh + ṽh , d k P k h φh = -f, P k h φh for φh ∈ Ṽ k h ∂ t ṽh -d k P k h ũh = -π k+1 h g (in V k+1 h
).

(3.17)

Remark 3.10 (Conga as an intermediate method). Given a non-conforming space Ṽ k h ⊂ V k , we observe that the Conga method is an intermediate approach in that it allows to switch from the conforming Galerkin method to non-conforming ones, just by changing the conforming projection P k h . In particular if P k h is defined as the orthogonal projection on V k h , then (3.17) is equivalent to the conforming scheme (3.1)-(3.2). Indeed, using the fact that (I -(P k h ) * )ũ h is always a constant in (3.17) we find that the Conga solution reads (ũ h , ṽh ) = (u h + wh , v h ) where (u h , v h ) is the conforming solution and wh = (I -

P V k h )ũ h = (I -P V k h )ũ 0
h . In Section 5.3 we will describe some operators P k h that can be applied locally, so that the resulting Conga scheme can be implemented using only sparse matrices. where P k h is a projection mapping Ṽh on an auxiliary conforming space V k h ⊂ V k that is not necessarily a subspace of Ṽh , and a similar result holds for ( dh ) * . It will then be possible to build a data approximation operator Π h that makes the semi-discrete DG scheme (3.1) Gauss-compatible. Indeed, if πl h , l = k, k + 1, are operators mapping on V k h ∩ Ṽh and Ṽh respectively, such that

The case of discontinuous Galerkin approximations

V k V k+1 V k h ∩ Ṽh Ṽh πk h d k πk+1 h d k (3.20) is a commuting diagram, then we have (on the domain V k of πk h ) dh πk h = P Ṽh d k P k h πk h = P Ṽh d k πk h = P Ṽh πk+1 h d k = πk+1 h d k , (3.21) 
by using (3.19), the fact that P k h is a projection on V k h , the above commuting diagram and the fact that πk+1 h maps into Ṽh . A similar identity holds for ( dh ) * , hence the following result (see Th. 5.7 below for a specific statement). 

Π h = πk+1 h 0 0 πk+1 h : ( V k+1 × V k+1 ) → Ṽh (3.22)
is compatible. In particular, it satisfies the commuting diagram

(3.3) with Πh = πk h 0 0 πk h : V → Ṽh where V := V k × V k . (3.23)
4 Spectral correctness of the non-conforming Conga scheme

In this section we show that the eigenmodes of the Conga operator Ãh defined in (3.14) converge towards the continuous ones, provided that (H1) the dense intersection In addition to being of interest per se, we note that the spectral correctness of a discrete operator is a fundamental property for the approximation of the associated evolution equation, see, e.g., [START_REF] Hesthaven | High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[END_REF][START_REF] Boffi | Convergence analysis for hyperbolic evolution problems in mixed form[END_REF].

V k ∩ V * k in W k is compact, ( 
For the subsequent analysis we let Zk h be the null space of

d k P k h : Ṽ k h → V k+1 h . Note that Zk h := ker(d k P k h ) = ker(d k | V k h ) ⊕ ker P k h = Z k h ⊕ (I -P k h ) Ṽ k h . (4.1) 
We henceforth use a short notation for the following orthogonal projections,

P ⊥ := P Z k ⊥ W , P ⊥ h := P Z k ⊥ h and P ⊥ h := P Zk ⊥ h .

Characterization of the continuous eigenmodes

To begin our analysis we characterize the eigenvalues and eigenvectors of A in terms of those of the compact operator K defined in [3, Sec. 3], see Section 2.1. Specifically, it will be convenient to restrict K to the orthogonal complement of Z k . Thus we set

G := KP ⊥ (4.2) 
and we observe from [3, Eq. ( 19)] that for any u ∈ W k , Gu is the unique element of

Z k ⊥ (see (2.6)) that satisfies d k Gu, d k z = u, z , z ∈ Z k ⊥ . (4.3) 
In particular, we see that G = P ⊥ KP ⊥ is a compact and selfadjoint operator from W k to itself. As such it has a countable set of nonnegative eigenvalues, each of finite multiplicity, that accumulate only at 0. We denote by 0 < λ 1 ≤ λ 2 ≤ ... (4.4) the inverses of its positive eigenvalues, each one being repeated according to its multiplicity. From the density of V k we infer that ker G = Z k , hence the complement space Z k ⊥ W admits an orthonormal basis (e i ) i≥1 of eigenvectors corresponding to the λ i 's. We denote by E i the one-dimensional space spanned by e i .

Proposition 4.1. We have the following results.

(i) The eigenvalues of A are of the form iω with ω ∈ R.

(ii) The kernel of A reads

ker A = Z k × Z k+1 ⊥ W . (iii) Given ω = 0, U = (u, v) t is an eigenvector of A associated to iω iff U ∈ (ker A) ⊥ W and Gu = ω -2 u v = (iω) -1 d k u.
Proof. Assertions (i) and (ii) are direct consequences of the skew-symmetry (2.16) and of (2.5).

Using again the skew-symmetry of A, we then observe that U is an eigenvector associated to the eigenvalue iω = 0 iff U ∈ (ker A) ⊥ W ∩ V satisfies iωU = AU , which is equivalent (writing

U = (u, v) t ) to      u ∈ Z k ⊥ W ∩ V k = Z k ⊥ iωu = -d * k+1 v iωv = d k u ⇐⇒      u ∈ Z k ⊥ ω 2 u, z = d k u, d k z , z ∈ Z k ⊥ iωv = d k u
so that (iii) follows from the characterization (4.3) of G.

Characterization of the conforming discrete eigenmodes

In Cor. 3.17 of [START_REF]Finite element exterior calculus: from Hodge theory to numerical stability[END_REF], it is shown that under the assumptions (H1)-(H2) listed at the beginning of Section 4 the operator

K h : V k h → V k h characterized by d * k,h K h u, d * k,h z + d k K h u, d k z = u, z , z ∈ V k h , (4.5) 
is a convergent approximation to K, in the sense that

K -K h P V k h L(W k ,W k ) → 0 as h → 0. (4.6)
Since K h is selfadjoint and obviously compact, this norm convergence is equivalent to the convergence of the discrete eigenmodes towards the continuous ones, in a sense that will soon be recalled, and corresponds to [5, Def. 2.1]. We shall then characterize the eigenmodes of the conforming operator A h in terms of those of K h . As above, what we are actually interested in is the restriction of K h to the complement of Z k h in V k h . Thus we set

G h := K h P ⊥ h (4.7) and taking u ∈ Z k ⊥ h in (4.5) yields d * k,h G h u, d * k,h z = d * k,h K h u, d * k,h z = 0 for all z ∈ Z k h . Now, since ker d * k,h = Z k ⊥ h
this also holds for all z ∈ V k h , hence we can take z = G h u which shows that

G h u ∈ Z k ⊥ h . It follows that for any u ∈ W k , G h u is the unique element of Z k ⊥ h that satisfies d k G h u, d k z = u, z , z ∈ Z k ⊥ h . (4.8) 
Thus G h = P ⊥ h K h P ⊥ h is a compact and selfadjoint operator from W k to itself, and as such its eigenvalues are nonnegative and of finite multiplicity. We denote by

0 < λ 1,h ≤ λ 2,h ≤ ... ≤ λ N ⊥ h ,h , (4.9) 
N ⊥ h = dim Z k ⊥ h , the inverses of the positive eigenvalues of G h , each one being repeated according to its multiplicity. Similarly as for the continuous case we see that Z k ⊥ h admits an orthonormal basis (e i,h ) i≥1 of eigenvectors corresponding to the λ i,h 's, and we denote by E i,h the one-dimensional space spanned by u i,h .

We then have the following proposition that characterizes the eigenvalues and eigenvectors of the conforming operator (2.27) in terms of those of G h . Proposition 4.2. We have the following results.

(i) The eigenvalues of A h are of the form iω with ω ∈ R.

(ii) The kernel of A h reads ker

A h = Z k+1 ⊥ h × Z k h . (4.10) (iii) Given ω = 0, U = (v, u) t is an eigenvector of A h associated to iω iff G h u = ω -2 u v = (iω) -1 d k u.
Proof. Assertions (i) and (ii) are direct consequences of the skew-symmetry of A h and of (2.10), (2.13). Using again the skew-symmetry of A h , we then observe that U = (v, u) t is an eigenvector associated to the eigenvalue iω = 0 iff

     u ∈ (Z k h ) ⊥ W ∩ V k h = Z k ⊥ h iωv = d k u iωu = -d * k+1,h v ⇐⇒      u ∈ Z k ⊥ h iωv = d k u ω 2 u, z = d k u, d k z , z ∈ Z k ⊥ h
so that (iii) follows from the characterization (4.8) of G h .

Characterization of the Conga eigenmodes

Turning to the non-conforming case we let Gh : W k → Zk ⊥ h be the operator characterized by

d k P k h Gh u, d k P k h z = u, z , z ∈ Zk ⊥ h . (4.11) 
It is easily verified that this operator is compact and selfadjoint. In fact, in Lemma 4.4 below we shall specify the link between Gh and its conforming counterpart G h . Similarly as for the conforming case, we denote by

0 < λ1,h ≤ λ2,h ≤ ... ≤ λ Ñ ⊥ h ,h , (4.12) 
Ñ ⊥ h = dim Zk ⊥ h , the inverses of its positive eigenvalues, each one being repeated according to its multiplicity. We let (ẽ i,h ) i≥1 denote an orthonormal basis of eigenvectors for Zk ⊥ h , corresponding to the λi,h 's, and we denote by Ẽi,h the one-dimensional space spanned by ũi,h . We may then characterize the eigenmodes of the non-conforming operator (3.14) in terms of those of Gh . 

(iii) Given ω = 0, U = (v, u) t is an eigenvector of Ãh associated to iω iff Gh u = ω -2 u v = (iω) -1 d k P k h u.
Proof. Assertion (i) follows from (2.13) and the skew-symmetry of Ãh . Next we observe that

(P k h ) * d * k+1,h is the adjoint of d k P k h : Ṽ k h → V k+1 h which range is d k P k h Ṽ k h = d k P k h Ṽ k h = Z k+1 h thanks to (3.

11) and (2.10). Therefore we have ker((P

k h ) * d * k+1,h ) = Z k+1 ⊥ W h ∩ V k+1 h = Z k+1 ⊥ h ,
and Zk h is the null space of d k P k h , hence (ii). Using again the skew-symmetry of Ãh , we observe that U = (v, u) t is an eigenvector associated to the eigenvalue iω = 0 iff

     u ∈ ( Zk h ) ⊥ W ∩ Ṽ k h = Zk ⊥ h iωv = d k P k h u iωu = -(P k h u) * d * k+1,h v ⇐⇒      u ∈ Zk ⊥ h iωv = d k P k h u ω 2 u, z = d k P k h u, d k P k h z , z ∈ Zk ⊥ h
so that (iii) follows from the characterization (4.11) of Gh .

We end this section by providing an expression of the non-conforming operator Gh in terms of the conforming one. 

Gh = P ⊥ h G h P ⊥ h . (4.14)
Proof. The identity clearly holds on ( Zk ⊥ h ) ⊥ W = (I -P ⊥ h )W k . We consider then v ∈ Zk ⊥ h and denote ṽ :

= P ⊥ h G h P ⊥ h v = P ⊥ h G h v. Given w in Zk ⊥ h (or even in Ṽ k h ), we compute d k P k h ṽ, d k P k h w = P ⊥ h G h v, (d k P k h ) * d k P k h w = G h v, (d k P k h ) * d k P k h w = d k P k h G h v, d k P k h w = d k G h v, d k P k h w = d k G h v, d k P ⊥ h P k h w = v, P ⊥ h P k h w = v, P k h w = v, w .
Here the respective equalities use (i) the definition of (d k P k h ) * as the adjoint of (3.11), (iv) the identity P k h = I on V k h , (v) the observation (used with w = P k h w) that

d k P k h : Ṽ k h → V k+1 h , (ii) the fact that its range is in Zk ⊥ h , (iii) the embeddings Z k ⊥ h ⊂ V k h ⊂ Ṽ k h , see
d k w = d k P ⊥ h w + (I -P ⊥ h ) w = d k P ⊥ h w, w ∈ V k h , (4.15) 
(vi) the characterization (4.8) of G h , (vii) the fact that (I -P ⊥ h ) w ∈ Z k h ⊂ Zk h hence orthogonal to v, and (viii) the fact that (I -P k h )w is in Zk h , hence also orthogonal to v. The result ṽ = Gh v follows from the characterization (4.11) of Gh .

Convergence of the discrete eigenmodes

We are now in position to show that both the conforming and non-conforming discrete eigenmodes converge towards the continuous ones in the sense of [5, Def. 2.1], that we now recall. For any positive integer N we let m(N ) denote the dimension of the space generated by the eigenspaces of the first distinct eigenvalues (4.4). Thus λ m(1) , . . . , λ m(N ) are the first N distinct eigenvalues and

E 1 + • • • + E m(N )
is the space spanned by the associated eigenspaces: it does not depend on the choice of the eigenbasis (u i ) i≥1 . With these notations we say that the discrete eigenmodes (λ i,h , e i,h ) i≥1 converge to the continuous ones (λ i , e i ) i≥1 if, for any given ε > 0 and N ≥ 1, there exists a mesh parameter h 0 > 0 such that for all h ≤ h 0 we have max 1≤i≤m(N )

|λ i -λ i,h | ≤ ε and gap m(N ) 1=i E i , m(N ) 1=i E i,h ≤ ε, (4.16) 
where the gap between two spaces is classically defined as gap(E, F) := max sup

u∈E u ≤1 inf v∈F u -v , sup v∈F v ≤1 inf u∈E u -v . (4.17)
Obviously the same applies to the non-conforming eigenmodes ( λi,h , ẽi,h ) i≥1 as well. A key result in the perturbation theory of linear operators (see, e.g. [START_REF]Compatible Discretizations for Eigenvalue Problems, Compatible Spatial Discretizations[END_REF] or [START_REF]Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]) is that, for eigenmode problems corresponding to the compact selfadjoint operators G and G h (resp. Gh ), the above convergence holds if the operators G h (resp. Gh ) converge to G in L(W k , W k ).

It is well known that this convergence holds in the conforming case, see e.g., [START_REF] Boffi | Fortin operator and discrete compactness for edge elements[END_REF][START_REF] Monk | Discrete compactness and the approximation of Maxwell's equations in R3[END_REF][START_REF]On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems[END_REF]. In this abstract setting this is essentially a consequence of the uniform convergence (4.6). Specifically, the following result holds.

Theorem 4.5. The operator G

h : W k → Z k ⊥ h ⊂ W k defined by (4.8) satisfies G -G h L → 0 (4.18)
in the operator norm

• L = • L(W k ,W k ) .
Proof. Using the embedding

Z k ⊥ h ⊂ V k h and Definition (4.7) gives G h = K h P V k h P ⊥ h . Using next (4.2), i.e. G = KP ⊥ , we decompose G -G h L ≤ (K -K h P V k h )P ⊥ h L + K(P ⊥ -P ⊥ h ) L ≤ K -K h P V k h L + (P ⊥ -P ⊥ h )K L
where the second inequality uses the unit bound on orthogonal projections and the fact that a bounded operator and its adjoint have the same norm (here all the operators are selfadjoint). By right composition with the compact operator K the pointwise convergence of P ⊥ -P ⊥ h to 0 that is proved in Lemma 4.7 yields the norm convergence of (P ⊥ -P ⊥ h )K to 0. The limit (4.18) follows then from (4.6).

Corollary 4.6. The conforming discrete eigenmodes (λ i,h , u i,h ) i≥1 converge to the continuous ones (λ i , u i ) i≥1 in the sense of (4.16).

In Theorem 4.8 and Corollary 4.9 below we will show that a similar convergence holds true in the non-conforming case. We begin with an auxiliary lemma.

Lemma 4.7. The distance between the closed subspaces Z k ⊥ h and Z k ⊥ W is estimated by the bounds

(I -P ⊥ h )P ⊥ v ≤ (I -P V k h )P ⊥ v (4.19) and P ⊥ h (I -P ⊥ )v ≤ (I -π k h )(I -P ⊥ )v (4.20)
for all v ∈ W k . In particular, we have

(P ⊥ -P ⊥ h )v → 0 as h → 0. (4.21) Proof. Let v ⊥ ∈ Z k ⊥ W : we have P V k h v ⊥ ∈ V k h and P V k h v ⊥ , w = v, w = 0 for w ∈ Z k h ⊂ Z k . Thus, P V k h Z k ⊥ W ⊂ Z k ⊥ h and estimate (4.19) follows, indeed (I -P ⊥ h )v ⊥ = inf v ⊥ h ∈Z k ⊥ h v ⊥ -v ⊥ h ≤ (I -P V k h )v ⊥ .
Next we observe from the commuting diagram (2.9) that

π k h maps Z k to Z k h . Since (I -P ⊥ )W k = (Z k ⊥ W ) ⊥ W = Z k this yields π k h (I -P ⊥ )W k ⊂ Z k h , hence we have P ⊥ h (I -P ⊥ )v 2 = (I -P ⊥ )v, P ⊥ h (I -P ⊥ )v = (I -π k h )(I -P ⊥ )v, P ⊥ h (I -P ⊥ )v
which gives (4.20) with a Cauchy-Schwarz inequality. The pointwise convergence (4.21) is then easily inferred from the fact that π k h and P V k h are projections on the discrete spaces

V k h which union ∪ h→0 V k h is assumed dense in W k .
We are now in position to establish a uniform convergence result for the operator Gh characterizing the Conga eigenmodes.

Theorem 4.8. The operator Gh :

W k → Zk ⊥ h ⊂ W k defined by (4.11) satisfies G -Gh L(W k ,W k ) → 0 as h → 0. (4.22)
Proof. Using Lemma 4.4 and the arguments in the proof of Theorem 4.5, we write

G h -Gh L ≤ (I -P ⊥ h )G h L + P ⊥ h G h (I -P ⊥ h ) L ≤ 2 (I -P ⊥ h )G h L
and using the fact that G h maps into Z k ⊥ h , we continue with

(I -P ⊥ h )G h L = (I -P ⊥ h )P ⊥ h G h L ≤ (I -P ⊥ h )P ⊥ h G L + G -G h L .
We next observe that (

P k h ) * maps Z k ⊥ h into Zk ⊥ h . Hence (I -P ⊥ h )P ⊥ h Gv = inf ṽ ∈ Zk ⊥ h P ⊥ h Gv -ṽ ≤ (I -(P k h ) * )P ⊥ h Gv
Here the operator (P k h ) * can be replaced by (P k h ) * P Ṽ k h which is assumed to converge pointwise to I, see (3.13). Thus, (I -P ⊥ h )P ⊥ h Gv converges pointwise to 0, which by right composition with the compact operator G leads to a norm convergence,

(I -P ⊥ h )P ⊥ h G L → 0 as h → 0.
The proof then follows from (4.18).

Corollary 4.9. The non-conforming discrete eigenmodes ( λi,h , ũi,h ) i≥1 converge to the continuous ones (λ i , u i ) i≥1 in the sense of (4.16).

Remark 4.10. To our knowledge, the Conga method is the first non-conforming method that is shown to be energy-conserving and spectrally correct. For instance the centered DG method is known to have a large number of spurious eigenvalues [START_REF] Hesthaven | High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[END_REF][START_REF] Warburton | The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem[END_REF], and penalized DG schemes are spectrally correct [START_REF] Buffa | Discontinuous Galerkin Approximation of the Maxwell Eigenproblem[END_REF][START_REF] Brenner | A Locally Divergence-Free Interior Penalty Method for Two-Dimensional Curl-Curl Problems[END_REF] but they dissipate energy.

Application to the 3d Maxwell equations

To apply the above analysis to the Maxwell equations in a bounded domain Ω of R 3 with metallic boundary conditions, we can take

H 1 (Ω) H(curl; Ω) H(div ; Ω) L 2 (Ω) grad curl div (5.1)
for the primal domain complex

V 0 → V 1 → V 2 → V 3 and
H 1 0 (Ω) H 0 (curl; Ω) H 0 (div ; Ω) L 2 (Ω) grad curl div (5.2)
for the dual one

V * 3 → V * 2 → V * 1 → V * 0 , or vice-versa.
Here we assume that Ω is a bounded and simply-connected Lipschitz domain of R 3 , so that the above de Rham complexes are exact sequences, see e.g. [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF]Sec. 3.2]. In each case we define the Hilbert spaces as 3 , and we take k = 1 so that both d 1 and its adjoint d * 2 are curl operators. Using bold-face fonts to distinguish vector-valued fields, the evolution problem (2.14)-(2.15) reads then

W 0 = W 3 = L 2 (Ω) and W 1 = W 2 = L 2 (Ω)
∂ t E -curl B = -J ∂ t B + curl E = 0 with    E 0 ∈ H 0 (curl; Ω) B 0 ∈ H(curl; Ω) (5.3)
and Lemma 2.2 states that for J ∈ C 1 ([0, T ]; L 2 (Ω) 3 ) there exists a unique solution (E, B) in

C 0 ([0, T [; H 0 (curl; Ω) × H(curl; Ω)
) that is continuously differentiable on ]0, T [. As for the Gauss law (2.17 Although it makes no difference on the continuous problem whether one takes (5.1) or (5.2) for the primal complex, on the conforming Galerkin approximation (2.22) it leads to two different methods. As will be seen in Section 5.2, the first choice leads to a strong discretization of the Ampere equation with natural boundary conditions (i.e., in the discrete spaces), whereas the second choice leads to a strong discretization of the Faraday equation with essential boundary conditions.

Exact sequences of conforming finite element spaces

To build conforming approximations of the above complexes, we assume that Ω is partitioned by a regular family of conforming simplicial meshes (T h ) h>0 . By F h and E h we denote the sets of faces and edges of the mesh, and we assume that the latter are oriented by some arbitrary choice of unit vectors n f and τ e , respectively normal to the faces f ∈ F h and tangent to the edges e ∈ E h . Following [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]Sec. 3.5] we can then choose between several sequences of standard finite element spaces. These sequences are based on the piecewise polynomial spaces P r Λ l (Ω, T h ) and P - r Λ l (Ω, T h ) that consist of differential l-forms of maximal degree r. For the sake of completeness we recall the correspondences given in [2, Table 5.2], and specify our notations. Note that we often write X(T h ) = {u ∈ L 2 (Ω) : u| T ∈ X(T ), T ∈ T h } to denote functions spaces with given piecewise structure X, as in (5.10) below. Thus,

• P r Λ 0 (Ω, T h ) corresponds to the continuous "Lagrange" elements L r (Ω, T h ) := P r (T h ) ∩ C(Ω), (5.5) where P r (T ) contains the polynomials of maximal degree ≤ r on T ∈ T h

• P r Λ 1 (Ω, T h ) corresponds to the second-kind Nédélec elements

N II r (Ω, T h ) := P r (T h ) 3 ∩ H(curl; Ω) (5.6)
• P - r Λ 1 (Ω, T h ) corresponds to the first-kind Nédélec elements

N I r-1 (Ω, T h ) := N I r-1 (T h ) ∩ H(curl; Ω) with N I r-1 (T ) := P r-1 (T ) 3 ⊕ (x ∧ P hom r-1 (T ) 3 ) (5.7)
where P hom r-1 is the space of homogeneous polynomials of degree r -1

• P r Λ 2 (Ω, T h ) corresponds to the Brezzi-Douglas-Marini elements (also called second-kind H(div ) Nédélec space), BDM r (Ω, T h ) := P r (T h ) 3 ∩ H(div ; Ω) (5.8) 
• P - r Λ 2 (Ω, T h ) corresponds to the Raviart-Thomas elements (also called first-kind H(div

) Nédélec spaces), RT r-1 (Ω, T h ) := RT r-1 (T h ) ∩ H(div ; Ω) with RT r-1 (T ) := P r-1 (T ) 3 ⊕ (xP hom r-1 (T )) (5.9) 
• P r Λ 3 (Ω, T h ) corresponds to the fully discontinuous elements

P r (T h ) := {v ∈ L 2 (Ω) : v| T ∈ P r (T ), T ∈ T h }. (5.10) 
Using the above spaces we can then invoke [3, Th. 5.9] which says that for each of the following sequences of discrete spaces

V 0 h → V 1 h → V 2 h → V 3 h ,                                      L p (Ω, T h ) N II p-1 (Ω, T h ) BDM p-2 (Ω, T h ) P p-3 (T h ) grad curl div L p (Ω, T h ) N II p-1 (Ω, T h ) RT p-2 (Ω, T h ) P p-2 (T h ) grad curl div L p (Ω, T h ) N I p-1 (Ω, T h ) BDM p-1 (Ω, T h ) P p-2 (T h ) grad curl div L p (Ω, T h ) N I p-1 (Ω, T h ) RT p-1 (Ω, T h ) P p-1 (T h ) grad curl div (5.11)
there exists a sequence of projection operators π l h : V l → V l h , l = 0, • • • , 3, on the primal sequence (5.1) that is uniformly L 2 -bounded with respect to h and for which (2.8) is a commuting diagram (with V l = V l ). Note that if one defines the primal spaces V l with essential boundary conditions as in (5.2), then the boundary conditions need to be incorporated in the definition of the finite element spaces as well, by forcing the classical degrees of freedom associated to boundary faces to vanish.

Compatible conforming finite elements

According to Theorem 3.7 we know that compatible conforming Galerkin methods can be obtained by approximating the sources with a generalized projection Π h of the form (3.7), based on two projection operators π 1 h and π 2 h for which (2.8) is a commuting diagram. Here we could take the L 2 -bounded projection operators just mentionned, which existence is guaranteed by [3, Th. 5.9]. However, because these operators may not be simple to implement we can use instead standard finite element interpolations which also verify a commuting diagram property, even though they are defined on smaller spaces V l of smooth functions. Let us denote these projection operators by

π curl h : V 1 → V 1 h and π div h : V 2 → V 2 h .
For instance if the last sequence from (5.11) is taken for

V 0 h V 1 h V 2 h V 3 h d 0 = -grad d 1 = curl d 2 = div (5.12) 
(with essential or natural boundary conditions), we can define

π curl h : H 2 (Ω) 3 → V 1 h = N I p-1 (Ω, T h ) π div h : H 1 (Ω) 3 → V 2 h = RT p-1 (Ω, T h ) (5.13)
as the standard Nédélec and Raviart-Thomas interpolations. For a precise definition see, e.g., (2.5.49)-(2.5.32) and (2.5.26)-(2.5.10) in Ref. [START_REF] Boffi | Mixed finite element methods and applications[END_REF], where they are respectively denoted Σ h and Π h . Error estimates are then available: we have

(I -π curl h )u ≤ ch m |u| m , 2 ≤ m ≤ p (I -π div h )u ≤ ch m |u| m , 1 ≤ m ≤ p (5.14) 
where |•| m denotes the usual H m (Ω) semi-norm, see, e.g., Propositions 2.5.7 and 2.5.4 in [START_REF] Boffi | Mixed finite element methods and applications[END_REF]. Similar estimates hold for the orthogonal projection operators, namely

(I -P V 1 h )u ≤ ch m |u| m and (I -P V 2 h )u ≤ ch m |u| m , 0 ≤ m ≤ p. (5.15) 
In particular, the projection operators corresponding to (3.7) and (3.8), i.e.,

Π h = P V 1 h 0 0 π div h : L 2 (Ω) 3 × H 1 (Ω) 3 → V 1 h × V 2 h and Πh = π curl h 0 0 P V 2 h : V → V 1 h × V 2 h with V := H 2 (Ω) 3 × H(curl; Ω)
satisfy the following a priori estimates,

(I -Π h )U ≤ ch m |U | m , 1 ≤ m ≤ p (I -Πh )U ≤ ch m |U | m , 2 ≤ m ≤ p. (5.16) 
With the above material, Theorem 3.7 yields two compatible conforming schemes depending whether one takes (5.1) or (5.2) for the primal complex. The first choice corresponds to a strong discretization of the Ampere equation: the discrete spaces (5.12) are defined as one of the sequences from (5.11) with natural boundary conditions, and the scheme computes the solution

(B h , E h ) ∈ C 1 (]0, T [; V 1 h × V 2 h ) to    ∂ t B h , ϕ µ + E h , curl ϕ µ = 0 ϕ µ ∈ V 1 h ⊂ H(curl; Ω) ∂ t E h , ϕ ε -curl B h , ϕ ε = -π div h J , ϕ ε ϕ ε ∈ V 2 h ⊂ H(div ; Ω) (5.17) 
and the embedding curl V 1 h ⊂ V 2 h allows to rewrite the second equation as

∂ t E h -curl B h = -π div h J (in V 2 h ).
Moreover if one wants the scheme to be compatible with the fundamental homogeneous Gauss law, one may set (B h , E h )(0) := (P V 1 h B 0 , π div h E 0 ) as specified in Theorem 3.3. The second choice corresponds to a strong discretization of the Faraday equation: again the sequence of discrete spaces (5.12) is defined as one of those from (5.11), now with essential boundary conditions, and the scheme computes the solution

(E h , B h ) ∈ C 1 (]0, T [; V 1 h × V 2 h ) to    ∂ t E h , ϕ ε -B h , curl ϕ ε = -J , ϕ ε ϕ ε ∈ V 1 h ⊂ H 0 (curl; Ω) ∂ t B h , ϕ µ + curl E h , ϕ µ = 0 ϕ µ ∈ V 2 h ⊂ H 0 (div ; Ω). (5.18) 
Here the embedding curl V 1 h ⊂ V 2 h allows to rewrite the second equation as

∂ t B h + curl E h = 0 (in V 2 h ).
And again if one wants the scheme to be compatible with the fundamental homogeneous Gauss law, one can follow the statement from Theorem 3.3 and set (E h , B h )(0) :

= (P V 1 h E 0 , π div h B 0
). Finally, for any of the above methods the error bound (3.5) and the stability result apply. For instance in the case where the finite element spaces are defined as the last sequence from (5.11), using the a priori estimate (5.16) one obtains

(E h -E, B h -B)(t) ≤ ch m |(E 0 , B 0 )| m + |(E, B)(t)| m + t 0 |∂ t (E, B)(s)| m ds (5.19) 
for 2 ≤ m ≤ p and a constant c independent of h and t ≥ 0.

Remark 5.1. Since π div h never appears in the scheme (5.18), we may equivalently define Π h and Πh with the L 2 -bounded operators π l h from [3, Th. 5.9] instead of π curl h and π div h . Now, as these satisfy (I -π l h )u ≤ ch m u m for 0 ≤ m ≤ p, this shows that in Estimate (5.19) we can take the same values for m.

As pointed out in Remark 3.5, a priori error estimates leading to long-time stability results are well-known for conforming schemes, see e.g., [START_REF] Monk | A mixed method for approximating Maxwell's equations[END_REF][START_REF]An analysis of Nédélec's method for the spatial discretization of Maxwell's equations[END_REF][START_REF] Ch | Time-discrete finite element schemes for Maxwell's equations[END_REF]. In the following sections we will see that the abstract analysis of Section 3 can be applied to non-conforming schemes, where we are not aware of long-time stability results.

Compatible conforming/non-conforming Galerkin (Conga) schemes

We may now construct Conga schemes based on non-conforming spaces Ṽ 1 h ⊂ V 1 that are Gausscompatible in the sense of Definition 3.1. Following Section 3.3, the main ingredients are:

• an exact sequence of conforming spaces (5.12) satisfying

V 1 h ⊂ Ṽ 1 h
• a projection operator on the conforming space V 1 h ,

P 1 h : Ṽ 1 h → V 1 h , (5.20) 
that preserves spaces of moments with dense union in L 2 (Ω) 3 , see (3.13).

Since every conforming space listed in (5.11) 

has the form V 1 h = X 1 (T h ) ∩ V 1
, discontinuous spaces containing their conforming counterparts can be taken as Ṽ 1 h := X1 (T h ), but standard spaces of piecewise polynomials with sufficiently large degrees also can be used. We shall then construct the projection operator P 1 h by averaging locally the standard finite element interpolation, as follows. To each of the above spaces X 1 (T ) are classically associated d 1 (i.e., curl)-conforming degrees of freedom, either of "volume" type which involve integrals over single elements T ∈ T h , or "interface" type which may involve integrals over faces and edges. Then, for some u ∈ Ṽ 1 h we may define the projection P 1 h u by assigning the values of its degrees of freedom: either to those of u if they are of volume type, or to those of an average trace of u if they are of interface type. The resulting operator is simple to implement in a finite element code, and it is local.

To build a projection on the first-kind Nédélec space V 1 h = N I p-1 (Ω, T h ) for instance, we may use the fact that the local element X 1 (T ) = N I p-1 (T ) is equipped with degrees of freedom of volume, face and edge type, see [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] or [25, Sec. III-5.3],

     M vol (u) := { T u • π : π ∈ P p-3 (T ) 3 , T ∈ T h } M face (u) := { f (u ∧ n f ) • π : π ∈ P p-2 (f ) 2 , f ∈ F h } M edge (u) := { e (u • τ e ) π : π ∈ P p-1 (e), e ∈ E h }.
(5.21) These linear forms are unisolvent in the sense that when restricted to some element T they characterize the functions of X 1 (T ), and they are V 1 -conforming in the sense that an element of X 1 (T h ) is in V 1 = H(curl; Ω) if an only if its one-sided traces over any mesh interface define the same degrees of freedom. Thus, given a smooth u the relations

M vol (u h -u) = {0}, M face (u h -u) = {0} and M edge (u h -u) = {0} define a unique interpolate u h ∈ V 1
h , and as previously said, for a piecewise smooth u we can average the multivalued traces. Namely, we define

P 1 h : Ṽ 1 h → V 1 h by M vol (P 1 h u -u) = {0}, M face (P 1 h u -{u} f ) = {0}, M edge (P 1 h u -{u} e ) = {0} (5.22) 
with {u} f := 1 2 (u| T -+ u| T + )| f and similarly for {u} e on the edges.

Proposition 5.2. Let Ṽ 1 h be a piecewise polynomial space containing the curl-conforming V 1 h = N I p-1 (Ω, T h ), say Ṽ 1 h := P p (T h ) 3 . On this space the projection operator (5.22) is uniformly L2 bounded with respect to h,

P 1 h u ≤ c u , u ∈ Ṽ 1 h , (5.23) 
and it satisfies the moment preserving property (3.12) with

M 1 h = P p-3 (T h ) 3 .
(5.24)

Moreover, seen as an operator on Ṽ 1 h , it has an adjoint

(P 1 h ) * : Ṽ 1 h → Ṽ 1 h such that (I -(P 1 h ) * P Ṽ 1 h )u ≤ ch m |u| m , 0 ≤ m ≤ p -2.
(5.25)

Proof. Relation (5.24) readily follows from the definition (5.21) of the volume dofs. As for Estimate (5.23), it is easily obtained with classical arguments: Denoting

F T : x → x T + B T x
the affine transformation that maps some fixed reference element T onto T , we let

Φ T : u → h 1 2 B t T (u • F T ) (5.26)
so that [25, Lemma III-5.5] reads Φ T (N I p-1 (T )) = N I p-1 ( T ). Here the h regularity of the mesh. A localized version of P 1 h is then defined as follows. We let T h (T ) := {T ∈ T h : T ∩ T = ∅} be the patch of elements around T and define rT : C 0 (T h (T )) → N I p-1 (T ) by the following relations which, among the degrees of freedom from (5.21) only involve those that are defined on the element T and its boundary:

M T, vol (r T u -u) = {0}, M T, face (r T u -{u} f ) = {0}, M T, edge (r T u -{u} e ) = {0}.
In particular, we have rT u = (P 1 h u)| T and the above observation yields

P 1 h u L 2 (T ) = rT u L 2 (T ) ∼ Φ T (r T u) L 2 ( T ) .
(5.27)

Using the same arguments than those leading to [25, Eq. III- (5.35)] and the fact that we have

B t T {u} f • F T = {B t T (u • F T )} F -1 T (f )
on the faces of T and similarly for the edges, one then finds Φ T (r T u) = r T (Φ T u) where in the latter projection the averaging involves the values of Φ T u on the cells F -1 T (T ), T ∈ T h (T ). A straightforward computation using (5.21) gives then

Φ T (r T u) L 2 ( T ) = r T (Φ T u) L 2 ( T ) max T ∈T h (T ) Φ T u L ∞ (F -1 T (T ))
(5.28)

with a constant depending on p. Using the equivalence of norms over the finite dimensional space P p (F -1 T (T )) 3 and the same scaling argument as in (5.27) we compute next

Φ T u L ∞ (F -1 T (T )) ∼ Φ T u L 2 (F -1 T (T )) ∼ u L 2 (T ) , u ∈ Ṽ 1 h .
Estimate (5.23) follows by summing over T ∈ T h and by using the fact that

P Ṽ 1 h L(L 2 (Ω) 3 ) ≤ 1.
Finally, the error estimate (5.25) follows from the fact that the operator

(P 1 h ) * P Ṽ 1 h : L 2 (Ω) 3 → Ṽ 1 h
preserves the polynomials of degree less than p-2 and that it is uniformly L 2 -bounded with respect to h, as the adjoint of

P Ṽ 1 h P 1 h .
In particular, if π div h is as in (5.13) then the projection corresponding to (3.15),

Π h = (P 1 h ) * P Ṽ 1 h 0 0 π div h : L 2 (Ω) 3 × H 1 (Ω) 3 → Ṽ 1 h × V 2 h
satisfies the following a priori estimate derived from (5.14) and (5.25),

(I -Π h )U ≤ ch m |U | m , 1 ≤ m ≤ p -2.
(5.29)

Applying Theorem 3.9 we then obtain two compatible non-conforming Conga schemes, depending whether one takes (5.1) or (5.2) for the primal complex. As in the conforming case, the first choice corresponds to a strong discretization of the Ampere equation: again the conforming finite element spaces (5.12) are defined as one of the sequences from (5.11), using natural boundary conditions, and the non-conforming space Ṽ 1 h must contain its conforming counterpart V 1 h . The scheme computes then the unique solution ( Bh , Ẽh )

∈ C 1 (]0, T [; Ṽ 1 h × V 2 h ) to    ∂ t Bh , φµ + Ẽh , curl P 1 h φµ = 0 φµ ∈ Ṽ 1 h ⊂ H(curl; Ω) ∂ t Ẽh , ϕ ε -curl P 1 h Bh , ϕ ε = -π div h J , ϕ ε ϕ ε ∈ V 2 h ⊂ H(div ; Ω).
(5.30)

Here the embedding curl V 1 h ⊂ V 2 h allows to rewrite the second equation as

∂ t Ẽh -curl P 1 h Bh = -π div h J (in V 2 h )
and if one wants the scheme to be compatible with the fundamental homogeneous Gauss law, one can set ( Bh , Ẽh )(0) := ((P 1 h ) * P Ṽ 1 h B 0 , π div h E 0 ), see Theorem 3.3. As for the second choice, it corresponds to a strong discretization of the Faraday equation just as in the conforming case: again the sequence of conforming discrete spaces (5.12) is taken among those from (5.11), using essential boundary conditions. The non-conforming Ṽ 1 h must then contain its conforming counterpart V 1 h , and the scheme computes the unique solution ( Ẽh , Bh )

∈ C 1 (]0, T [; Ṽ 1 h × V 2 h ) to    ∂ t Ẽh , φε -Bh , curl P 1 h φε = -J , P 1 h φε φε ∈ V 1 h ⊂ H 0 (curl; Ω) ∂ t Bh , ϕ µ + curl P 1 h Ẽh , ϕ µ = 0 ϕ µ ∈ V 2 h ⊂ H 0 (div ; Ω) (5.31)
where the expression for the source follows from the discussion in Section 3.3. Here the embedding curl V 1 h ⊂ V 2 h allows to rewrite the second equation as

∂ t Bh + curl P 1 h Ẽh = 0 (in V 2 h ).
And again, to be compatible with the fundamental homogeneous Gauss law one can apply Theorem 3.3 and set ( Ẽh , Bh )(0) := ((P

1 h ) * P V 1 h E 0 , π div h B 0
). Remark 5.3 (Coupling with particle methods). It is interesting to note that in the Conga scheme (5.31) the proposed discretization of the source is well suited to the case where the Maxwell solver is coupled with a point particle scheme. Indeed, in a time-discrete setting where the sources need to be averaged over each time step in order to satisfy a discrete continuity equation, the resulting particle current takes the form of weighted Dirac measures supported on the individual trajectories and we know that the product of the latter against the curl-conforming finite element function P 1 h φε is well defined, see [START_REF] Pinto | Charge conserving fem-pic schemes on general grids[END_REF]Lemma 3.1]. This is not be case in general when the product is taken against φε , because some particles may be following the mesh interfaces where the functions of Ṽ 1 h are fully discontinuous.

Finally, for any of the above methods the error bound (3.5) and the stability result apply. For instance in the case where the conforming finite element spaces are defined as the last sequence from (5.11) and the conforming projection operator P 1 h is given by (5.22), using the a priori estimates (5.16) and (5.29) one obtains

( Ẽh -E, Bh -B)(t) ≤ ch m |(E 0 , B 0 )| m + |(E, B)(t)| m + t 0 |∂ t (E, B)(s)| m ds (5.32)
for 1 ≤ m ≤ p -2 and a constant c independent of h and t ≥ 0.

Remark 5.4. Arguing as in Remark 5.1 we can see that for the scheme (5.31) Estimate (5.32) actually holds for 0 ≤ m ≤ p -2.

The following result derives from the spectral analysis in Section 4.

Theorem 5.5. Let p ≥ 3. If the non-conforming space Ṽ 1 h contains its conforming counterpart V 1 h = N I p-1 (Ω, T h ), then the evolution operators Ãh corresponding to the schemes (5.30) and (5.31), with P 1 h defined by (5.22), are spectrally correct: their eigenmodes converge to those of the exact Maxwell system in the sense of (4.16). In particular, these two Conga schemes are free of spurious discrete eigenvalues and eigenvectors.

Proof. Let us verify that Assumptions (H1)-(H3) listed at the beginning of Section 4 hold. First, the Conga schemes (5.30) and (5.31) correspond to taking (5.2) for the primal (resp. dual) complex and (5.2) for the dual (resp. primal) one, so that the intersection V 1 ∩ V * 1 is the classical space X T = H(curl; Ω) ∩ H 0 (div; Ω), resp. X N = H(div; Ω) ∩ H 0 (curl; Ω). These spaces are known to be dense and compactly embedded in W 1 = L 2 (Ω) 3 , see e.g., [START_REF]Finite Element Methods for Maxwell's Equations[END_REF]Cor. 3.49], so that (H1) is satisfied. Next, (H2) holds according to [3, Th. 5.9], as recalled in Section 5.1. Finally (H3) holds for P 1 h the projection (5.22) on the auxiliary conforming space V 1 h contained in Ṽh , indeed for p ≥ 3 the preserved moments (5.24) form a dense union in L 2 (Ω) 3 , which yields (3.13). Thus Corollary 4.9 applies: the eigenmodes of the Conga operator Ãh , (3.14), converge to the exact ones and the spectral correctness follows.

Compatible DG schemes

When built on conforming triangulations T h of Ω, DG approximations to the time-dependent Maxwell equation (5.3) typically involve spaces of piecewise polynomial functions with no continuity requirements across inter-element faces, such as Ṽh := P p dg (T h ) 3 with p dg ∈ N.

(5.33)

The semi-discrete centered DG scheme reads then (see, e.g., [24, Eq. ( 22)]): find ( Ẽh , Bh ) ∈ C 1 (]0, T [; Ṽh × Ṽh ) the unique solution to

   ∂ t Ẽh , φε -Bh , curl h φε + { Bh }, [ φε ] F h = -J h , φε φε ∈ Ṽh ∂ t Bh , φµ + Ẽh , curl h φµ -{ Ẽh }, [ φµ ] F int h = 0 φµ ∈ Ṽh (5.34)
with given initial data and approximated source J h ∈ Ṽh . Here curl h is the piecewise operator given by (curl h u)| T := curl(u| T ) for all T ∈ T h , and

{u} f := 1 2 (u| T -+ u| T + )| f and [u] f := (n -∧ u| T -+ n + ∧ u| T + )| f , f ∈ F int h ,
denote the average and tangential jump on an internal face f shared by two elements T ± (for which n ± are the outward unit vectors). On a boundary face they are defined as

{u} f := u and [u] f := n ∧ u, f ∈ F h \ F int h .
To provide a compatible DG scheme we need to recast (5.34) as an evolution equation of the form (3.1) and identify proper projection operators Π h , Πh following the lines of Section 3.4. Thus, we let dh : Ṽh → Ṽh be the DG approximation to the operator curl :

H(curl; Ω) → L 2 (Ω) 3 , dh u, v := u, curl h v -{u}, [v] F h , u, v ∈ Ṽh ,
and similarly let dh,0 : Ṽh → Ṽh be the approximation to the adjoint operator curl : We can verify that Ãh is indeed skew-symmetric: using local Green formulas

H 0 (curl; Ω) → L 2 (Ω) 3 , dh,0 u, v := u, curl h v -{u}, [v] F int h , u, v ∈ Ṽh ,
curl(u| T ), v T = u, curl(v| T ) T -u| T , n T ∧ v| T ∂T , T ∈ T h and the identity [u], {v} f + T =T ± (f ) u| T , n T ∧ v| T f = {u}, [v] f valid for f ∈ F int h
, we find that dh u, v = u, dh,0 v holds for all u, v ∈ Ṽh , hence ( dh ) * = dh,0 .

In Section 3.4 it was announced that a compatible DG scheme could be designed by defining V 1 h as an auxiliary curl-conforming space associated with a projection P 1 h : Ṽh → V 1 h for which a relation like (3.19) holds for both dh and ( dh ) * . Note that unlike in the Conga case, here the space V 1 h does not need to be a subset of Ṽh . The following result specifies this construction for the DG space (5.33).

Lemma 5.6. On the DG space Ṽh := P p dg (T h ) 3 , let

P 1 h : Ṽh → V 1 h := N I p dg +1 (Ω; T h ) ⊂ H(curl; Ω) (5.36)
be the averaged finite element interpolation operator defined as in (5.22) using the degrees of freedom from (5.21) with p = p dg + 2. Similarly, we define 

P 1 h,0 : Ṽh → V 1 h,0 := N I p dg +1 (Ω; T h ) ∩ H 0 (curl; Ω) ( 5 
Proof. For u, v ∈ Ṽh , applying local Green formulas we compute

P Ṽh curl P 1 h u, v = curl P 1 h u, v = T ∈T h P 1 h u, curl(v| T ) T + n T ∧ P 1 h u, v| T ∂T = T ∈T h u, curl(v| T ) T + n T ∧ {u}, v| T ∂T = u, curl h v -{u}, [v] F h = dh u, v
where we have used the definition of P 1 h in the third equality, in particular the fact that the polynomial pieces curl(v| T ) and v| f are of respective degrees p dg -1 and p dg , thus matching the degrees of freedom (5.21) with p = p dg + 2. The identity dh = P Ṽh curl P 1 h easily follows, and the same computation proves the result for the homogeneous operators in (5.38). Note that here the orthogonal projection P Ṽh is required since curl does not map V 1 h into Ṽh .

To conclude the construction described in Section 3.4 we must find operators πcurl h and πdiv h that satisfy a commuting diagram and map into the proper spaces as required by (3.20). For the auxiliary conforming space V 1 h introduced in (5.36) we have V 1 h ∩ Ṽh = P p dg (T h ) 3 ∩ H(curl; Ω) = N II p dg (Ω, T h ) so that we can define . By construction, these operators map into the proper spaces as required by (3.20), and they can also be used for the homogeneous auxiliary space V 1 h,0 introduced in (5.37). Specifically, we have

πcurl h : V 1 → P p dg (T h ) 3 ∩ H(curl; Ω) = V 1 h ∩ Ṽh for V 1 := H 2 (Ω) 3 and πcurl h : V 1 0 → P p dg (T h ) 3 ∩ H 0 (curl; Ω) = V 1 h,0 ∩ Ṽh for V 1 0 := V 1 ∩ H 0 (curl; Ω)
as for πdiv h , it clearly maps V 2 := H 1 (Ω) 3 into Ṽh . Finally, Prop. 2 from [START_REF]A new family of mixed finite elements in R 3[END_REF] gives πdiv h curl = curl πcurl h on both V 1 and V 1 0 , so that (3.20) is satisfied in both cases. In particular, using (5. for 2 ≤ m ≤ p dg and a constant c independent of h and t ≥ 0. We observe that the convergence order is the same than in [START_REF] Fezoui | Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes[END_REF]Th. 3.5], but the time dependence is improved. Indeed in (5.44) the upper bound is a constant for steady state solutions.

Numerical validation in 2d

To validate the relevance of the proposed approach we now run 2d versions of some of the above schemes on a test-case proposed in [START_REF] Issautier | A 2-D Vlasov-Maxwell solver on unstructured meshes[END_REF][START_REF] Depeyre | A new constrained formulation of the Maxwell system[END_REF] to study the numerical charge conservation properties and also considered in [START_REF] Stock | Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods[END_REF] to assess the long-time stability of DG solvers with hyperbolic field correction. Here the Transverse Electric (TE) mode of the normalized Maxwell system is posed in a metallic cavity Ω = [0, 1] 2 with a current density given by J (t, x, y) = (cos(t) -1) π cos(πx) + π 2 x sin(πy) π cos(πy) + π 2 y sin(πx) -cos(t)

x sin(πy) y sin(πx)

and the initial data is E 0 = 0 and B 0 = 0 so as to approximate the exact solution

  
  E(t, x, y) = sin(t)

x sin(πy) y sin(πx) B(t, x, y) = (cos(t) -1) πy cos(πx) -πx cos(πy) .

In Figure 1 the curves show the time evolution of the L 2 norm of numerical E h fields obtained as follows. In the left panel a 2d version of the standard finite element method (5.18) is used with curl-conforming elements V 1 h = N I 2 (Ω, T h ), whereas the center and right panels show a 2d version of the Conga scheme (5.31) with a DG space Ṽ 1 h = P 3 (T h ) 2 for the electric field and V 1 h = N I 2 (Ω, T h ) ⊂ Ṽ 1 h for the auxiliary space, using a conforming projection P 1 h defined as an averaged Nédélec interpolation similarly as in (5.22). In the center panel the current density is then approximated by an L 2 projection J h = P Ṽ 1 h J which corresponds to replacing in (5.31) the products J , P 1 h φε by the standard ones J , φε . Finally in the right panel a compatible current approximation J h = (P 1 h ) * P Ṽ 1 h J is used, corresponding to (5.31). (For a detailed presentation of theses schemes in 2d and for more numerical results we refer to the forthcoming articles [START_REF] Pinto | Compatible Maxwell solvers with particles in 2d. I: conforming and non-conforming schemes with a strong Ampere law[END_REF][START_REF]Compatible Maxwell solvers with particles in 2d. II: conforming and non-conforming schemes with a strong Faraday law[END_REF].) Here all the runs implement the same leap-frog time scheme, and in each panel the norm of the exact solution is plotted with dashed lines for comparison. These results clearly demonstrate the importance of discretizing the sources in a compatible way. 

Conclusion

In this work we have formulated a generic compatibility property for energy-preserving approximations to the time-dependent Maxwell equations with sources. This property takes the form of a two-component commuting diagram and derives from a spectral interpretation of the homogeneous Gauss law that is also related to the study of spurious modes in the numerical approximation to the Maxwell eigenvalue problem.

We have shown that semi-discrete schemes satisfying this compatibility property are long-time stable with respect to steady state solutions in both L 2 and energy norm, which solves the problem of the large deviations developed by certain classes of numerical schemes on long simulation times.

In addition, we have introduced a new mixed method called conforming/non-conforming Galerkin (Conga), defined as a relaxation of the standard conforming approximation. Like DG schemes this method can be implemented using only local discrete operators, and it preserves some of the structural benefits of conforming approximations such as the spectral correctness of its discrete evolution operator, and the ability to preserve one Gauss law in a strong sense.

Finally, we have described several approximation operators for the sources that make Galerkin methods Gauss-compatible in the above sense, be it for the standard conforming Galerkin method, for centered DG schemes or for this new Conga method.

Theorem 3 . 9 (

 39 Compatibility of the Conga method). The method (3.1) defined by (3.14) and (3.15) satisfies the compatibility relation (3.3) with the same projection operator Πh and domain V = V k × V * k+1 as in Theorem 3.7. Proof. Given (3.14) and (3.15), the claimed relation (3.3) now reads

  Non-dissipative DG approximations to(2.14) can be cast into the form (3.1). In 3d they correspond to taking the same discontinuous space Ṽh for both Ṽ k h and Ṽ k+1 h , and to setting Ãh := 0 -( dh ) * dh 0 : Ṽh → Ṽh with Ṽh := Ṽh × Ṽh (3.18)where dh : Ṽh → Ṽh is the corresponding approximation to the differential (curl) operator d k . In Section 5.4 we will show that in the case of unpenalized centered DG schemes it is possible to rewrite this discrete operator as dh = P Ṽh d k P k h(3.19) 
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 311 Compatibility in the DG case). If the operators πk h and πk+1 h are such that the diagram (3.20) commutes, then the method (3.1) defined with the centered DG evolution operator (3.18) and complemented with
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 43 We have the following results. (i) The eigenvalues of Ãh are of the form iω with ω ∈ R. (ii) The kernel of Ãh reads ker Ãh = Z k+1 ⊥ h

Lemma 4 . 4 .

 44 The operators G h and Gh , characterized by (4.8) and (4.11), satisfy (on W k )

  ), it reads div E(t) = ρ div B(t) = 0 with E(t) ∈ H(div ; Ω) B(t) ∈ H 0 (div ; Ω) (5.4)and the continuity equation verified by the sources is just (1.3).

  so that the DG evolution operator involved in (5.34) reads Ãh := 0 dh dh,0 0 : Ṽh → Ṽh with Ṽh := Ṽh × Ṽh . (5.35)

. 37 )

 37 by forcing the boundary degrees of freedom to vanish in the curl-conforming Nédélec space. Then the DG curl operators involved in the centered scheme (5.34) read dh = P Ṽh curl P 1 h and dh,0 = P Ṽh curl P 1 h,0 .

  πcurl

h: H 2

 2 (Ω) 3 → N II p dg (Ω, T h ) and πdiv h : H 1 (Ω) 3 → BDM p dg -1 (Ω, T h )as the interpolation operators corresponding to the second-kind Nédélec elements defined in[START_REF]A new family of mixed finite elements in R 3[END_REF] Sec. 3.1 and 2.1]

1 = 1 ∩:

 11 [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] we can compute as in (3H 2 (Ω)3 , and similarly for the homogeneous operators, H 0 (curl; Ω). This leads to the following compatibility result.Theorem 5.7 (Compatible DG methods). In the case where Ãh is the centered DG evolution operator (5.35), the scheme (3.1) complemented with the projectionH 1 (Ω) 3 × H 1 (Ω) 3 → Ṽh := Ṽh × Ṽh (5.41) is compatible. In particular, it satisfies the commuting diagram (3.3) Proof. Given (5.35) and (5.41)-(5.42), relation (3.3) amounts to (5.39)-(5.40).In more classical terms, what the above result states is that the DG scheme   ∂ t Ẽh , φε -Bh , curl h φε + { Bh }, [ φε ] F h = -πdiv h J , φε φε ∈ Ṽh ∂ t Bh , φµ + Ẽh , curl h φµ -{ Ẽh }, [ φµ ] F int h = 0 φµ ∈ Ṽhis compatible in the sense of Def. 3.1. To apply next the error bound (3.5) we use(I -πcurl h )u ≤ ch m |u| m , 2 ≤ m ≤ p dg + 1 (I -πdiv h )u ≤ ch m |u| m , 1 ≤ m ≤ p dg (5.43) derived from [39, Prop. 1 and 3], which yield ( Ẽh -E, Bh -B)(t) ≤ ch m |(E 0 , B 0 )| m + |(E, B)(t)| m + t 0 |∂ t (E, B)(s)| m ds (5.44)

Figure 1 :

 1 Figure 1: Time evolution of the L 2 norm of electric fields computed with 2d versions of some of the above schemes: in the left panel a standard curl-conforming finite element method corresponding to (5.18), in the center panel a Conga scheme (5.31) using a standard L 2 projection for the current density, and in the right panel the same Conga scheme using the compatible approximation for the source corresponding to the actual right hand side in (5.31).

  H2) there exists a cochain projection π h (i.e., projection operators for which the diagram (2.8) commutes) that is uniformly W -bounded with respect to h, (H3) the conforming projection P k h involved in Ãh satisfies (3.11)-(3.13).

scaling is such that Φ T u L 2 ( T ) ∼ u L 2 (T ) holds with constants independent of h, T and u, assuming the shape
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