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GAUSS-COMPATIBLE GALERKIN SCHEMES FOR

TIME-DEPENDENT MAXWELL EQUATIONS

MARTIN CAMPOS PINTO AND ERIC SONNENDRÜCKER

Abstract. In this article we propose a unified analysis for conforming and
non-conforming finite element methods that provides a partial answer to the
problem of preserving discrete divergence constraints when computing numer-
ical solutions to the time-dependent Maxwell system. In particular, we formu-
late a compatibility condition relative to the preservation of genuinely oscil-
lating modes that takes the form of a generalized commuting diagram, and we
show that compatible schemes satisfy convergence estimates leading to long-

time stability near stationary solutions. We next apply these findings by spec-
ifying compatible formulations for several classes of Galerkin methods, such
as the usual curl-conforming finite elements and the centered discontinuous
Galerkin (DG) scheme. We also propose a new conforming/non-conforming
Galerkin (Conga) method where fully discontinuous solutions are computed by
embedding the general structure of curl-conforming finite elements into larger
DG spaces. In addition to naturally preserving one of the Gauss laws in a

strong sense, the Conga method is both spectrally correct and energy conserv-
ing, unlike existing DG discretizations where the introduction of a dissipative

penalty term is necessary to avoid the presence of spurious modes.

1. Introduction

Preserving a discrete version of the Gauss laws has always been an important
issue in the development of numerical schemes for the time-dependent Maxwell
equations. At the continuous level indeed, an important property of the Ampere
and Faraday equations

(1.1)
∂tE − curlB = −J

∂tB + curlE = 0

is to preserve the divergence constraints on the fields

(1.2)
divE = ρ

divB = 0

provided they are satisfied at initial time and the sources ρ and J satisfy the so-
called continuity equation

(1.3) ∂tρ+ divJ = 0.

However, when numerical approximations are involved this may not be true.
In that regard, the different classes of Galerkin approximations do not come with

equal properties. For instance, curl-conforming finite element methods present a
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rather favorable situation, in that they usually preserve the Gauss laws in a natural
finite element sense, see e.g., [34, 14]. This is not the case with non-conforming
methods such as finite volume or discontinuous Galerkin schemes where it is known
that on general meshes a proper discrete version of the divergence constraints cannot
hold [20]. A practical consequence of that theoretical weakness is the development
of small errors in the computed electromagnetic field which accumulate to large
deviations for long simulation times [29, 35].

When the sources themselves are obtained by a numerical treatment, as is the
case with particle simulations of the Vlasov-Maxwell system, such numerical ar-
tifacts are often designated as a lack of charge conservation. Indeed the growing
inconsistencies that one observes in the fields may be related, through the Gauss
laws, to a lack of charge separation: particles tend to stick together, which is
normally prevented by Gauss’ law. Nevertheless, part of the problem lies in the
discretization of the Maxwell equations themselves, as can be seen in e.g. [35]
where such unphysical behavior appears with analytical sources that do satisfy the
balance equation (1.3).

In order to make DG – and other simulations lacking a proper discrete charge
conservation – physically acceptable, one usually resorts to correction techniques
such as projection methods or divergence cleaning methods based on generalized
Lagrange multiplier formulations of the Maxwell equations [23, 28, 29]. This works
well in many cases, in particular when the investigated problem is close to elec-
trostatic. However it introduces an artificial non locality in the numerical scheme,
which can have disastrous effects in some simulations, for example for laser plasma
interaction problems, where these non localities can trigger an instability before the
laser hits the plasma.

We note that the preservation of the Gauss law for time dependent problems
is strongly related to the non existence of spurious eigenvalues for the discrete
curl curl operator, which has triggered a lot of efforts in the applied mathematics
community, see e.g. [15, 8, 5, 7]. The problem is that when Gauss’ law is not
explicitly applied, the eigenspace corresponding to the zero eigenvalue is infinite
dimensional and not compact. Good numerical methods generally avoid mixing
the eigenspaces corresponding to vanishing and non vanishing eigenvalues, but not
all of them do.

Be it for the time dependent or the eigenvalue problem, solutions have been de-
veloped using appropriate exact sequences of discrete spaces along with commuting
projections [9, 16, 17, 34, 1]. In addition to classical finite element spaces, this
framework has been extended to spline finite elements in [13]. By construction,
these solutions are restricted to conforming methods.

In this article we extend these results to non-conforming methods and propose
a unified analysis. Our findings are twofold. First we formulate a compatibility
condition for semi-discrete schemes with sources that takes the form of a general-
ized commuting diagram, and we show that methods verifying this condition are
asymptotically stable relative to exact stationary solutions, which solves most of
the large deviation problems described in the literature without resorting to diver-
gence cleaning techniques. Specifically, by applying this analysis to conforming and
non-conforming Galerkin methods we describe several approximation operators for
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the sources that make the usual curl-conforming finite element method and the
centered discontinuous Galerkin (DG) scheme compatible in the above sense.

Second, we propose a new conforming/non-conforming Galerkin (Conga) method
that closely follows the structure of the curl-conforming finite element schemes but
uses fully discontinuous spaces just as standard DG schemes. In contrast to existing
DG discretizations where the introduction of a dissipative penalty term is necessary
to avoid the presence of spurious modes [21, 36, 12] the Conga method is shown
to be both spectrally correct and energy conserving, just as curl-conforming finite
element schemes. Moreover, it naturally preserves one of the Gauss laws in a strong
sense.

The outline is as follows. In Section 2 we consider an energy-preserving time-
dependent Maxwell system ∂tU − AU = F expressed in the abstract setting of
Hilbert complexes with exact sequences of differential operators and we ask our-
selves in which sense a numerical method ∂tUh −AhUh = Fh should be compatible
with the Gauss laws. By studying first the homogeneous case F = 0 we observe
that the Gauss laws can be interpreted as a constraint relative to the existence of
stationary modes, for which it is straightforward to derive a discrete analog that
can be imposed on the numerical solutions.

In Section 3 we then extend this constraint to the case with sources by formu-
lating a compatibility condition of the form Fh = Π̌hF with Π̌hA = AhΠ̂h and we
show that compatible schemes are asymptotically stable with respect to exact sta-
tionary solutions. In this abstract setting we then provide compatible formulations
for several conforming and non-conforming Galerkin methods, including the novel
Conga method that is shown to be spectrally correct in Section 4. Finally, explicit
schemes are described in Section 5 for the Maxwell equations in 3d.

2. An abstract setting for time-dependent Maxwell problems

To highlight the generality of our approach we present our results in the abstract
setting of Hilbert complexes, following the framework and notations from Ref. [2].

2.1. Exact sequences in Hilbert complexes. We consider a Hilbert complex
(W,d) = (W l, dl)l=0,...,n consisting of a finite sequence of Hilbert spaces W l with
closed and densely-defined linear operators dl : W l → W l+1 that satisfy

(2.1) dldl−1 = 0.

In particular, the range of dl−1 is contained in the domain of dl, which we denote
by V l. We further assume that the sequence (V, d) is exact, in the sense that the
range of dl−1 actually coincides with the null space of dl, which we denote by Zl.
Thus,

(2.2) Zl := ker dl = dl−1V l−1.

In our applications the W l’s will be L2 spaces, and the dl’s will correspond to
differential operators such as grad, curl or div. To define a version of the time-
dependent Maxwell system in this abstract setting, following [2] we let d∗l+1 be the

adjoint of dl: it is a closed, densely-defined operator from W l+1 to W l and its
domain is denoted V ∗

l+1. For instance if dl is defined as the unbounded operator

curl : L2(Ω)3 → L2(Ω)3 with domain V k = H(curl; Ω), its adjoint d∗k+1 will also
correspond to the curl operator but with domain V ∗

k+1 = H0(curl), see e.g. [33,
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Sec. 0]. And the reverse situation is also possible since the closed, densely-defined
dk coincides with (d∗k+1)

∗. In particular, we have

(2.3) 〈d∗l+1v, u〉 = 〈v, dlu〉, v ∈ V ∗
l+1, u ∈ V l.

Here we use the same notation 〈·, ·〉 for the scalar products in any of the spaces W l,
and accordingly we shall use ‖·‖ for the corresponding norms. Applying (2.3) to
u = dl−1ϕ with ϕ ∈ V l−1, we infer from (2.1) that d∗l+1 maps V ∗

l+1 to V ∗
l and that

(2.4) d∗l d
∗
l+1 = 0.

Using the density of V l−1 we then see that d∗l u = 0 holds iff 〈u, dl−1ϕ〉 = 0 for all
ϕ ∈ V l−1, hence (2.2) yields

(2.5) ker d∗l = Zl⊥W

where the ⊥W exponent denotes the orthogonal complement in the proper space
from the complex W , here W l. Let us verify the following estimates.

Lemma 2.1 (Poincaré inequalities). There exists a constant cP = cP (V, d) such
that

(2.6) ‖u‖ ≤ cP ‖d
lu‖, u ∈ Zl⊥W ∩ V l =: Zl⊥

and

(2.7) ‖w‖ ≤ cP ‖d
∗
l+1w‖, w ∈ Zl+1 ∩ V ∗

l+1.

Proof. The first estimate is given in [2, Eq. (16)]. It is obtained by observing first
that Zl⊥ is the orthogonal complement of Zl in the Hilbert space V l equipped with
the scalar product 〈u, v〉V := 〈u, v〉+〈du, dv〉, and second that dl defines a bounded
bijection between the Hilbert spaces (Zl⊥, 〈·, ·〉V ) and (Zl+1, 〈·, ·〉), the latter being
closed according to (2.2). Estimate (2.6) then follows by Banach’s bounded inverse
theorem. To obtain estimate (2.7) we finally consider w ∈ Zl+1 ∩ V ∗

l+1 and let

ū ∈ Zl⊥ be such that dlū = w. Using the definition of the adjoint operator we
write then

‖d∗l+1w‖ = sup
u∈V l

〈w, dlu〉

‖u‖
≥

〈w, dlū〉

‖ū‖
=

‖w‖‖dlū‖

‖ū‖
≥ c−1

p ‖w‖

where the last inequality is (2.6). �

Our analysis will use some of the properties of the inverse K of the abstract
Hodge Laplacian operator L = dk−1d∗k + d∗k+1d

k corresponding to a particular in-

dex k that will be chosen so that both dk and its adjoint d∗k+1 correspond to curl
operators. To do so we will assume that the inclusion from the dense intersection
V k∩V ∗

k in W k is compact. According to [2, Sec. 3] we then know that K is compact
and selfadjoint, as an operator from W k to itself.

We next assume that (V, d) is approximated by a finite-dimensional subcomplex

(Vh, d) (namely, a sequence of spaces satisfying V l
h ⊂ V l and dlV l

h ⊂ V l+1
h ) for

which there exists a bounded co-chain projection πh from (V, d) to (Vh, d), i.e.,
linear projections πl

h : V l → V l
h uniformly bounded with respect to h, that satisfy

the commuting diagram property pictured in Fig. 1,

(2.8) dlπl
h = πl+1

h dl.



GAUSS-COMPATIBLE GALERKIN SCHEMES FOR MAXWELL EQUATIONS 5

· · · V l V l+1 · · ·

· · · V l
h V l+1

h · · ·

dl−1

πl
h

dl

πl+1
h

dl+1

dl−1 dl dl+1

Figure 1. Commutative diagram for the abstract framework de-
scribed in Section 2.1

Using (2.8) we verify that the discrete subcomplex inherits the exactness of (V, d),
in the sense that

(2.9) Zl
h := Zl ∩ V l

h = ker
(

dl|V l

h

)

= dl−1V l−1
h .

An important tool in the study of Galerkin methods is the (bounded) adjoint d∗l+1,h :

V l+1
h → V l

h of the operator dl restricted to V l
h. It is characterized by

(2.10) 〈d∗l+1,hv, u〉 = 〈v, dlu〉, v ∈ V l+1
h , u ∈ V l

h.

Using (2.1) we then find 〈d∗l,hd
∗
l+1,hv, ϕ〉 = 〈d∗l+1,hv, d

l−1ϕ〉 = 〈v, dldl−1ϕ〉 = 0 for

all v ∈ V l+1
h and ϕ ∈ V l−1

h . That is,

(2.11) d∗l,hd
∗
l+1,h = 0.

Finally, one easily verifies that

(2.12) Zl⊥
h := Z

l⊥W

h ∩ V l
h = ker d∗l,h.

2.2. The abstract Maxwell evolution system. In the above setting an abstract
version of the time-dependent Maxwell system is given by

(2.13)

{

∂tU −AU = F

U(0) = U0 ∈ V,

where A is the linear operator defined from W := W k ×W k+1 to itself by

(2.14) A =

(

0 −d∗k+1

dk 0

)

, with dense domain V := V k × V ∗
k+1 = D(A).

Indeed in the applications k will be chosen such that both dk and its adjoint d∗k+1

correspond to curl operators. The source F = (f, g)t corresponds to the cur-
rent density. In Section 5 we will consider either terms of the form F = (0,−J)t

corresponding to a strong formulation of the Ampere equation (in which case U

represents (B,E)t), or terms of the form F = (−J, 0)t that correspond to a strong
formulation of the Faraday equation (in which case U represents (E,−B)t). From
the properties of dk and d∗k+1 we readily see that A is closed and skew-symmetric,

indeed for any U = (u, v)t and U ′ = (u′, v′)t in V, (2.3) gives

(2.15) 〈AU,U ′〉 = 〈dku, v′〉 − 〈d∗k+1v, u
′〉 = 〈u, d∗k+1v

′〉 − 〈v, dku′〉 = 〈U,−AU ′〉.

Since dk is closed and densely-defined one can actually infer from the skew-symmetry
that A and its adjoint A∗ have the same domain, hence A∗ = −A. In particular, A



6 MARTIN CAMPOS PINTO AND ERIC SONNENDRÜCKER

generates a contraction semi-group of class C0 ([38, Section IX.8]) and the following
result is a direct application of Corollaries 2.2 p. 106 and 2.5 p. 107 in [32].

Lemma 2.2. If F ∈ C1([0, T ];W), then the Cauchy problem (2.13)-(2.14) has a
unique solution U ∈ C1([0, T ];V).

In addition to the evolution equation (2.13), the Maxwell system consists of a
two-component Gauss law

(2.16) DU(t) = R(t), t ≥ 0, with D =

(

d∗k 0
0 dk+1

)

.

Here D corresponds to a two-components divergence operator and R(t) ∈ W cor-
responds to the charge density. In particular, (2.16) implies that U(t) belongs to
the domain of D, V ∗

k × V k+1. From the cochain (2.1) and chain (2.4) relations one
sees that DA = 0, hence (2.16) actually amounts to a property being satisfied by
the data. Namely,

(2.17)

{

F ∈ C0([0, T ];D(D))

U0 ∈ D(D) = V ∗
k × V k+1

and

{

∂tR+DF = 0

DU0 = R(0).

Before studying the Galerkin approximations to (2.13), we verify the following
result.

Lemma 2.3. The kernel of A reads

(2.18) kerA = Zk × Zk+1⊥W

and its orthogonal complement in W = W k ×W k+1 coincides with the range of A,
namely

(2.19) R(A) = (kerA)⊥W = Zk⊥W × Zk+1.

Proof. The identity (2.18) simply follows from (2.5) and the definition of Zk. To
prove (2.19) we may show that the range of A is closed. The claimed identity will
then follow from the closed range theorem and the fact that A∗ = −A. Thus, let
(un, vn)

t be a sequence in V such that (u′
n, v

′
n)

t := A(un, vn)
t converges to some U ′

in W. Setting ūn := (I − PZk)un and v̄n := PZk+1vn we then infer from (2.2) and
(2.5) that

(

−d∗k+1v̄n
dkūn

)

=

(

−d∗k+1vn
dkun

)

=

(

u′
n

v′n

)

and

{

ūn ∈ Zk⊥

v̄n ∈ V ∗
k+1 ∩ Zk+1.

The convergence of the sequence (ūn, v̄n)
t to some Ū (in W) follows then from the

Poincaré inequalities (2.6)-(2.7), and since A is closed (Ū , U ′) is in the graph of A.
Hence R(A) is closed and the identity follows. �

2.3. Conforming Galerkin approximations and the Gauss law. To derive
Galerkin approximations to the abstract Maxwell evolution system (2.13), we write
it in variational form using (2.3), as

(2.20)







〈∂tu, z〉+ 〈v, dkz〉 = 〈f, z〉 z ∈ V k

〈∂tv, w〉 − 〈dku,w〉 = 〈g, w〉 w ∈ V ∗
k+1.
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Here the standard Galerkin approach (see, e.g., [24, 34, 37]) defines (uh, vh) in

C1([0, T ];V k
h × V k+1

h ), solution to

(2.21)







〈∂tuh, z〉+ 〈vh, d
kz〉 = 〈fh, z〉 z ∈ V k

h

〈∂tvh, w〉 − 〈dkuh, w〉 = 〈gh, w〉 w ∈ V k+1
h ,

with proper approximations (fh, gh) and (u0
h, v

0
h) to the source terms and initial

data. Clearly, the embedding V k
h ⊂ V k is required for (2.21) to be well defined, and

for this reason the method is said conforming. As for vh, we note that other spaces
could be chosen, and indeed in Refs. [25, 26] the authors consider a similar scheme
where vh is sought for in a fully discontinuous space. For additional examples and
literature on conforming approximations, see e.g. [22, 10].

Here, the motivation for taking vh (and w) in V k+1
h comes from the fact that

the method preserves a strong discrete version of the second Gauss law in (2.16).

Indeed, if the discrete data v0h and gh are in V k+1
h and if they satisfy a strong

discrete version of the second equations in (2.17), namely
{

∂tρh + dk+1gh = 0

dk+1v0h = ρh(0)

for some ρh, then ∂tvh is also in V k+1
h , and using (2.1) we find that

(2.22) dk+1vh(t) = ρh(t), t ≥ 0.

As for the first Gauss law, it can only be satisfied in a weak sense since ∂tuh has
no reason to be in V ∗

k . Specifically, we observe that the first equation from (2.21)
reads

∂tuh + d∗k+1,hvh = fh

where d∗k+1,h : V k+1
h → V k

h is the adjoint of dk|V k

h

, see (2.10). Thus if the data u0
h

and fh satisfy
{

∂tθh + d∗k,hfh = 0

d∗k,hu
0
h = θh(0)

for some θh, then using (2.11) we obtain

(2.23) d∗k,huh(t) = θh(t), t ≥ 0.

Now, as for any weak equation, the question arises as to whether (2.23) should be
considered too weak to be numerically relevant. A partial answer to that question
is obtained by observing that (2.23) amounts to satisfying

(2.24) 〈uh, d
k−1ϕ〉 = 〈θh, ϕ〉 for all ϕ ∈ V k−1

h .

In the applications dk−1 corresponds to a grad operator, hence (2.23) is a standard
finite element version of the Gauss law involving H1 test functions. In particular, if
uh = dk−1φh is an electric field deriving from a discrete potential φh ∈ V k−1

h , then
(2.23) simply means that φh solves a conforming Galerkin approximation of the
abstract Poisson equation (dk−1)∗dk−1φh = θh, which in itself can be considered as
numerically relevant.
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2.4. The fundamental homogeneous Gauss law. To give another argument
that validates the relevance of the above discrete Gauss laws, we rewrite the con-
forming approximation (2.21) as an evolution equation

(2.25)

{

∂tUh −AhUh = Fh

Uh(0) = U0
h ∈ Vh,

where the skew-symmetric operator

(2.26) Ah :=

(

0 −d∗k+1,h

dk 0

)

maps Vh := V k
h × V k+1

h to itself.

The discrete Gauss laws (2.22)-(2.23) read then

(2.27) DhUh = Rh with Dh =

(

d∗k,h 0

0 dk+1

)

and hereRh = (θh, ρh)
t corresponds to the discrete charge density. The preservation

of this two-component Gauss law by the conforming scheme is then expressed by
the relation DhAh = 0. Parallel to (2.25), one also finds non-conforming Galerkin
approximations to (2.13), of the form

(2.28)

{

∂tŨh − ÃhŨh = F̃h

Ũh(0) = Ũ0
h ∈ Ṽh,

where Ãh is a skew-symmetric operator approximatingA on a non-conforming space
of the form Ṽh = Ṽ k

h × Ṽ k+1
h with Ṽ k

h 6⊂ V k. For example in TE 2d centered-flux
DG schemes [21, 18], the discontinuous scalar magnetic field ṽh ≡ Bz is strongly
divergence-free by construction and hence belongs to the conforming space V k+1,
whereas the electric field ũh ≡ (Ex, Ey) belongs to some non-conforming approxi-
mation of V k. One can then show (see, e.g., [18, Prop. 3.7]) that ũh satisfies a weak
Gauss law involving the same test functions as in (2.24). Thus, in the source-free
case a two-component constraint of the form

(2.29) D̃hŨh = 0

holds with essentially the same discrete divergence operator than in (2.27), ex-

tended to Ṽh. Now, because ũh belongs to a larger space than in the conforming
case, one intuitively feels that in order to be numerically relevant, a weak Gauss
law should also involve a larger space of test functions.

An algebraic argument supporting the relevance of (2.27) compared to (2.29) can
then be obtained by observing that in the homogeneous case (R,F = 0), the Gauss
law amounts to a constraint relative to the oscillating modes of the Maxwell equa-
tion ∂tU = AU .

Definition 2.4 (oscillating modes). Since A is skew-symmetric, all its eigenvalues
are imaginary and correspond to solutions that oscillate. But not all are genuinely
oscillating: the orthogonal decomposition

W = kerA⊕ (kerA)⊥W

corresponds to a separation between the stationary solutions (∂tU = 0) and those
which really oscillate (∂tU = iωU , ω 6= 0). Only the latter will be said oscillating.
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Specifically, we observe that in addition to the inclusion R(A) ⊂ kerD equivalent
to DA = 0 which expresses the preservation of the Gauss law DU = 0 by the
Maxwell equation, what we actually have is an identity: using (2.5), (2.18) and
(2.19) we find indeed R(A) = (kerA)⊥W = Zk⊥W × Zk+1 = kerD. Thus in the
absence of sources, the Gauss law (2.16) is equivalently rewritten as

U(t) ∈ (kerA)⊥W , t ≥ 0,

which states that U(t) can only be composed of oscillating modes. Since the dis-
crete evolution operator is also assumed skew-symmetric, it is straightforward to
formulate an analog property at the discrete level.

Definition 2.5. We say that a scheme of the form (2.28) satisfies the fundamental
homogeneous Gauss law if the solutions to the homogeneous equation (Fh = 0) are
only composed of oscillating modes (see Def. 2.4) for the discrete evolution operator

Ãh, i.e., if they verify

(2.30) Ũh(t) ∈ (ker Ãh)
⊥W , t ≥ 0.

We note that in addition to being a natural property to expect from the discrete
solutions, (2.30) is related to a classical condition in the study of spectrally correct
methods for the Maxwell eigenvalue problem, see e.g., [15, 17]. Turning back to the
relevance of the discrete Gauss laws, we observe that:

(i) In the conforming case (2.25)-(2.26) the discrete operators satisfy a relation
analog to the continuous one, namely

(2.31) kerDh = Zk⊥
h × Zk+1

h = (kerAh)
⊥W ∩ Vh = R(Ah).

As a consequence, in the absence of sources the discrete Gauss lawDhUh = 0
is strong enough to guarantee the fundamental Gauss law in the sense of
Definition 2.5.

(ii) In the non-conforming case (2.28) where the discontinuous space Ṽh may be

much larger, there is no reason why we should have ker D̃h ⊂ (ker Ãh)
⊥W .

Therefore the discrete Gauss law D̃hŨh = 0 is a priori too weak to guarantee
the fundamental Gauss law in the sense of Definition 2.5.

In the remainder of the paper we will design non-conforming Galerkin methods
of the form (2.28) that satisfy the fundamental homogeneous Gauss law, although
no divergence constraint stronger than (2.29) is shown to hold. And when sources
are present, we shall look for schemes that are compatible with the property stated
in Definition 2.5, in the sense that they should satisfy

(2.32) U(t) ∈ (kerA)⊥W , t ≥ 0 =⇒ Ũh(t) ∈ ker(Ãh)
⊥W , t ≥ 0.

In Section 3 below we shall give a somehow stronger definition for compatible
schemes. But before doing so we observe that since Ãh is assumed skew-symmetric,
solutions to (2.28) clearly satisfy

∂tŨh − F̃h ∈ (ker Ãh)
⊥W .

In particular, it is easily seen that satisfying property (2.32) (and (2.30)) essentially
relies on the data approximation. An obvious sufficient condition reads indeed

(2.33) U0, F ∈ (kerA)⊥W =⇒ Ũ0
h , F̃h ∈ (ker Ãh)

⊥W .



10 MARTIN CAMPOS PINTO AND ERIC SONNENDRÜCKER

3. Compatible Galerkin approximations

In this section we formulate and study an abstract compatibility property for
generic Galerkin approximations to (2.13), based on non-conforming spaces.

Following our observation that for skew-symmetric Galerkin approximations,
being compatible with the fundamental Gauss law in the sense of (2.32) is essentially
a matter of proper data approximation, we make the latter part explicit and consider
semi-discrete schemes of the form

(3.1)

{

∂tŨh − ÃhŨh = Π̌hF

Ũh(0) = Ũ0
h ∈ Ṽh.

Here,

• Ṽh is a discrete subspace of W = W k ×W k+1 but not necessarily a subset
of either V k × V k+1 or V = V k × V ∗

k+1, the domain of A ;

• Ãh : Ṽh → Ṽh is a skew-symmetric bounded operator approximating A ;
• Π̌h is a projection on Ṽh that may not be W-bounded but has a dense
domain V̌ in W.

Thus, the conforming method corresponds to taking Ṽh = Vh and Ãh = Ah as in
(2.26), i.e.,

(3.2) Ah :=

(

0 −d∗k+1,h

dk 0

)

: Vh → Vh with Vh := V k
h × V k+1

h .

Non-conforming methods are obtained with spaces Ṽh that consist of totally dis-
continuous functions, typically piecewise polynomials with no continuity constraint
between neighboring elements. Note that the semi-group arguments used in Sec-
tion 2.2 guarantee the well-posedness of (3.1).

3.1. The Gauss law meets commuting diagrams. We now specify condition
(2.33) for a scheme of the form (3.1). According to Lemma 2.3 and the identity
R(A) = (kerA)⊥W , what we may require is essentially that the data approximation
maps the range of the continuous evolution operator A into that of the discrete
one Ãh. In order to obtain convergent approximations we formulate the resulting
property in terms of an auxiliary approximation operator Π̂h.

Definition 3.1 (Compatible schemes). Let Π̂h : V̂ ⊂ V → Ṽh be a densely-defined
projection operator. We say that the scheme (3.1) is compatible with the Gauss law

(or compatible, for simplicity) on the set V̂ if the diagram

(3.3)

V̂ V̌

Ṽh Ṽh

Π̂h

A

Π̌h

Ãh

commutes, i.e., if Π̌hA = ÃhΠ̂h holds on V̂.

Interestingly enough, we observe that although (3.3) has been primarily derived
as a compatibility principle relative to the preservation of oscillating solutions at
the discrete level (in the sense of Def. 2.4), it also expresses a compatibility prop-
erty relative to stationary solutions. Indeed, if the continuous source is associated
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to an exact steady state, i.e., if it is of the form F = −AŪ with Ū ∈ V̂, then
its approximation Π̌hF is associated to the steady state Π̂hŪ ≈ Ū . And in fact
Property (3.3) implies two key embeddings for the involved projection operators,
namely

(3.4) Π̌h((kerA)⊥W ∩ AV̂) ⊂ (ker Ãh)
⊥W and Π̂h(kerA ∩ V̂) ⊂ ker Ãh.

It is then easily verified that compatible schemes enjoy the following important
properties.

Theorem 3.2. If the semi-discrete scheme (3.1) is compatible, then

(i) when associated to the initial data

Ũ0
h = Π̌hU

0,

it satisfies Property (2.33) (on AV̂) and hence the fundamental homoge-
neous Gauss law ;

(ii) if the solution U to the Cauchy problem (2.13) is in C0([0, T ]; V̂), we have
a W-error bound

(3.5) ‖(Ũh − Π̂hU)(t)‖ ≤ ‖Ũ0
h − Π̂hU

0‖+

∫ t

0

‖(Π̌h − Π̂h)∂tU(s)‖ ds, t ≥ 0

(iii) and an additional estimate for the discrete derivatives
(3.6)

‖(ÃhŨh−Π̌hAU)(t)‖ ≤ ‖ÃhŨ
0
h−Π̌hAU0‖+

∫ t

0

‖Ãh(Π̌h−Π̂h)∂tU(s)‖ ds, t ≥ 0.

Proof. Property (i) readily follows from the first embedding in (3.4) and the obser-
vation that (2.33) is a sufficient condition for (2.32). To show (ii) and (iii) we next
observe that U satisfies

Π̌h∂tU = Π̌hAU + Π̌hF = ÃhΠ̂hU + Π̌hF,

hence for the discrete solution we have

∂t(Uh− Π̂hU) = (∂tUh− Π̌h∂tU)+(Π̌h− Π̂h)∂tU = Ãh(Uh− Π̂hU)+(Π̌h− Π̂h)∂tU.

Applying Ãh to the latter and using the commuting diagram property (3.3), we
further obtain

∂t(ÃhUh − Π̌hAU) = Ãh(ÃhUh − Π̌hAU) + Ãh(Π̌h − Π̂h)∂tU.

Estimates (3.5), (3.6) follow from the contraction properties of the semi-group gen-

erated by Ãh. �

From Theorem 3.2 we readily derive an asymptotical stability result.

Corollary 3.3. If Ū ∈ V̂ is a steady state solution to (2.13), the discrete solution
Uh satisfies (for all t ≥ 0)

‖Ũh(t)− Π̂hŪ‖ ≤ ‖Ũ0
h − Π̂hŪ‖ and ‖ÃhŨh(t)− Π̌hAŪ‖ ≤ ‖ÃhŨ

0
h − Π̌hAŪ‖.
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3.2. The case of conforming Galerkin approximations. Before designing
non-conforming compatible schemes, we first show that the standard conforming
Galerkin method (2.25)-(2.26) is compatible when the data approximation involves
a projection operator that satisfies a commuting diagram property for sufficiently
smooth functions. Specifically, we assume that we are given two densely-defined
projection operators π̄l

h with l = k, k + 1, that converge pointwise to the identity
on their respective domains V̄ l ⊂ V l, and for which the diagram

(3.7)

V̄ k V̄ k+1

V k
h V k+1

h

π̄k
h

dk

π̄k+1
h

dk

commutes, i.e., π̄k+1
h dk = dkπ̄k

h holds on V̄ k.
Note that in principle it is possible to take the bounded co-chain projection op-

erators πl
h introduced in Section 2.1, in which case the domains simply correspond

to V̄ l = V l. However, because these projection operators are usually not simple to
implement, one may rather want to use standard finite element interpolation oper-
ators such as those recalled in Section 5.2 below. Indeed they verify a commuting
diagram property, but they are defined on smaller spaces of smooth functions. In
the sequel we denote by PWh

the orthogonal projection on a closed subspace Wh of
W , for the corresponding W scalar product.

Theorem 3.4 (Compatibility of the conforming Galerkin method). If Ṽh = Vh and

Ãh = Ah correspond to the conforming Galerkin approximation (3.2), the method
(3.1) complemented with the projection

(3.8) Π̌h =

(

PV k

h

0

0 π̄k+1
h

)

: V̌ → Vh with V̌ := W k × V̄ k+1

is compatible. In particular, it satisfies relation (3.3) with

(3.9) Π̂h =

(

π̄k
h 0
0 P

V k+1

h

)

: V̂ → Vh with V̂ := V̄ k × V ∗
k+1.

Remark 3.5. Here Π̂h is obviously defined on V̄ k ×W k, but for the diagram (3.3)

to commute A must be defined on V̂, i.e., we need V̂ ⊂ V = V k×V ∗
k+1, hence (3.9).

Proof. With the above operators, the compatibility relation (3.3) reads

(3.10)

{

π̄k+1
h dk = dkπ̄k

h on V̄ k

PV k

h

d∗k+1 = d∗k+1,hPV k+1

h

on V ∗
k+1.

The first relation is simply (3.7). Using the properties (2.3) and (2.10) of the
continuous and discrete adjoints of dk, we then compute for w ∈ V ∗

k+1 and z ∈ V k
h

〈PV k

h

d∗k+1w, z〉 = 〈d∗k+1w, z〉 = 〈w, dkz〉 = 〈P
V k+1

h

w, dkz〉 = 〈d∗k+1,hPV k+1

h

w, z〉.

�

We end this section with a classical observation. From the co-chain embedding
dkV k

h ⊂ V k+1
h and the fact that π̄k+1

h maps into Ṽ k+1
h = V k+1

h according to (3.7),
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we see that the second equation from ∂tUh −AhUh = Π̌hF defined with (3.2) and

(3.8) holds in a strong sense in the space V k+1
h . Thus, an equivalent formulation of

the compatible conforming approximation is (writing Uh = (uh, vh)
t ∈ V k

h × V k+1
h )

(3.11)

{

〈∂tuh, ϕh〉+ 〈vh, d
kϕh〉 = 〈f, ϕh〉, for ϕh ∈ V k

h

∂tvh − dkuh = π̄k+1
h g (in V k+1

h ).

3.3. Conforming / non-conforming Galerkin (Conga) approximations.
We now turn to the problem which first motivated this work, namely the design
of compatible schemes based on discontinuous spaces Ṽh for which an explicit time
discretization does not require to invert a global mass matrix. Although it is pos-
sible to make standard DG schemes Gauss-compatible by equipping them with
proper approximation operators for the data, as will be seen in Sections 3.4 and 5.4
below, in this section we begin by describing an approximation method that aims
at preserving the computational structure of the conforming scheme (3.11), in the
framework of discontinuous function spaces. In this new scheme the unknown fields
are sought in a product space made of conforming and non-conforming functions,
namely

Ṽh := Ṽ k
h × V k+1

h with V k
h ⊂ Ṽ k

h 6⊂ V k.

Here the fact that the second space is conforming should not be a concern: indeed
our new scheme will preserve the fact that, just as in (3.11), the second equa-

tion holds strongly in V k+1
h . Hence it will involve no mass matrix in that space.

Specifically, the Conga scheme is based on a projection operator

P
k
h : Ṽ k

h → V k
h ⊂ Ṽ k

h

seen as a bounded operator from Ṽ k
h to itself. We shall ask that it satisfies a moment

preserving property,

(3.12) 〈(I − P
k
h)u, z〉 = 0, z ∈ M

k
h,

with spaces M
k
h ⊂ Ṽ k

h that have a dense union for h → 0, so that the adjoint
operator satisfies

(3.13) (Pk
h)

∗PṼ k

h

v → v as h → 0

for all v ∈ W k. We then define the Conga evolution operator as

(3.14) Ãh :=

(

0 −(Pk
h)

∗d∗k+1,h

dkPk
h 0

)

: Ṽh → Ṽh with Ṽh := Ṽ k
h ×V k+1

h ,

indeed this will guarantee that the second equation of (3.1) holds strongly in V k+1
h .

Since (Pk
h)

∗d∗k+1,h is the adjoint of dkPk
h seen as an operator from Ṽ k

h to V k+1
h , we

easily check that Ãh is skew-symmetric and bounded on Ṽh.
As for the data approximation, we consider

(3.15) Π̌h :=

(

(Pk
h)

∗PṼ k

h

0

0 π̄k+1
h

)

: V̌ → Ṽh with V̌ := W k × V̄ k+1,

where π̄k+1
h : V̄ k+1 → V k+1

h is the projection operator involved the commuting
diagram (3.7). We then have the following result.
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Theorem 3.6 (Compatibility of the Conga method). The method (3.1) defined by
(3.14) and (3.15) satisfies the compatibility relation (3.3) with the same projection

operator Π̂h and domain V̂ = V̄ k × V ∗
k+1 as in Theorem 3.4.

Proof. Given (3.14) and (3.15), the claimed relation (3.3) now reads

(3.16)

{

π̄k+1
h dk = dkPk

hπ̄
k
h on V̄ k

(Pk
h)

∗PṼ k

h

d∗k+1 = (Pk
h)

∗d∗k+1,hPV k+1

h

on V ∗
k+1.

Here the first equality follows from the commuting diagram (3.7) and the fact that

π̄k
h maps into V k

h , where P
k
h = I. We next infer from the embedding V k

h ⊂ Ṽ k
h that

(PṼ k

h

− PV k

h

)Pk
h = 0, as well as the adjoint identity

(Pk
h)

∗(PṼ k

h

− PV k

h

) = 0,

hence the second equality in (3.16) follows from the second one in (3.10). �

We may now give an explicit form for the Conga scheme. Using (3.15), the source

F = (f, g) is approximated by Π̌hF = ((Pk
h)

∗PṼ k

h

f, π̄k+1
h g) and the first term gives

〈(Pk
h)

∗PṼ k

h

f, ϕ̃h〉 = 〈PṼ k

h

f,Pk
hϕ̃h〉 = 〈f,Pk

hϕ̃h〉 for ϕ̃h ∈ Ṽ k
h .

Next, from the co-chain embedding dkV k
h ⊂ V k+1

h we infer that the second equation

from ∂tŨh − ÃhŨh = Π̌hF holds strongly in V k+1
h , as announced. It follows that

the Conga scheme reads (with Ũh = (ũh, ṽh)
t ∈ Ṽ k

h × V k+1
h )

(3.17)

{

〈∂tũh, ϕ̃h〉+ 〈ṽh, d
k
P
k
hϕ̃h〉 = 〈f,Pk

hϕ̃h〉 for ϕ̃h ∈ Ṽ k
h

∂tṽh − dkPk
hũh = π̄k+1

h g (in V k+1
h ).

Remark 3.7 (Conga as an intermediate method). Given a non-conforming space

Ṽ k
h 6⊂ V k, we observe that the Conga method is truly an intermediate approach in

that it allows to switch from the conforming Galerkin method to non-conforming
ones, just by changing the conforming projection P

k
h. In particular if Pk

h is defined
as the orthogonal projection on V k

h , then (3.17) is equivalent to the conforming
scheme (3.1)-(3.2). Indeed, using the fact that (I−(Pk

h)
∗)ũh is always a constant in

(3.17) we find that the Conga solution reads (ũh, ṽh) = (uh+ w̃h, vh) where (uh, vh)
is the conforming solution and w̃h = (I − PV k

h

)ũh = (I − PV k

h

)ũ0
h.

In Section 5.3 we will describe some operators Pk
h that can be applied locally, so

that the resulting Conga scheme can be implemented using only sparse matrices.

3.4. The case of discontinuous Galerkin approximations. Energy-conserving
DG approximations to (2.13) can be cast into the form (3.1). In 3d they correspond

to taking the same discontinuous space Ṽh for both Ṽ k
h and Ṽ k+1

h , and to setting

(3.18) Ãh :=

(

0 −d̃∗h
d̃h 0

)

: Ṽh → Ṽh with Ṽh := Ṽh × Ṽh

where d̃h : Ṽh → Ṽh is the corresponding approximation to the differential (curl)
operator dk. In Section 5.4 we will show that in the case of unpenalized centered
DG schemes it is possible to rewrite this discrete operator as

(3.19) d̃h = PṼh
dkP̆h
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where P̆h is a projection mapping Ṽh on an auxiliary conforming space V̆ k
h ⊂ V k,

and a similar result holds for d̃∗h. It will then be possible to build a data approxima-

tion operator Π̌h that makes the semi-discrete DG scheme (3.1) Gauss-compatible.

Indeed, if π̆k
h and π̆k+1

h are projection operators satisfying a commuting diagram
property similar to (3.7) and such that

(3.20) π̆k
h maps into V̆ k

h ∩ Ṽh and π̆k+1
h maps into Ṽh,

then we have (on the domain of π̆k
h)

(3.21) d̃hπ̆
k
h = PṼh

dkP̆hπ̆
k
h = PṼh

dkπ̆k
h = PṼh

π̆k+1
h dk = π̆k+1

h dk,

by using (3.19), the fact that P̆h is a projection on V̆ k
h , the commuting diagram

property dkπ̆k
h = π̆k+1

h dk and the fact that π̆k+1
h maps into Ṽh. A similar identity

holds for d̃∗h, hence the following result (see Th. 5.4 below for a specific statement).

Theorem 3.8 (Compatibility in the DG case). Let π̆k
h and π̆k+1

h denote densely-

defined projection operators with respective domains V̆ l ⊂ V l, l = k, k+1, such that
(3.20) and the commuting diagram property dkπ̆k

h = π̆k+1
h dk holds. Then the method

(3.1) defined with the centered DG evolution operator (3.18) and complemented with
the projection

(3.22) Π̌h =

(

π̆k+1
h 0

0 π̆k+1
h

)

: V̌ → Ṽh where V̌ := V̆ k+1 × V̆ k+1

satisfies the compatibility relation (3.3) with

(3.23) Π̂h =

(

π̆k
h 0
0 π̆k

h

)

: V̂ → Ṽh where V̂ := V̆ k × V̆ k.

4. Spectral correctness of the Conga scheme

In this section we show that the discrete eigenmodes of the Conga operator Ãh

defined in (3.14) converge towards the continuous ones, provided that the dense

intersection V k ∩ V ∗
k in W k is compact. For the subsequent analysis we let Z̃k

h be

the null space of dkPk
h : Ṽ k

h → V k+1
h . Note that

(4.1) Z̃k
h := ker(dkPk

h) = ker(dk|V k

h

)⊕ kerPk
h = Zk

h ⊕ (I − P
k
h)Ṽ

k
h .

We henceforth use short notations for the following orthogonal projection operators:

P⊥ := PZk ⊥W , P⊥
h := PZk ⊥

h

and P̃⊥
h := PZ̃k ⊥

h

.

4.1. Characterization of the continuous eigenmodes. To begin our analysis
we characterize the eigenvalues and eigenvectors of A in terms of those of the
compact operator K defined in [2, Sec. 3], see Section 2.1. Specifically, it will be
convenient to restrict K to the orthogonal complement of Zk. Thus we set

(4.2) G := KP⊥

and we observe from [2, Eq. (19)] that for any u ∈ W k, Gu is the unique element
of Zk⊥ (see (2.6)) that satisfies

(4.3) 〈dkGu, dkz〉 = 〈u, z〉, z ∈ Zk⊥.
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In particular, we see that G = P⊥KP⊥ is a compact and selfadjoint operator from
W k to itself. As such it has a countable set of nonnegative eigenvalues, each of
finite multiplicity, that accumulate only at 0. We denote by

(4.4) 0 < λ1 ≤ λ2 ≤ ...

the inverses of its positive eigenvalues, each one being repeated according to its mul-
tiplicity. From the density of V k we infer that kerG = Zk, hence the complement
space Zk⊥W admits an orthonormal basis (ei)i≥1 of eigenvectors corresponding to
the λi’s. We denote by Ei the one-dimensional space spanned by ei.

Proposition 4.1. We have the following results.

(i) The eigenvalues of A are of the form iω with ω ∈ R.
(ii) The kernel of A reads

kerA = Zk × Zk+1⊥W .

(iii) Given ω 6= 0, U = (u, v)t is an eigenvector of A associated to iω iff

U ∈ (kerA)⊥W and

{

Gu = ω−2u

v = (iω)−1dku.

Proof. Assertions (i) and (ii) are direct consequences of the skew-symmetry (2.15)
and of (2.5). Using again the skew-symmetry of A, we then observe that U is an
eigenvector associated to the eigenvalue iω 6= 0 iff U ∈ (kerA)⊥W ∩ V satisfies
iωU = AU , which is equivalent (writing U = (u, v)t) to











u ∈ Zk⊥W ∩ V k = Zk⊥

iωu = −d∗k+1v

iωv = dku

⇐⇒











u ∈ Zk⊥

〈ω2u, z〉 = 〈dku, dkz〉, z ∈ Zk⊥

iωv = dku

so that (iii) follows from the characterization (4.3) of G. �

4.2. Characterization of the conforming discrete eigenmodes. In Cor. 3.17
of [2], it is shown that the operator Kh : V k

h → V k
h characterized by

(4.5) 〈d∗k,hKhu, d
∗
k,hz〉+ 〈dkKhu, d

kz〉 = 〈u, z〉, z ∈ V k
h ,

is a convergent approximation to K, in the sense that

(4.6) ‖K −KhPV k

h

‖L(Wk,Wk) → 0 as h → 0.

Since Kh is selfadjoint and obviously compact, this norm convergence is equivalent
to the convergence of the discrete eigenmodes towards the continuous ones, in a
sense that will soon be recalled, and corresponds to [4, Def. 2.1]. We shall then
characterize the eigenmodes of the conforming operator Ah in terms of those of
Kh. As above, what we are actually interested in is the restriction of Kh to the
complement of Zk

h in V k
h . Thus we set

(4.7) Gh := KhP
⊥
h

and taking u ∈ Zk⊥
h in (4.5) yields 〈d∗k,hGhu, d

∗
k,hz〉 = 〈d∗k,hKhu, d

∗
k,hz〉 = 0 for all

z ∈ Zk
h. Now, since ker d∗k,h = Zk⊥

h this also holds for all z ∈ V k
h , hence we can take

z = Ghu which shows that Ghu ∈ Zk⊥
h . It follows that for any u ∈ W k, Ghu is the

unique element of Zk⊥
h that satisfies

(4.8) 〈dkGhu, d
kz〉 = 〈u, z〉, z ∈ Zk⊥

h .
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Thus Gh = P⊥
h KhP

⊥
h is a compact and selfadjoint operator from W k to itself, and

as such its eigenvalues are nonnegative and of finite multiplicity. We denote by

(4.9) 0 < λ1,h ≤ λ2,h ≤ ... ≤ λN⊥

h
,h,

N⊥
h = dimZk⊥

h , the inverses of the positive eigenvalues of Gh, each one being
repeated according to its multiplicity. Similarly as for the continuous case we see
that Zk⊥

h admits an orthonormal basis (ei,h)i≥1 of eigenvectors corresponding to
the λi,h’s, and we denote by Ei,h the one-dimensional space spanned by ui,h.

We then have the following proposition that characterizes the eigenvalues and
eigenvectors of the conforming operator (2.26) in terms of those of Gh.

Proposition 4.2. We have the following results.

(i) The eigenvalues of Ah are of the form iω with ω ∈ R.
(ii) The kernel of Ah reads

(4.10) kerAh = Zk+1⊥
h × Zk

h.

(iii) Given ω 6= 0, U = (v, u)t is an eigenvector of Ah associated to iω iff
{

Ghu = ω−2u

v = (iω)−1dku.

Proof. Assertions (i) and (ii) are direct consequences of the skew-symmetry of Ah

and of (2.9), (2.12). Using again the skew-symmetry of Ah, we then observe that
U = (v, u)t is an eigenvector associated to the eigenvalue iω 6= 0 iff











u ∈ (Zk
h)

⊥W ∩ V k
h = Zk⊥

h

iωv = dku

iωu = −d∗k+1,hv

⇐⇒











u ∈ Zk⊥
h

iωv = dku

〈ω2u, z〉 = 〈dku, dkz〉, z ∈ Zk⊥
h

so that (iii) follows from the characterization (4.8) of Gh. �

4.3. Characterization of the Conga eigenmodes. Turning to the non-confor-
ming case we let G̃h : W k → Z̃k⊥

h be the operator characterized by

(4.11) 〈dkPk
hG̃hu, d

k
P
k
hz〉 = 〈u, z〉, z ∈ Z̃k⊥

h .

It is easily verified that this operator is compact and selfadjoint. In fact, in
Lemma 4.4 below we shall specify the link between G̃h and its conforming counter-
part Gh. Similarly as for the conforming case, we denote by

(4.12) 0 < λ̃1,h ≤ λ̃2,h ≤ ... ≤ λ̃Ñ⊥

h
,h,

Ñ⊥
h = dim Z̃k⊥

h , the inverses of its positive eigenvalues, each one being repeated ac-
cording to its multiplicity. We let (ẽi,h)i≥1 denote an orthonormal basis of eigenvec-

tors for Z̃k⊥
h , corresponding to the λ̃i,h’s, and we denote by Ẽi,h the one-dimensional

space spanned by ũi,h.
We may then characterize the eigenmodes of the non-conforming operator (3.14)

in terms of those of G̃h.

Proposition 4.3. We have the following results.

(i) The eigenvalues of Ãh are of the form iω with ω ∈ R.

(ii) The kernel of Ãh reads

(4.13) ker Ãh = Zk+1⊥
h × Z̃k

h.
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(iii) Given ω 6= 0, U = (v, u)t is an eigenvector of Ãh associated to iω iff
{

G̃hu = ω−2u

v = (iω)−1dkPk
hu.

Proof. Assertion (i) is a straightforward consequence of the skew-symmetry of Ãh

and of (2.12), whereas (ii) follows from the observation that since (Pk
h)

∗d∗k+1,h is

the adjoint of dkPk
h : Ṽ k

h → V k+1
h which range is Zk+1

h , one has

ker((Pk
h)

∗d∗k+1,h) = Z
k+1⊥W

h ∩ V k+1
h = Zk+1⊥

h ,

moreover Z̃k
h is the null space of dkPk

h. Using again the skew-symmetry of Ãh, we
then observe that U = (v, u)t is an eigenvector associated to the eigenvalue iω 6= 0
iff










u ∈ (Z̃k
h)

⊥W ∩ Ṽ k
h = Z̃k⊥

h

iωv = dkPk
hu

iωu = −(Pk
hu)

∗d∗k+1,hv

⇐⇒











u ∈ Z̃k⊥
h

iωv = dkPk
hu

〈ω2u, z〉 = 〈dkPk
hu, d

k
P
k
hz〉, z ∈ Z̃k⊥

h

so that (iii) follows from the characterization (4.11) of G̃h. �

We end this section by providing an expression of the non-conforming operator
G̃h in terms of the conforming one.

Lemma 4.4. The operators Gh and G̃h, characterized by (4.8) and (4.11), satisfy
(on W k)

(4.14) G̃h = P̃⊥
h GhP̃

⊥
h .

Proof. The identity clearly holds on (Z̃k⊥
h )⊥W = (I − P̃⊥

h )W k. We consider then

v ∈ Z̃k⊥
h and denote ṽ := P̃⊥

h GhP̃
⊥
h v = P̃⊥

h Ghv. Given w ∈ Z̃k⊥
h (or even in Ṽ k

h ),
we compute

〈dkPk
hṽ, d

k
P
k
hw〉 = 〈P̃⊥

h Ghv, (d
k
P
k
h)

∗dkPk
hw〉

= 〈Ghv, (d
k
P
k
h)

∗dkPk
hw〉

= 〈dkPk
hGhv, d

k
P
k
hw〉

= 〈dkGhv, d
k
P
k
hw〉

= 〈dkGhv, d
kP⊥

h P
k
hw〉

= 〈v, P⊥
h P

k
hw〉

= 〈v,Pk
hw〉

= 〈v, w〉.

Here the respective equalities use (i) the definition of (dkPk
h)

∗ as the adjoint of

dkPk
h : Ṽ k

h → V k+1
h , (ii) the fact that its range is in Z̃k⊥

h , (iii) the embeddings

Zk⊥
h ⊂ V k

h ⊂ Ṽ k
h , (iv) the identity P

k
h = I on V k

h , (v) the observation (used with
w̄ = P

k
hw) that

(4.15) dkw̄ = dk
(

P⊥
h w̄ + (I − P⊥

h )w̄
)

= dkP⊥
h w̄, w̄ ∈ V k

h ,

(vi) the characterization (4.8) of Gh, (vii) the observation that (I − P⊥
h )w̄ is then

in Zk
h ⊂ Z̃k

h and hence orthogonal to v, and (viii) the fact that (I − P
k
h)w is in Z̃k

h,
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hence also orthogonal to v. The result ṽ = G̃hv then follows from the characteri-
zation (4.11) of G̃h. �

4.4. Convergence of the discrete eigenmodes. We are now in position to show
that both the conforming and non-conforming discrete eigenmodes converge to-
wards the continuous ones in the sense of [4, Def. 2.1], that we now recall. For any
positive integer N we let m(N) denote the dimension of the space generated by
the eigenspaces of the first distinct eigenvalues (4.4). Thus λm(1), . . . , λm(N) are
the first N distinct eigenvalues and E1 + · · · + Em(N) is the space spanned by the
associated eigenspaces: it does not depend on the choice of the eigenbasis (ui)i≥1.
With these notations we say that the discrete eigenmodes (λi,h, ei,h)i≥1 converge
to the continuous ones (λi, ei)i≥1 if, for any given ε > 0 and N ≥ 1, there exists a
mesh parameter h0 > 0 such that for all h ≤ h0 we have

(4.16) max
1≤i≤m(N)

|λi − λi,h| ≤ ε and gap

(

m(N)
∑

1=i

Ei,

m(N)
∑

1=i

Ei,h

)

≤ ε,

where the gap between two spaces is classically defined as

(4.17) gap(E,F) := max

(

sup
u∈E

‖u‖≤1

inf
v∈F

‖u− v‖, sup
v∈F

‖v‖≤1

inf
u∈E

‖u− v‖

)

.

Obviously the same applies to the non-conforming eigenmodes (λ̃i,h, ẽi,h)i≥1 as well.
A key result in the perturbation theory of linear operators (see, e.g. [4] or [2]) is
that, for eigenmode problems corresponding to the compact selfadjoint operators
G and Gh (resp. G̃h), the above convergence holds if the operators Gh (resp. G̃h)
converge to G in L(W k,W k).

It is well known that this convergence holds in the conforming case, see e.g.,
[3, 27, 16]. In our abstract setting this is essentially a consequence of the uniform
convergence (4.6). Specifically, the following result holds.

Theorem 4.5. The operator Gh : W k → Zk⊥
h ⊂ W k defined by (4.8) satisfies

(4.18) ‖G−Gh‖L → 0

in the operator norm ‖·‖L = ‖·‖L(Wk,Wk).

Proof. From the embedding Zk⊥
h ⊂ V k

h and the definition (4.7) we have Gh =
KhPV k

h

P⊥
h . Using next (4.2), i.e. G = KP⊥, we decompose

‖G−Gh‖L ≤ ‖(K −KhPV k

h

)P⊥
h ‖L + ‖K(P⊥ − P⊥

h )‖L

≤ ‖K −KhPV k

h

‖L + ‖(P⊥ − P⊥
h )K‖L

where the second inequality uses the unit bound on orthogonal projections and
the fact that a bounded operator and its adjoint have the same norm (here all the
operators are selfadjoint). By right composition with the compact operator K the
pointwise convergence of P⊥−P⊥

h to 0 that is proved in Lemma 4.7 yields the norm
convergence of (P⊥ − P⊥

h )K to 0. The limit (4.18) follows then from (4.6). �

Corollary 4.6. The conforming discrete eigenmodes (λi,h, ui,h)i≥1 converge to the
continuous ones (λi, ui)i≥1 in the sense of (4.16).

In Theorem 4.8 and Corollary 4.9 below we will show that a similar convergence
holds true in the non-conforming case. We begin with an auxiliary lemma.
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Lemma 4.7. The distance between the closed subspaces Zk⊥
h and Zk⊥W is estimated

by the bounds

(4.19) ‖(I − P⊥
h )P⊥v‖ ≤ ‖(I − PV k

h

)P⊥v‖

and

(4.20) ‖P⊥
h (I − P⊥)v‖ ≤ ‖(I − πk

h)(I − P⊥)v‖

for all v ∈ W k. In particular, we have

(4.21) (P⊥ − P⊥
h )v → 0 as h → 0.

Proof. Let v⊥ ∈ Zk⊥W : we have PV k

h

v⊥ ∈ V k
h and 〈PV k

h

v⊥, w〉 = 〈v, w〉 = 0 for

w ∈ Zk
h ⊂ Zk. Thus,

PV k

h

Zk⊥W ⊂ Zk⊥
h

and estimate (4.19) follows, indeed

‖(I − P⊥
h )v⊥‖ = inf

v⊥

h
∈Zk ⊥

h

‖v⊥ − v⊥h ‖ ≤ ‖(I − PV k

h

)v⊥‖.

Next we observe from the commuting diagram (2.8) that πk
h maps Zk to Zk

h. Since
(I − P⊥)W k = (Zk⊥W )⊥W = Zk this yields πk

h(I − P⊥)W k ⊂ Zk
h, hence we have

‖P⊥
h (I−P⊥)v‖2 = 〈(I−P⊥)v, P⊥

h (I−P⊥)v〉 = 〈(I−πk
h)(I−P⊥)v, P⊥

h (I−P⊥)v〉

which gives (4.20) with a Cauchy-Schwarz inequality. The pointwise convergence
(4.21) is then easily inferred from the fact that πk

h and PV k

h

are projections on the

discrete spaces V k
h which union ∪h→0V

k
h is assumed dense in W k. �

We are now in position to establish a uniform convergence result for the operator
G̃h characterizing the Conga eigenmodes.

Theorem 4.8. The operator G̃h : W k → Z̃k⊥
h ⊂ W k defined by (4.11) satisfies

(4.22) ‖G− G̃h‖L(Wk,Wk) → 0 as h → 0.

Proof. Using Lemma 4.4 and the arguments in the proof of Theorem 4.5, we write

‖Gh − G̃h‖L ≤ ‖(I − P̃⊥
h )Gh‖L + ‖P̃⊥

h Gh(I − P̃⊥
h )‖L ≤ 2‖(I − P̃⊥

h )Gh‖L

and using the fact that Gh maps into Zk⊥
h , we continue with

‖(I − P̃⊥
h )Gh‖L = ‖(I − P̃⊥

h )P⊥
h Gh‖L ≤ ‖(I − P̃⊥

h )P⊥
h G‖L + ‖G−Gh‖L.

We next observe that (Pk
h)

∗ maps Zk⊥
h into Z̃k⊥

h . Hence

‖(I − P̃⊥
h )P⊥

h Gv‖ = inf
ṽ′∈Z̃k ⊥

h

‖P⊥
h Gv − ṽ′‖ ≤ ‖(I − (Pk

h)
∗)P⊥

h Gv‖

Here the operator (Pk
h)

∗ can be replaced by (Pk
h)

∗PṼ k

h

which is assumed to converge

pointwise to I, see (3.13). Thus, (I − P̃⊥
h )P⊥

h Gv converges pointwise to 0, which
by right composition with the compact operator G leads to a norm convergence,

‖(I − P̃⊥
h )P⊥

h G‖L → 0 as h → 0.

The proof then follows from (4.18). �

Corollary 4.9. The non-conforming discrete eigenmodes (λ̃i,h, ũi,h)i≥1 converge
to the continuous ones (λi, ui)i≥1 in the sense of (4.16).
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Remark 4.10. To our knowledge, the Conga method is the first non-conforming
method that is shown to be energy-conserving and spectrally correct. For instance
the centered DG method is known to have a large number of spurious eigenvalues
[21, 36], and penalized DG schemes are spectrally correct [12, 11] but they dissipate
energy.

5. Application to the Maxwell equations in 3d

To apply the above analysis to the Maxwell equations in a bounded domain Ω
of R3 with metallic boundary conditions, we can take

(5.1)
H1(Ω) H(curl; Ω) H(div ; Ω) L2(Ω)

grad curl div

for the primal domain complex V 0 → V 1 → V 2 → V 3 and

(5.2)
H1

0 (Ω) H0(curl; Ω) H0(div ; Ω) L2(Ω)
grad curl div

for the dual one V ∗
3 → V ∗

2 → V ∗
1 → V ∗

0 , or vice-versa. Here we assume that Ω is a
bounded and simply-connected Lipschitz domain of R3, so that the above de Rham
complexes are exact sequences, see [39, Sec. 3.2]. In each case we define the Hilbert
spaces as W 0 = W 3 = L2(Ω) and W 1 = W 2 = L2(Ω)3, and we take k = 1 so that
both d1 and its adjoint d∗2 are curl operators. The evolution problem (2.13)-(2.14)
reads then

(5.3)

{

∂tE − curlB = −J

∂tB + curlE = 0
with







E0 ∈ H0(curl; Ω)

B0 ∈ H(curl; Ω)

and Lemma 2.2 states that for J ∈ C1([0, T ];L2(Ω)3) there exists a unique solution
(E,B) in C1([0, T ];H0(curl; Ω)×H(curl; Ω)). As for the Gauss law (2.16), it reads

(5.4)

{

divE(t) = −ρ

divB(t) = 0
with

{

E(t) ∈ H(div ; Ω)

B(t) ∈ H0(div ; Ω)

and the continuity equation verified by the sources is just (1.3).
Although it makes no difference on the continuous problem whether one takes

(5.1) or (5.2) for the primal complex, on the conforming Galerkin approximation
(2.21) it leads to two different methods. As will be seen in Section 5.2, the first
choice leads to a strong discretization of the Ampere equation with natural bound-
ary conditions, whereas the second choice leads to a strong discretization of the
Faraday equation with essential boundary conditions.

5.1. Exact sequences of conforming finite element spaces. To build con-
forming approximations of the above complexes, we assume that Ω is partitioned
by a regular family of conforming simplicial meshes (Th)h>0. By Fh and Eh we
denote the sets of faces and edges of the mesh, and we assume that the latter are
oriented by some arbitrary choice of unit vectors nf and τ e, respectively normal
to the faces f ∈ Fh and tangent to the edges e ∈ Eh. Following [1, Section 3.5] we
can then choose between several sequences of standard finite element spaces. These
sequences are based on the piecewise polynomial spaces PrΛ

l(Th) and P−
r Λl(Th)
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that consist of differential l-forms of maximal degree r. For the sake of complete-
ness we recall the correspondences given in [1, Table 5.2], and specify our notations.
For conciseness we write X(Th) = {u ∈ L2(Ω) : u|T ∈ X(T ), T ∈ Th} to denote
functions spaces with given piecewise structure X, as in (5.10) below. Thus,

• PrΛ
0(Th) corresponds to the continuous “Lagrange” elements of degree r,

(5.5) Lr(Ω, Th) := Pr(Th) ∩ C(Ω),

where Pr(T ) contains the polynomials of maximal degree ≤ r on T ∈ Th
• PrΛ

1(Th) corresponds to the second-kind Nédélec elements of degree r,

(5.6) N II
r (Ω, Th) := Pr(Th)

3 ∩H(curl; Ω)

• P−
r Λ1(Th) corresponds to the first-kind Nédélec elements of order r − 1

(5.7)

{

N I
r−1(Ω, Th) := Nr−1(Th) ∩H(curl; Ω)

with Nr−1(T ) := Pr−1(T )
3 ⊕ (x ∧ Phom

r−1 (T )
3)

and where Phom
r−1 is the space of homogeneous polynomials of degree r − 1

• PrΛ
2(Th) corresponds to the Brezzi-Douglas-Marini elements of degree r

(also called second-kind H(div ) Nédélec space),

(5.8) BDMr(Ω, Th) := Pr(Th)
3 ∩H(div ; Ω)

• P−
r Λ2(Th) corresponds to the Raviart-Thomas elements of order r−1 (also

called first-kind H(div ) Nédélec spaces),

(5.9)

{

RT r−1(Ω, Th) := RT r−1(Th) ∩H(div ; Ω)

with RT r−1(T ) := Pr−1(T )
3 ⊕ (xPhom

r−1 (T ))

• PrΛ
3(Th) corresponds to the discontinuous elements of degree r,

(5.10) Pr(Th) := {v ∈ L2(Ω) : v|T ∈ Pr(T ), T ∈ Th}.

Using the above spaces we can then invoke [1, Theorem 5.6] which says that
for each of the following sequences of discrete spaces V l

h there exists a co-chain
projection πl

h : V l → V l
h that is uniformly bounded in the L2-norm and for which

Fig. 1 is a commuting diagram in the sense of (2.8):
(5.11)










































































Lp(Ω, Th) N II
p−1(Ω, Th) BDMp−2(Ω, Th) Pp−3(Th)

grad curl div

Lp(Ω, Th) N II
p−1(Ω, Th) RT p−2(Ω, Th) Pp−2(Th)

grad curl div

Lp(Ω, Th) N I
p−1(Ω, Th) BDMp−1(Ω, Th) Pp−2(Th)

grad curl div

Lp(Ω, Th) N I
p−1(Ω, Th) RT p−1(Ω, Th) Pp−1(Th).

grad curl div

Note that if one defines the primal spaces V l with essential boundary conditions as
in (5.2), then the boundary conditions need to be incorporated in the definition of
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the discrete finite element spaces as well, by forcing the classical degrees of freedom
associated to boundary faces to vanish.

5.2. Compatible conforming finite elements. To build conforming Galerkin
methods that are compatible in the sense of Definition 3.1 we then need to choose
the projection operators π̄1

h and π̄2
h involved in the commuting diagram (3.7). For

clarity we denote them by

π̄curl

h : V̄ 1 → V 1
h and π̄div

h : V̄ 2 → V 2
h .

Here classical finite element interpolation operators can be used. For instance if we
take for

(5.12)
V 0
h V 1

h V 2
h V 3

h

d0 = grad d1 = curl d2 = div

the last the sequence in (5.11) (with essential or natural boundary conditions), we
can define
(5.13)
π̄curl

h : Hm+1(Ω)3 → N I
p−1(Ω, Th) and π̄div

h : Hm(Ω)3 → RT p−1(Ω, Th)

with m ≥ 1, as the standard Nédélec and Raviart-Thomas interpolations. For a
precise definition see, e.g., (2.5.49)-(2.5.32) and (2.5.26)-(2.5.10) in Ref. [6], where
they are respectively denoted Σh and Πh. Error estimates are available as well: for
the operators just cited we have
(5.14)
‖(I − π̄curl

h )u‖ ≤ chm|u|m and ‖(I − π̄div
h )u‖ ≤ chm|u|m, 1 ≤ m ≤ p

where |·|m denotes the usual Hm(Ω) semi-norm, see, e.g., Propositions 2.5.7 and
2.5.4 in [6]. Of course the same estimates hold for the orthogonal projection oper-
ators, namely
(5.15)
‖(I − PV 1

h

)u‖ ≤ chm|u|m and ‖(I − PV 2
h

)u‖ ≤ chm|u|m, 1 ≤ m ≤ p.

In particular, the projection operators corresponding to (3.8) and (3.9), i.e.,

Π̌h =

(

PV 1
h

0

0 π̄div
h

)

: V̌ → V 1
h × V 2

h with V̌ := L2(Ω)3 ×Hm(Ω)3

and

Π̂h =

(

π̄curl

h 0
0 PV 2

h

)

: V̂ → V 1
h × V 2

h with V̂ := Hm+1(Ω)3 ×H(curl; Ω)

satisfy the same a priori estimates,
(5.16)

‖(I − Π̃h)U‖ ≤ chm|U |m and ‖(I − Π̂h)U‖ ≤ chm|U |m, 1 ≤ m ≤ p.

With the above material, Theorem 3.4 provides us with two compatible conform-
ing schemes depending whether one takes (5.1) or (5.2) for the primal complex.
The first choice corresponds to a strong discretization of the Ampere equation:
the finite element spaces (5.12) are defined as one of the sequences from (5.11)
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using natural boundary conditions, and the scheme computes the unique solution
(Bh,Eh) ∈ C1([0, T ];V 1

h × V 2
h ) to

(5.17)






〈∂tBh,ϕ
µ〉+ 〈Eh, curlϕ

µ〉 = 0 ϕµ ∈ V 1
h ⊂ H(curl; Ω)

〈∂tEh,ϕ
ε〉 − 〈curlBh,ϕ

ε〉 = −〈π̄div
h J ,ϕε〉 ϕε ∈ V 2

h ⊂ H(div ; Ω).

Note that here the co-chain embedding curlV 1
h ⊂ V 2

h allows to rewrite the second
equation as

∂tEh − curlBh = −π̄div
h J (in V 2

h ).

Moreover if one wants the scheme to be compatible with the fundamental homo-
geneous Gauss law, one may set (Bh,Eh)(0) := (PV 1

h

B0, π̄div
h E0) as specified in

Theorem 3.2.
The second choice corresponds to a strong discretization of the Faraday equation:

again the sequence of discrete spaces (5.12) is defined as one of those from (5.11),
now with essential boundary conditions, and the scheme computes the unique so-
lution (Eh,Bh) ∈ C1([0, T ];V 1

h × V 2
h ) to

(5.18)







〈∂tEh,ϕ
ε〉 − 〈Bh, curlϕ

ε〉 = −〈J ,ϕε〉 ϕε ∈ V 1
h ⊂ H0(curl; Ω)

〈∂tBh,ϕ
µ〉+ 〈curlEh,ϕ

µ〉 = 0 ϕµ ∈ V 2
h ⊂ H0(div ; Ω).

Here the co-chain embedding curlV 1
h ⊂ V 2

h allows to rewrite the second equation
as

∂tBh + curlEh = 0 (in V 2
h ).

And again if one wants the scheme to be compatible with the fundamental ho-
mogeneous Gauss law, one can follow the statement from Theorem 3.2 and set
(Eh,Bh)(0) := (PV 1

h

E0, π̄div
h B0).

Finally, for any of the above methods the error bound (3.5) and the stability
result apply. For instance in the case where the finite element spaces are defined as
the last sequence from (5.11), using the a priori estimate (5.16) one obtains

‖(Eh−E,Bh−B)(t)‖ ≤ chm

(

|(E0,B0)|m+ |(E,B)(t)|m+

∫ t

0

|∂t(E,B)(s)|m ds

)

for t ≥ 0, 1 ≤ m ≤ p and a constant independent of h, t.

5.3. Compatible conforming/non-conforming Galerkin (Conga) schemes.

We may now construct Conga schemes based on non-conforming spaces Ṽ 1
h 6⊂ V 1

that are Gauss-compatible in the sense of Definition 3.1. Following Section 3.3, the
main ingredients are:

• an exact sequence of conforming spaces (5.12) satisfying V 1
h ⊂ Ṽ 1

h

• a projection operator on the conforming space V 1
h ,

P
1
h : Ṽ 1

h → V 1
h ,

that preserves a sufficiently large space of moments M1
h ⊂ Ṽ 1

h , see (3.12).

Since every conforming space listed in (5.11) has the form V 1
h = X1(Th) ∩ V 1,

discontinuous spaces containing their conforming counterparts can be taken as
Ṽ 1
h := X1(Th), but standard spaces of piecewise polynomials with sufficiently large

degrees could be used as well. We shall then construct the projection operators
by averaging locally the standard finite element projections, as follows. To each of
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the above spaces X1(T ) are classically associated d1 (i.e., curl)-conforming degrees
of freedom, either of “volume” type which involve integrals over single elements
T ∈ Th, or “interface” type which may involve integrals over faces and edges.
Then, for some v ∈ Ṽ 1

h we may define the projection P
k
hv by assigning the values of

its degrees of freedom: either to those of v if they are of volume type, or to those of
an average trace of v if they are of interface type. The resulting operator is simple
to implement in a finite element code, and it is local.

To build a projection on the first-kind Nédélec space V 1
h = N I

p−1(Ω, Th) for

instance, we may use the fact that the local element X1(T ) = Np−1(T ) is equipped
with degrees of freedom of volume, face and edge type, see [30] or [19, Sec. III-5.3],

(5.19)











Mvol(v) := {
∫

T
v · π : π ∈ Pp−3(T )

3, T ∈ Th}

Mface(v) := {
∫

f
(v ∧ nf ) · π : π ∈ Pp−2(f)

2, f ∈ Fh}

Medge(v) := {
∫

e
(v · τ e)π : π ∈ Pp−1(e), e ∈ Eh}.

These linear forms are unisolvent in the sense that when restricted to some element
T they characterize the functions ofX1(T ), and they are V 1-conforming in the sense
that an element of X1(Th) is in V 1 = H(curl; Ω) if an only if its one-sided traces
over any mesh interface define the same degrees of freedom. Thus, given a smooth
v the relations Mvol(vh−v) = {0}, Mface(vh−v) = {0} and Medge(vh−v) = {0}
define a unique interpolate vh ∈ V 1

h , and as previously said, for a piecewise smooth

v we can average the multivalued traces. Namely, we define P
1
h : Ṽ 1

h → V 1
h by

(5.20)
Mvol(P

1
hv − v) = {0}, Mface(P

1
hv − {v}f ) = {0}, Medge(P

1
hv − {v}e) = {0}

with {v}f := 1
2 (v|T− + v|T+)|f and similarly for {v}e on the edges.

Proposition 5.1. The projection (5.20) is uniformly bounded with respect to h,

(5.21) ‖Pk
hv‖ ≤ c‖v‖, v ∈ Ṽ 1

h ,

and it satisfies the moment preserving property (3.12) with

(5.22) M
1
h = Pp−3(Th)

3.

In particular its adjoint (P1
h)

∗ : Ṽ 1
h → Ṽ 1

h satisfies

(5.23) ‖(P1
h)

∗PṼ 1
h

v‖ ≤ chm|v|m, 0 ≤ m ≤ p− 2.

Proof. Relation (5.22) readily follows from the definition (5.19) of the volume dofs.
As for Estimate (5.21), it is easily obtained with classical arguments. Denoting

FT : x 7→ xT +BTx

the affine transformation that maps some fixed reference element T̂ onto T , we let

(5.24) ΦT : v 7→ Bt
T (v ◦ FT )

so that [19, Lemma 5.5] reads ΦT (Np−1(T )) = Np−1(T̂ ). We next define a localized
version of the projection P

1
h, as follows. We let Th(T ) := {T ′ ∈ Th : T ′ ∩ T 6= ∅} be

the macro-element determined by T and define r̄T : C0(Th(T )) → Np−1(T ) by the
following relations which, among the degrees of freedom from (5.19) only involve
those that are defined on the element T and its boundary,

MT, vol(r̄Tv− v) = {0}, MT, face(r̄Tv−{v}) = {0}, MT, edge(r̄Tv−{v}) = {0}.
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Invoking next [19, Lemma 5.6] we verify that ΦT (r̄Tv) = r̄T̂ (ΦTv). A straightfor-
ward computation using the shape regularity of Th and the expression (5.19) of the
degrees of freedom gives then
(5.25)
‖r̄Tv‖L2(T ) ∼ ‖ΦT (r̄Tv)‖L2(T̂ ) = ‖r̄T̂ (ΦTv)‖L2(T̂ ) . max

T ′∈Th(T )
‖ΦTv‖L∞(F−1

T
(T ′))

with a constant depending on p. Using the equivalence of norms over the finite
dimensional space Pp(F

−1
T (T ′)), T ′ ∈ Th(T ), and the same scaling argument as in

(5.25) we compute next

‖ΦTv‖L∞(F−1
T

(T ′)) ∼ ‖ΦTv‖L2(F−1
T

(T ′)) ∼ ‖v‖L2(T ′), v ∈ Ṽ 1
h .

Estimate (5.21) follows by summing over T ∈ Th and by using the fact that
‖PṼ 1

h

‖L(L2(Ω)3) ≤ 1. Finally, the error estimate (5.23) follows from the fact that

the operator

(P1
h)

∗PṼ 1
h

: L2(Ω)3 → Ṽ 1
h

preserves the polynomials of degree less than p − 2 and that it is uniformly L2-
bounded with respect to h, as the adjoint of PṼ 1

h

P
1
h. �

In particular, if π̄div
h is as in (5.13) then the projection corresponding to (3.15),

Π̌h =

(

(P1
h)

∗PṼ 1
h

0

0 π̄div
h

)

: V̌ → Ṽ 1
h × V 2

h with V̌ := L2(Ω)3 ×Hm(Ω)3,

satisfies the a priori estimate

(5.26) ‖(I − Π̌h)U‖ ≤ chm|U |m, 1 ≤ m ≤ p− 2.

Applying Theorem 3.6 we then obtain two compatible non-conforming Conga
schemes, depending whether one takes (5.1) or (5.2) for the primal complex. As
in the conforming case, the first choice corresponds to a strong discretization of
the Ampere equation: again the conforming finite element spaces (5.12) are defined
as one of the sequences from (5.11), using natural boundary conditions, and the

non-conforming space Ṽ 1
h must contain its conforming counterpart V 1

h . The scheme

computes then the unique solution (B̃h, Ẽh) ∈ C1([0, T ]; Ṽ 1
h × V 2

h ) to
(5.27)






〈∂tB̃h, ϕ̃
µ〉+ 〈Ẽh, curlP

1
hϕ̃

µ〉 = 0 ϕ̃µ ∈ Ṽ 1
h 6⊂ H(curl; Ω)

〈∂tẼh,ϕ
ε〉 − 〈curlP1

hB̃h,ϕ
ε〉 = −〈π̄div

h J ,ϕε〉 ϕε ∈ V 2
h ⊂ H(div ; Ω).

As in the conforming case, here the co-chain embedding curlV 1
h ⊂ V 2

h allows to
rewrite the second equation as

∂tẼh − curlP1
hB̃h = −π̄div

h J (in V 2
h ).

Moreover if one wants the scheme to be compatible with the fundamental homoge-
neous Gauss law, one may set (B̃h, Ẽh)(0) := ((P1

h)
∗PṼ 1

h

B0, π̄div
h E0) as specified

in Theorem 3.2.
The second choice corresponds to a strong discretization of the Faraday equation:

again the sequence of conforming discrete spaces (5.12) is defined as one of those
from (5.11), now with essential boundary conditions, and the non-conforming space
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Ṽ 1
h must contain its conforming counterpart V 1

h . The scheme computes the unique

solution (Ẽh, B̃h) ∈ C1([0, T ]; Ṽ 1
h × V 2

h ) to
(5.28)






〈∂tẼh, ϕ̃
ε〉 − 〈B̃h, curlP

1
hϕ̃

ε〉 = −〈J ,P1
hϕ̃

ε〉 ϕ̃ε ∈ V 1
h 6⊂ H0(curl; Ω)

〈∂tB̃h,ϕ
µ〉+ 〈curlP1

hẼh,ϕ
µ〉 = 0 ϕµ ∈ V 2

h ⊂ H0(div ; Ω)

where the form of the discrete source term follows from the discussion at the end
of Section 3.3. Here the co-chain embedding curlV 1

h ⊂ V 2
h allows to rewrite the

second equation as

∂tB̃h + curlP1
hẼh = 0 (in V 2

h ).

And again if one wants the scheme to be compatible with the fundamental ho-
mogeneous Gauss law, one can follow the statement from Theorem 3.2 and set
(Ẽh, B̃h)(0) := ((P1

h)
∗PV 1

h

E0, π̄div
h B0).

Remark 5.2 (Coupling with particle methods). It is interesting to note that the
above scheme is particularly well suited for Maxwell solvers coupled with particle
schemes. Indeed, since P

1
hϕ̃

ε is an H(curl; Ω) function, Lemma 6 from Ref. [14]
guarantees that the approximate source term 〈J ,P1

hϕ̃
ε〉 involved in (5.28) is well-

defined when the current density J is defined from point particles, namely moving
Dirac masses. And to compute this source term we can rely on Algorithm 9 from
the same reference. On the contrary, a source term of the form 〈J , ϕ̃ε〉 would be
ill-defined because ϕ̃ε is fully discontinuous at the mesh interfaces.

Finally, for any of the above methods the error bound (3.5) and the stability
result apply. For instance in the case where the conforming finite element spaces
are defined as the last sequence from (5.11) and the conforming projection operator
P
1
h is given by (5.20), using the a priori estimate (5.16) and (5.26) one obtains

‖(Ẽh−E, B̃h−B)(t)‖ ≤ chm

(

|(E0,B0)|m+ |(E,B)(t)|m+

∫ t

0

|∂t(E,B)(s)|m ds

)

for t ≥ 0, 1 ≤ m ≤ p− 2 and a constant independent of h, t.

5.4. Compatible DG schemes. When built on conforming triangulations Th of
Ω, DG approximations to the time-dependent Maxwell equation (5.3) typically
involve spaces of piecewise polynomial functions with no continuity requirements
across inter-element faces, such as

(5.29) Ṽh := Ppdg
(Th) with pdg ∈ N.

The semi-discrete centered DG scheme reads then (see, e.g., [18, Eq. (22)]): find

(Ẽh, B̃h) ∈ C1([0, T ]; Ṽh × Ṽh) the unique solution to
(5.30)






〈∂tẼh,ϕ
ε〉 − 〈B̃h, curlh ϕ

ε〉 − 〈{B̃h}, [ϕ
ε]〉Fh

= −〈Jh,ϕ
ε〉 ϕε ∈ Ṽh

〈∂tB̃h,ϕ
µ〉+ 〈Ẽh, curlh ϕ

µ〉+ 〈{Ẽh}, [ϕ
µ]〉F int

h

= 0 ϕµ ∈ Ṽh

with given initial data and approximated source Jh ∈ Ṽh. Here curlh is the piece-
wise operator given by (curlh u)|T := curl(u|T ) for all T ∈ Th, and

{u}f :=
1

2
(u|T−+u|T+)|f and [u]f := (u|T−∧n−+u|T+∧n+)|f , f ∈ F int

h ,
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denote the average and tangential jump on an internal face f shared by two elements
T± (for which n± are the outward unit vectors). On a boundary face they are
defined as

{u}f := u and [u]f := u ∧ n, f ∈ Fh \ F int
h .

To provide a compatible DG scheme we need to recast (5.30) as an evolution

equation of the form (3.1) and identify proper projection operators Π̌h, Π̂h following

the lines of Section 3.4. Thus, we let d̃h : Ṽh → Ṽh be the DG approximation to
the operator curl : H(curl; Ω) → L2(Ω)3,

〈d̃hu,v〉 := 〈u, curlh v〉+ 〈{u}, [v]〉Fh
, u,v ∈ Ṽh,

and similarly let d̃h,0 : Ṽh → Ṽh be the approximation to the adjoint operator
curl : H0(curl; Ω) → L2(Ω)3,

〈d̃h,0u,v〉 := 〈u, curlh v〉+ 〈{u}, [v]〉F int
h

, u,v ∈ Ṽh,

so that the DG evolution operator involved in (5.30) reads

(5.31) Ãh :=

(

0 d̃h
−d̃h,0 0

)

: Ṽh → Ṽh with Ṽh := Ṽh × Ṽh.

We may verify that Ãh is indeed skew-symmetric: using local Green formulas

〈curl(u|T ),v〉T = 〈u, curl(v|T )〉T + 〈u|T ,v|T ∧ nT 〉∂T , T ∈ Th

and the identity

〈[u], {v}〉f + 〈u|T− ,v|T− ∧n−〉f + 〈u|T+ ,v|T+ ∧n+〉f = 〈{u}, [v]〉f , f ∈ F int
h ,

we find that 〈d̃hu,v〉 = 〈u, d̃h,0v〉 holds for all u,v ∈ Ṽh, hence

d̃∗h = d̃h,0.

In Section 3.4 the construction of a compatible DG scheme used an auxiliary curl-
conforming space V̆ 1

h for which there exists a projection P̆h : Ṽh → V̆ 1
h such that a

relation like (3.19) holds for d̃h, and similarly for d̃∗h. Note that unlike in the Conga

case, here the auxiliary conforming space does not need to be a subset of Ṽh. The
following result specifies this property for the DG space (5.29).

Lemma 5.3. Let

P̆h : Ṽh → V̆ 1
h := N I

pdg+1(Ω; Th) ⊂ H(curl; Ω)

be the averaged finite element interpolation operator defined as in (5.20), using the
degrees of freedom from (5.19) with p = pdg + 2. Similarly, we let

P̆h,0 : Ṽh → V̆ 1
h,0 := N I

pdg+1(Ω; Th) ∩H0(curl; Ω)

be the projection operator obtained by forcing the boundary degrees of freedom to
vanish in the Nédélec finite elements. We have

(5.32) d̃h = PṼh
curl P̆h and d̃h,0 = PṼh

curl P̆h,0.
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Proof. For u,v ∈ Ṽh, applying local Green formulas we compute

〈PṼh
curl P̆hu,v〉 = 〈curl P̆hu,v〉 =

∑

T∈Th

〈P̆hu, curl(v|T )〉T + 〈nT ∧ P̆hu,v|T 〉∂T

=
∑

T∈Th

〈u, curl(v|T )〉T + 〈nT ∧ {u},v|T 〉∂T

= 〈u, curlh v〉+ 〈{u}, [v]〉Fh
= 〈d̃hu,v〉

where we have used the definition of P̆h in the third equality, in particular the fact
that the polynomial pieces curl(v|T ) and v|f are of respective degrees pdg − 1 and
pdg, thus matching the degrees of freedom (5.19) with p = pdg + 2. The identity

d̃h = PṼh
curl P̆h easily follows, and the same computation gives the homogeneous

relation d̃h,0 = PṼh
curl P̆h,0. Note that here the orthogonal projection PṼh

is

necessary, since curl does not map V̆ 1
h into Ṽh. �

To conclude the construction described in Section 3.4 we now let (for m ≥ 1)

π̆curl

h : Hm+1(Ω)3 → N II
pdg

(Ω, Th) and π̆div
h : Hm(Ω)3 → BDMpdg−1(Ω, Th)

be the interpolation operators corresponding to the second-kind Nédélec elements
defined in [31, Sec. 3.1 and 2.1]. According to Propositions 1 to 3 from [31],
these operators satisfy the commuting diagram property π̆div

h curl = curl π̆curl

h

on Hm+1(Ω)3, as well as a priori error estimates
(5.33)
‖(I − π̆curl

h )u‖ ≤ chm|u|m and ‖(I − π̆div
h )u‖ ≤ chm|u|m, 1 ≤ m ≤ pdg.

Moreover, writing V̆ 1 := Hm+1(Ω)3 and V̆ 1
0 := V̄ 1 ∩H0(curl; Ω) we have

{

π̆curl

h V̆ 1 ⊂ Ppdg
(Th) ∩H(curl; Ω) ⊂ V̆ 1

h ∩ Ṽh

π̆curl

h V̆ 1
0 ⊂ Ppdg

(Th) ∩H0(curl; Ω) ⊂ V̆ 1
h,0 ∩ Ṽh

and we also verify that π̆div
h maps into Ṽh indeed. In particular, using (5.32) we

can compute as in (3.21),

(5.34) d̃hπ̆
curl

h = PṼh
curl P̆hπ̆

curl

h = PṼh
curl π̆curl

h = PṼh
π̆div
h curl = π̆div

h curl

on V̆ 1, and similarly for the homogeneous operators,
(5.35)

d̃h,0π̆
curl

h = PṼh
curl P̆h,0π̆

curl

h = PṼh
curl π̆curl

h = PṼh
π̆div
h curl = π̆div

h curl

on V̆ 1
0 . This leads to the following compatibility result.

Theorem 5.4 (Compatible DG methods). In the case where Ãh is the centered
DG evolution operator (5.31), the scheme (3.1) complemented with the projection

(5.36) Π̌h =

(

π̆div
h 0
0 π̆div

h

)

: V̌ → Ṽh with V̌ := Hm(Ω)3 ×Hm(Ω)3

satisfies the compatibility relation (3.3) with

(5.37) Π̂h =

(

π̆curl

h 0
0 π̆curl

h

)

: V̂ → Ṽh with V̂ := V̆ 1
0 × V̆ 1.

Proof. Given (5.31) and (5.36)-(5.37), relation (3.3) reads (5.34)-(5.35). �
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In more classical terms, what the above result states is that the DG scheme






〈∂tẼh,ϕ
ε〉 − 〈B̃h, curlh ϕ

ε〉 − 〈{B̃h}, [ϕ
ε]〉Fh

= −〈π̄div J ,ϕε〉 ϕε ∈ Ṽh

〈∂tB̃h,ϕ
µ〉+ 〈Ẽh, curlh ϕ

µ〉+ 〈{Ẽh}, [ϕ
µ]〉F int

h

= 0 ϕµ ∈ Ṽh

is compatible in the sense of Definition 3.1. In particular, the L2 error bound (3.5)
applies and using the a priori estimate (5.33) we obtain
(5.38)

‖(Ẽh−E, B̃h−B)(t)‖ ≤ chm

(

|(E0,B0)|m+ |(E,B)(t)|m+

∫ t

0

|∂t(E,B)(s)|m ds

)

for t ≥ 0, 1 ≤ m ≤ pdg and a constant independent of h, t. Here we observe that
the convergence order is the same than [18, Th. 3.5], but the time dependence is
improved. Indeed in (5.38) the upper bound is a constant for steady state solutions.

6. Conclusion

In this work we have formulated an abstract compatibility property for energy-
preserving approximations to the time-dependent Maxwell equations with sources.
This property takes the form of a two-component commuting diagram and derives
from a fundamental interpretation of the homogeneous Gauss law that is also related
to the study of spurious modes in the numerical approximation to the Maxwell
eigenvalue problem.

We have shown that semi-discrete schemes satisfying this compatibility property
are asymptotically stable with respect to steady state solutions in both L2 and
energy norm, which solves the problem of the large deviations developed by certain
classes of numerical schemes on long simulation times.

In addition, we have introduced a new Galerkin method called conforming/non-
conforming Galerkin (Conga), defined as a relaxation of the standard conforming
approximation. Like DG schemes this method can be implemented using only local
discrete operators, and it preserves some of the structural benefits of conforming
approximations such as the spectral correctness of its discrete evolution operator,
and the ability to preserve one Gauss law in a strong sense.

Finally, we have described several approximation operators for the sources that
make Galerkin methods Gauss-compatible in the above sense, be it for the stan-
dard conforming Galerkin method, for centered DG schemes or for this new Conga
method.
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