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ABSTRACT

Decelle et al. [1] conjectured the existence of a sharp thresh-
old on model parameters for community detection in sparse
random graphs drawn from the stochastic block model. Mos-
sel, Neeman and Sly [2] established the negative part of the
conjecture, proving impossibility of non-trivial reconstruc-
tion below the threshold. In this work we solve the positive
part of the conjecture. To that end we introduce a mod-
ified adjacency matrix B which counts self-avoiding paths
of a given length ℓ between pairs of nodes. We then prove
that for logarithmic length ℓ, the leading eigenvectors of this
modified matrix provide a non-trivial reconstruction of the
underlying structure, thereby settling the conjecture. A key
step in the proof consists in establishing a weak Ramanujan
property of the constructed matrix B. Namely, the spectrum
of B consists in two leading eigenvalues ρ(B), λ2 and n− 2

eigenvalues of a lower order O(nǫ
√

ρ(B)) for all ǫ > 0, ρ(B)
denoting B’s spectral radius.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords

spectral clustering, community detection, phase transition,
spectral separation

1. INTRODUCTION

1.1 Background
Community detection, like clustering, aims to identify groups

of similar items from a global population. It is a generic
primitive useful e.g. for performing recommendation of con-
tacts to users of online social networks. The stochastic block
model has been introduced by Holland et al. [3] to represent
interactions between individuals. It consists of a random
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graph on n nodes, each node i ∈ N = {1, . . . , n} being as-
signed a type σi from some fixed set Σ. Conditionally on
node types, edge (i, j) is present with probability p(σi, σj)
independently of other edges, for some matrix of probabili-
ties {p(σ, σ′)}σ,σ′∈Σ. It constitutes an adequate testbed for
community detection. Indeed the performance of candidate
detection schemes, captured by the fraction of nodes i for
which estimated types σ̂i and true types σi coincide, can be
compared and analysed on instances of the stochastic block
model.

Decelle et al. [1] conjectured the existence of a phase tran-
sition in the sparse regime where the graph’s average degree
is O(1). Specifically, they predicted that for parameters be-
low a certain threshold, no estimates σ̂i of node types ex-
isted that would be positively correlated with true types
σi, while above the threshold, belief propagation algorithms
could determine estimates σ̂i achieving such a positive cor-
relation. Their conjecture is formulated on a simple sym-
metric instance of the stochastic block model featuring two
node types {+1,−1}. The phenomenon appears more gen-
eral though: Heimlicher et al. [4] extended the conjecture to
the more general setup of labeled stochastic block models.

The study of this phenomenon is important for two rea-
sons. First, by localizing precisely the transition point below
which no useful signal is present in the observations, one thus
characterizes how much subsampling of the original graph
can be performed before all information is lost. Second,
algorithms leading to estimates σ̂i that achieve positive cor-
relation all the way down to the transition are expected to
constitute more robust approaches than alternatives which
would fail before the transition. It is therefore important to
identify such algorithms.

The negative part of the conjecture has been proven by
Mossel, Neeman and Sly [2]. Essentially they established
that existence of estimates σ̂i positively correlated with true
types σi would imply feasibility of a reconstruction problem
on a random tree model describing the local statistics of
the original random graph. However by results of Evans et
al. [5] such reconstruction is infeasible below the conjectured
transition point.

Until now, positive results did not apply down to the tran-
sition point. The best results to date (see [2]) relied on Coja-
Oghlan [6], showing that spectral clustering applied to the
adjacency matrix suitably trimmed by removal of high de-
gree nodes yields positively correlated estimates. However
this does not apply down to the conjectured threshold.

This limitation stems from the following fact. Spectral
methods perform well on matrices enjoying a spectral sepa-



ration property, namely the spectrum should comprise a few
large eigenvalues whose associated eigenvectors reflect the
sought structure and all other eigenvalues should be negli-
gible. The prototype of such separation is the Ramanujan
property, according to which d-regular graphs have the sec-
ond eigenvalue λ no larger than 2

√
d− 1 in absolute value.

Friedman [7] established that random d-regular graphs al-
most satisfy this, in that for them |λ| ≤ 2

√
d− 1 + o(1).

Erdős-Rényi graphs with average degree d are such that
|λ| ≤ O(

√
d), provided d = Ω(log n) (see Feige and Ofek [8]),

but such Ramanujan-like separation is lost for smaller d.
This lack of separation inherently limits the power of classi-
cal spectral methods in the sparse case.

1.2 Main result
We focus on the stochastic block model in Decelle et al. [1].

The graph is denoted G, node types (or spins) σi are uni-
formly and i.i.d. drawn from {−1,+1}. An edge is present
between any two nodes i,j with probability a/n if σi = σj ,
and b/n if σi = −σj , constants a and b being the model
parameters. Letting τ = (a− b)2/[2(a+ b)], it is known that
for τ < 1 positively correlated detection is impossible. We
set out to prove that it is feasible for τ > 1.

Introduce the notations α := (a + b)/2, β := (a − b)/2.
The detectability condition τ > 1 can be restated as

β2 > α. (1)

As mentioned, Coja-Oghlan regularizes the adjacency ma-
trix of the random graph by removing high degree nodes
before applying spectral clustering. In contrast, we regu-
larize the initial data through path expansion. Namely, we

consider matrix B(ℓ), where B
(ℓ)
ij counts the number of self-

avoiding paths of graph edges of length ℓ connecting i to
j.

Our main result is then the following

Theorem 1.1. Assume Condition (1) holds. Set the path
length parameter ℓ to ℓ ∼ c log(n) for a constant c such that
c log(α) < 1/4. Let x be a normed eigenvector corresponding

to the second largest eigenvalue of B(ℓ). There exists t such
that, defining the spin estimates σ̂i as

σ̂i =

{

+1 if xi
√
n ≥ t,

−1 otherwise,
(2)

the empirical overlap between the true and estimated spins
defined as

ov(σ, σ̂) :=
1

n

∑

i∈N

σiσ̂i (3)

converges in probability to the set {−r,+r} for some strictly
positive constant r > 0 as n → ∞.

It proves the positive part of Decelle et al.’s conjecture and
identifies a specific spectral method based on the path-expanded
matrix B(ℓ). An auxiliary result consists in showing that
matrix B(ℓ) enjoys a spectral separation property that is a
weak version of the Ramanujan property. Namely, denoting
by ρ(B(ℓ)) the spectral radius of B(ℓ), we show that the third

largest eigenvalue λ of matrix B(ℓ) satisfies for all positive
constant ǫ:

|λ| ≤ nǫ
√

ρ(B(ℓ)).

We note that computation of B(ℓ) and hence of the σ̂i can
be done in polynomial time: as shown in Lemma 4.2 the ℓ-
neighborhood of any i contains at most one cycle so that each

B
(ℓ)
ij is readily evaluated by suitable breadth-first search.

1.3 Related work
Krzakala et al. [9] conjectured that a spectral method

based on the“non-backtracking”edge-to-edge matrix achieves
positive overlap when above the threshold. Nadakuditi and
Newman [10] conjectured that the same holds for modular-
ity maximization. Mossel, Neeman and Sly [11] showed that
a modification of belief propagation achieves maximal over-
lap when initialized with any reconstruction having positive
overlap. Shortly after completion of the present paper, Mos-
sel, Neeman and Sly [12] have independently proposed an-
other proof of the positive part of the conjecture. They rely
on a reconstruction method markedly distinct from the one
introduced here. In particular it is not a spectral method.

1.4 Paper organization
Section 2 describes the structure of Theorem 1.1’s proof.

Section 3 proves Theorem 2.2, which expresses matrix B(ℓ)

as an expansion in terms of the matrices B(m), m < ℓ, to-
gether with bounds on the spectral norm of the matrix co-
efficients involved. Section 4 contains the so-called “local
analysis” of node neighborhoods. Specifically it gives con-
trols on the vectors B(m)e and B(m)σ, where e is the all-ones
vector and σ is the vector of spins, establishing a quasi-
deterministic growth pattern with respect to m. Section 5
concludes.

2. PROOF STRUCTURE
We characterize the spectral structure of B(ℓ) as follows1:

Theorem 2.1. Assume (1) and ℓ = c log n with c log(α) <
1/4. Then with high probability:

(i) The leading eigenvalue of B(ℓ) is Θ̃(αℓ), with corre-

sponding eigenvector asymptotically parallel to B(ℓ)e.
(ii) Its second eigenvalue is Ω(βℓ), with corresponding

eigenvector asymptotically parallel to B(ℓ)σ.
(iii) There is a random variable X with unit mean and

variance 1/(β2/α− 1) such that for all x that is an atom of
neither X’s nor −X’s distribution, the following convergence
in probability holds for any normed vector y asymptotically
aligned with B(ℓ)σ:

1

n

n
∑

i=1

1σi=±1

{

yi ≥ x
√

nE(X2)

}

→ 1

2
P(±X ≥ x). (4)

(iv) For any ǫ > 0, all other eigenvalues are O
(

nǫ
√
αℓ
)

.

Before we describe the steps used to establish this, let us
verify how it implies Theorem 1.1. Note that since E(X) =
1, writing

E(X) =

∫ ∞

0

(P(X ≥ x)−P(−X ≥ x)) dx,

inequality P(X ≥ x) −P(−X ≥ x) > 0 must hold on a set
of x’s of positive Lebesgue measure. Since the points x at

1We note u = Õ(v) (respectively Ω̃(v)) if u = O(v logk(n))

(respectively Ω(v logk(n)) for some constant k and u = Θ̃(v)

if u is both Õ(v) and Ω̃(v).



which the distribution of either X or −X has an atom is at
most countable, there thus exists an x at which neither dis-
tribution has an atom, and inequality P(X ≥ x)−P(−X ≥
x) > 0 holds. Letting t = x/

√

E(X2) and r = P(X ≥
x) − P(−X ≥ x) we conclude by (ii), (iii) and (4) that the
empirical overlap in (3) must converge to {−r,+r}.

Theorem 2.1 will follow from the combination of two anal-
yses. Let Ā denote the expectation of the graph’s adjacency
matrix conditional on the spin vector σ, that is

Ā =
a

n

[

1

2
(ee′ + σσ′)− I

]

+
b

2n
(ee′ − σσ′). (5)

The first analysis establishes the following

Theorem 2.2. Matrix B(ℓ) verifies the identity

B(ℓ) = ∆(ℓ) +
ℓ
∑

m=1

(∆(ℓ−m)ĀB(m−1))−
ℓ
∑

m=1

Γℓ,m, (6)

for matrices ∆(ℓ), Γℓ,m such that for ℓ = O(log n) and any
fixed ǫ > 0, with high probability

ρ(∆(ℓ)) ≤ nǫαℓ/2, (7)

ρ(Γℓ,m) ≤ nǫ−1α(ℓ+m)/2, m = 1, . . . , ℓ. (8)

A local analysis is then needed to establish properties of the
ℓ-neighborhoods of nodes in graph G. Noting dG the graph
distance, the key quantities in this analysis are

St(i) = |{j : dG(i, j) = t}|,
Dt(i) =

∑

j 1dG(i,j)=tσj .
(9)

They are close (in a sense made precise in Section 4) to the

corresponding quantities (B(t)e)i, (B(t)σ)i, and are easier
to analyze. In particular, they enjoy a quasi-deterministic
growth property:

Theorem 2.3. Assume (1) and ℓ = c log n with c log(α) <
1/4. Then there are constants C, ǫ > 0 such that with prob-
ability 1 − O(n−ǫ) the following holds for all i ∈ N and
t = 1, . . . , ℓ:

St(i) ≤ C(log(n))αt,
|Dt(i)| ≤ C(log(n))βt.

(10)

St(i) = αt−ℓSℓ(i) + C(log(n) +
√

log(n)αt),

Dt(i) = βt−ℓDℓ(i) + C(log(n) +
√

log(n)αt).
(11)

This combined with Theorem 2.2 yields the key intermediate
step:

Theorem 2.4. Assume (1) and ℓ = c log n with c log(α) <

1/4. Then with high probability the matrix B(ℓ) satisfies the
following weak Ramanujan property

sup
|x|=1,x′B(ℓ)e=x′B(ℓ)σ=0

|B(ℓ)x| ≤ nǫαℓ/2. (12)

Another ingredient consists in coupling the neighborhoods
of nodes in graph G with a random tree process, and per-
forming a martingale analysis of this tree process. This is
done in Section 4.2. It establishes (see Theorem 4.2) that the
vector (β−ℓDℓ(i)) is close in some sense to a vector (σiDi)
where the Di are i.i.d., distributed as the limit of a martin-
gale. This limiting martingale distribution is precisely that
of variable X in the statement of Theorem 2.1.

3. MATRIX EXPANSION AND SPECTRAL

RADII BOUNDS
We now establish Theorem 2.2. Denote ξij the indicator

of edge (i, j)’s presence in G. Let Pij be the set all so-called
self-avoiding, or simple paths iℓ0 := {i0, . . . , iℓ} from i to j,
i.e. such that i0 = i, iℓ = j and |{i0, . . . , iℓ}| = ℓ + 1. We
have

B
(ℓ)
ij =

∑

iℓ0∈Pij

ℓ
∏

t=1

ξit−1it . (13)

Use matrix Ā introduced in (5) to define

∆
(ℓ)
ij :=

∑

iℓ0∈Pij

ℓ
∏

t=1

(A− Ā)it−1it (14)

We then have the expansion:

∆
(ℓ)
ij = B

(ℓ)
ij −

ℓ
∑

m=1

∑

iℓ0∈Pij

ℓ−m
∏

t=1

(A− Ā)it−1it × · · ·

×Āiℓ−miℓ−m+1

ℓ
∏

t=ℓ−m+2

Ait−1it .

(15)

Let Qm
ij be the set of paths iℓ0 defined by i0 = i, iℓ = j and

|{i0, . . . , iℓ−m}| = ℓ−m+ 1 & |{iℓ−m+1, . . . , iℓ}| = m.

Paths in Qm
ij are thus concatenations of simple paths iℓ−m

0

and iℓℓ−m+1. Note that Pij ⊂ Qm
ij . Let Rm

ij denote the set

difference Qm
ij \ Pij . It then consists of paths iℓ0 such that

both iℓ−m
0 and iℓℓ−m+1 are simple, and further verify that

the intersection of the corresponding sets is not empty.
Define matrix Γℓ,m as

Γℓ,m
ij :=

∑

iℓ0∈Rm
ij

ℓ−m
∏

t=1

(A−Ā)it−1itĀiℓ−miℓ−m+1

ℓ
∏

t=ℓ−m+2

Ait−1it .

(16)
Add and subtract contributions of paths in Rm

ij to the m-
th term in (15) for m = 1, . . . , ℓ to obtain a similar identity
with summation over paths in Qm

ij instead of Pij , and a term
∑ℓ

m=1 Γ
ℓ,m
ij added to the right-hand side. Noting that the

summation

∑

iℓ0∈Qm
ij

ℓ−m
∏

t=1

(A− Ā)it−1itĀiℓ−miℓ−m+1

ℓ
∏

t=ℓ−m+2

Ait−1it

coincides with the (i, j) entry of matrix ∆(ℓ−m)ĀB(m−1),
this yields expansion (6).

We now show the following

Proposition 3.1. For all integers k, ℓ ≥ 1, it holds that

E
[

ρ(∆(ℓ))2k
]

≤
kℓ+1
∑

v=ℓ+1

kℓ
∑

e=v−1

nv[(v + 1)2(ℓ+ 1)]2k(1+e−v+1)

×
(α

n

)v−1
[

max(a, b)

n

]e−v+1

·
(17)

Inequality (7) readily follows: Indeed for ℓ = O(log(n)) and
fixed ǫ > 0, choose an integer k > 0 such that ǫ > 1/(2k).

By (17), noting ρ := ρ(∆(ℓ)) it holds that

E(ρ2k) ≤ (1 + o(1))nαkℓ[(kℓ+ 2)2(ℓ+ 1)]2k.



Thus

P(ρ ≥ nǫαℓ/2) ≤ E(ρ2k)

n2kǫαkℓ

≤ (1 + o(1))nαkℓ[(kℓ+2)2(ℓ+1)]2k

n2kǫαkℓ

≤ (1− o(1))n1−2kǫ[(kℓ+ 2)2(ℓ+ 1)]2k

= o(1),

since we chose k so that 2kǫ > 1 and the last term is poly-
logarithmic in n. This establishes (7).

Proof. ( of Proposition 3.1) We use the trace method,
adapting combinatorial arguments of Füredi and Komlós [13]
to the present context. Specifically chose k > 0. One has

E(ρ2k) ≤ ETr((∆(ℓ))2k). (18)

Note that Tr((∆(ℓ))2k) is the sum over circuits of length

2k of the products of the entries ∆
(ℓ)
e over the edges e in

the circuit. Moreover, given the definition of ∆(ℓ), these
correspond to products of entries Ae − Āe over edges e of
circuits of length 2kℓ such that consecutive length ℓ-paths
are simple.

We bound the expectation of the corresponding sum as
follows. Let v (respectively, e) be the number of nodes (re-
spectively, edges) traversed by a particular circuit. We rep-
resent the corresponding circuit as follows.

We number nodes by the order in which they are met
by the circuit, starting with node 1. We break each length
ℓ-simple path into consecutive sequences consisting of

• a path using only edges already used in the circuit, and
lying on the tree of new node discoveries

• a path of discoveries of new nodes

• a cycle edge connecting the end of the two previous
steps to a node already spanned. Such a cycle edge
may have already been traversed by the circuit.

Given the tree spanned so far and the current position on
it, the first part of the sequence is characterized by the node
label of its end: indeed, since on this subsequence we require
the path to be simple, there is only one path on the tree
going from the origin to the destination. We represent the
first part by the number of the destination node if this part
is non-empty, by zero otherwise.

The second part of the sequence is simply represented by
its length, which is constrained to lie in {0, . . . , ℓ}. Indeed,
it cannot exceed ℓ, as we consider sequences that lie within
a length ℓ-simple path.

Finally, the third part of the sequence is simply charac-
terized by the number of its end point, and by zero if this
part is not present. We must allow for this case, as when we
break up a length ℓ-simple path into constituting such se-
quences, the last such sequence may not end up by traversal
of such a redundant edge.

We now use this representation to bound the number of
corresponding sequences. An individual sequence is repre-
sented by a triplet (p, q, r) with p ∈ {0, . . . , v}, q ∈ {0, . . . , ℓ},
and r ∈ {0, . . . , v}. Note further that each such sequence
corresponds to either the end of an individual length ℓ-simple
path, or the traversal of a redundant edge. The number of
such edges is e − v + 1, and each edge can be traversed at
most 2k times by the constraint that circuits are formed
from length ℓ simple paths. Thus the number of valid cir-
cuits corresponding to v and e is at most

[(v + 1)2(ℓ+ 1)]2k(1+e−v+1).

For a given number of nodes v and edges e, the number
of ordered sequences of corresponding nodes in {1, . . . , n}
is at most nv. For a given edge present with multiplicity
m ∈ {1, . . . , 2k}, the corresponding expectation is zero if
m = 1, and for m ≥ 2 one has

E((ξij −E(ξij |σ))m|σ) ≤ a(σi, σj)

n
,

where a(σi, σj) equals a if σi = σj and b otherwise. For the
e− v + 1 cyclic edges we use the upper bound max(a, b)/n.
We are left with a tree with v−1 edges, for which upon aver-
aging over σ we get a contribution (α/n)v−1. The number of
nodes v on any configuration whose contribution in expecta-
tion does not vanish must lie between ℓ+1 and kℓ+1: indeed
each node discovery costs one edge, but this edge must be
doubled for the contribution not to vanish. Since there are
in total 2kℓ edges, at most kℓ nodes can be discovered in
addition to the original node of the circuit. The number of
distinct edges is similarly bounded by kℓ in any configura-
tion with non-vanishing expectation. The right-hand side of
(18) is then upper-bounded by the right-hand side of (17).
Inequality (17) follows.

We now establish a bound on the spectral radius of the
matrix Γℓ,m. Specifically, we have

Proposition 3.2. For all k, ℓ ≥ 1 and m ∈ {1, . . . , ℓ} we
have the following

E((ρ(Γℓ,m)2k) ≤
1+k(ℓ+m)
∑

v=m∨(ℓ−m+1)

k(ℓ+m)
∑

e=v−1

(

a ∨ b

n

)2k+e−v+1

×

×v2k[(v + 1)2(ℓ+ 1)]4k(1+e−v+1)nv
(α

n

)v−1

.

(19)

The proof, postponed to the appendix, follows the same lines
as that of Proposition 3.1. It readily implies inequality (8).
Indeed for ℓ = O(log(n)), and any fixed ǫ > 0, choose k > 0
such that ǫ > 1/(2k). By (19) it holds that

E(ρ(Γℓ,m)2k) ≤ (1 + o(1))nαk(ℓ+m) × · · ·
· · · ×

[

(a∨b)(k(ℓ+m)+2)5(ℓ+1)2

n

]2k

.

Thus

P(ρ ≥ nǫ−1α(ℓ+m)/2) ≤ E(ρ(Γℓ,m)2k)

n2k(ǫ−1)αk(ℓ+m)

≤ (1 + o(1))n1−2kǫ
[

(a ∨ b)(k(ℓ+m) + 2)5(ℓ+ 1)2
]2k

,

and this bound goes to zero as a power of n since 2kǫ > 1
and the last factor is polylogarithmic in n. This completes
the proof of Theorem 2.2.

4. LOCAL ANALYSIS: STRUCTURE OF

NODE NEIGHBORHOODS
This section establishes properties of node neighborhoods.

We start with general bounds. We then relate vectors of in-
terest B(ℓ)e and B(ℓ)σ to the neighborhood structures. The
martingale analysis of neighborhood structures follows. For
any k ≥ 0, the number of nodes with spin ± at distance k
(respectively ≤ k) of node i is denoted U±

k (i) (respectively,
U±

≤k(i)). We thus have

St(i) = U+
t (i) + U−

t (i), Dt(i) = U+
t (i)− U−

t (i). (20)



Index i is omitted when considering a fixed node i. In the
remainder of the section we condition on the spins σ of all
nodes. We denote n± as the number of nodes with spin ±.

For fixed i ∈ N it is readily seen that, conditionally on
Fk−1 := σ(U+

t , U−
t , t ≤ k − 1),

U+
k ∼ Bin

(

n+ − U+
≤k−1, 1− (1− a

n
)U

+
k−1(1− b

n
)U

−
k−1

)

,

U−
k ∼ Bin

(

n− − U−
≤k−1, 1− (1− a

n
)U

−
k−1(1− b

n
)U

+
k−1

)

.

(21)
Theorem 2.3 is proven in the Appendix from these charac-
terizations and Chernoff bounds for binomial variables.

The next technical result establishes approximate inde-
pendence of neighborhoods of distinct nodes. It is instru-
mental in Section 4.2 e.g. in establishing weak laws of large
numbers on the fraction of nodes satisfying a given property.

Lemma 4.1. Consider any two fixed nodes i, j with i 6= j.
Let ℓ = c log(n) where constant c is such that c log(α) <
1/2. Then the variation distance between the joint law of
their neighborhood processes L((U±

k (i))k≤ℓ, (U
±
k (j))k≤ℓ) and

the law with the same marginals and independence between
them, denoted L((U±

k (i))k≤ℓ)⊗L((U±
k (j))k≤ℓ), goes to zero

as a negative power of n as n → ∞.

Proof. Take two independent realizations of the pro-
cesses (U±

k (i))k≤ℓ) and (U±
k (j))k≤ℓ). Use them to perform

a joint construction of the two processes as follows. Having
constructed the corresponding sets U±

t (i) ⊂ N , U±
t (j) ⊂ N

for t = 1, . . . , k − 1 and assuming the i-sets and the j-sets
have not yet met, we construct them at step k as follows.
To construct U±

k (i) we select a size U±
k (i) subset uniformly

at random from N± \ U±
≤k−1(i). We do similarly for j.

The construction can proceed based on the independent in-
puts so long as the resulting i-sets and j-sets do not in-
tersect. However on ∩t≤k{St(i) ∨ St(j) ≤ C log(n)αt}, the
expected size of the intersection will be upper-bounded by
O(log2(n)α2k/n) = O(log2(n)n−2ǫ), where c log(α) = 1/2−
ǫ. Theorem 2.3 ensures that the probability of ∩t≤k{St(i)∨
St(j) ≤ C log(n)} is 1−O(n−ǫ) and the result follows.

We now state a lemma on the presence of cycles in the ℓ-
neighborhoods of nodes. It will be instrumental in bounding
the discrepancy between vectors B(ℓ)e (resp. B(ℓ)σ) and
{Sℓ(i)} (resp. {Dℓ(i)}). Its proof, deferred to the Appendix,
relies on the previous coupling Lemma 4.1.

Lemma 4.2. Assume ℓ = c log(n) with c log(α) < 1/2.
Then with high probability the number of nodes i whose ℓ-
neighborhood contains one cycle is O(log4(n)α2ℓ). Assume
further that c log(α) < 1/4. Then with high probability no
node i has more than one cycle in its ℓ-neighborhood.

4.1 From variables St and Dt to matrix B(ℓ)

We first state how to transport the deterministic growth
controls (11) of Theorem 2.3 to vectorsB(m−1)e andB(m−1)σ,
a key step in the proof of Theorem 2.4. One has the following

Lemma 4.3. Let B denote the set of nodes i whose ℓ-
neighborhood contains a cycle. For ℓ = c log n with c logα <
1/4, with high probability, for m ≤ ℓ and i /∈ B:
{

(B(m−1)e)i = αm−1−ℓ(B(ℓ)e)i + Õ(
√
αm−1),

(B(m−1)σ)i = βm−1−ℓ(B(ℓ)σ)i + Õ(
√
αm−1),

(22)

while for i ∈ B:

|(B(m)σ)i| ≤ |(B(m)e)i| ≤ 2
m
∑

t=0

Si(t) = Õ(αm). (23)

Proof is in the Appendix, together with that of the following

Corollary 4.1. For all m ∈ {1, . . . , ℓ} it holds with high
probability that

sup
|x|=1,x′B(ℓ)e=x′B(ℓ)σ=0

|e′B(m−1)x| = Õ
(√

n
√
αm−1

)

, (24)

sup
|x|=1,x′B(ℓ)e=x′B(ℓ)σ=0

|σ′B(m−1)x| = Õ
(√

n
√
αm−1

)

. (25)

We are now ready to prove Theorem 2.4:

Proof. (of Theorem 2.4). Using identity (6), write for
unit norm x:

|B(ℓ)x| ≤ ρ(∆(ℓ))+
ℓ
∑

m=1

ρ(∆(ℓ−m))|ĀB(m−1)x|+
ℓ
∑

m=1

ρ(Γℓ,m).

The terms ρ(∆(ℓ)) and ρ(Γℓ,m) are less than nǫαℓ/2 by (7)
and (8). Expression (5) of Ā, Cauchy-Schwarz inequality
and the fact that |e| = |σ| = √

n yield

|ĀB(m−1)x| ≤ a

n
|B(m−1)x|+O(

|σ′B(m−1)x|+ |e′B(m−1)x|√
n

).

Using bounds (24,25), the right-hand side is no larger than

a

n
|B(m−1)x|+ Õ

(√
αm−1

)

.

By the previous inequalities (10,22,23) and the row sum
bound, we have that

ρ(B(m−1)) = Õ(αm−1).

This thus yields

|ĀB(m−1)x| ≤ Õ
(

αm−1

n
+

√
αm−1

)

= Õ(
√
αm−1).

We thus have

|B(ℓ)x| ≤ nǫαℓ/2 +
∑ℓ

m=1 ρ(∆
(ℓ−m))Õ(

√
αm−1)

≤ nǫαℓ/2 +
∑ℓ

m=1 n
ǫα(ℓ−m)/2Õ(

√
αm−1)

≤ nǫαℓ/2Õ(1).

The result readily follows.

We now state two Lemmas which will allow to establish The-
orem 4.1.

Lemma 4.4. Assume (1) and ℓ = c log n with c log(α) <
1/4. Then with high probability one has

|B(ℓ)e− {Sℓ(i)}i∈N | = o
(

|B(ℓ)e|
)

,

|B(ℓ)σ − {Dℓ(i)}i∈N | = o
(

|B(ℓ)σ|
)

,

< B(ℓ)e,B(ℓ)σ > = o
(

|B(ℓ)e| × |B(ℓ)σ|
)

.

(26)

Lemma 4.5. Assume (1) and ℓ = c log n with c log(α) <
1/4. Then for some fixed γ > 0 with high probability one
has

Ω(αℓ)|B(ℓ)e| ≤ |B(ℓ)B(ℓ)e| ≤ O(log(n)αℓ)|B(ℓ)e|, (27)

Ω(βℓ)|B(ℓ)σ| ≤ |B(ℓ)B(ℓ)σ| ≤ O(n−γαℓ)|B(ℓ)σ|. (28)



Using these, we now establish the following

Theorem 4.1. Assume (1) and ℓ = c log n with c log(α) <
1/4. Then with high probability the two leading eigenvec-

tors of B(ℓ) are asymptotically aligned with vectors {Sℓ(i)},
{Dℓ(i)}, with corresponding eigenvalues of order Θ̃(αℓ) and

Ω(βℓ); all other eigenvalues are O(nǫ
√
αℓ) for any fixed

ǫ > 0.

Proof. Estimates (27–28) and the weak Ramanujan prop-
erty of Theorem 2.4 imply that the leading eigenvector is
aligned with B(ℓ)e and has eigenvalue Θ̃(αℓ). They also im-
ply that the second eigenvector is asymptotically in the span
of {B(ℓ)e,B(ℓ)σ} and with eigenvalue Ω(βℓ). By asymptotic

orthonormality of vectors B(ℓ)e and B(ℓ)σ and their asymp-
totic alignment with {Sℓ(i)}, {Dℓ(i)} respectively, the con-
clusion regarding the first two eigen-elements follows. The
bound on the magnitude of other eigenvalues follows from
Theorem 2.4 and the Courant-Fisher theorem.

4.2 Coupling with Poisson tree growth process
Introduce the stochastic process {V ±

t }t≥0 defined by

V +
0 = 1, V −

0 = 0,
V +
t , V −

t independent conditionally on Gt−1,
L(V ±

t |Gt−1) = Poi((a/2)V ±
t−1 + (b/2)V ∓

t−1)
(29)

where Gt−1 = σ(V ±k , k ≤ t− 1). The following is a version
of Proposition 4.2 in [2]. The reader is addressed to either [2]
or [14] for a proof based on the Stein-Chen method for Pois-
son approximation.

Lemma 4.6. Let i ∈ N be fixed with spin σi = σ. For a
constant c > 0 such that c log(α) < 1/2, and ℓ = c log(n),
the following holds. The variation distance between (U±

t (i))t≤ℓ

and (V ±σ
t )t≤ℓ goes to zero as a negative power of n as n →

∞.

Define now the processes

Mt = α−t(V +
t + V −

t ),
∆t = β−t(V +

t − V −
t ),

(30)

where V ±
t is as in (29). We will need the following results on

these processes, which follow from Kesten and Stigum [15]
(see also [14] for a direct proof).

Lemma 4.7. Processes {Mt}, {∆t} are Gt-martingales.
Process {Mt} is uniformly integrable when α > 1. Under
Condition (1) process {∆t} is uniformly integrable.

Corollary 4.2. Under Condition (1) the martingale {∆t}
converges almost surely to a unit mean random variable ∆∞.
Moreover this random variable has a finite variance 1/(β2/α−
1) to which the variance of ∆t converges. It further holds
that E|∆2

t −∆2
∞| → 0 as t → ∞.

Together these properties allow to establish the following

Theorem 4.2. One has the following convergence in prob-
ability

lim
n→∞

1

n

n
∑

i=1

β−2ℓD2
ℓ (i) = E(∆2

∞). (31)

Let y ∈ R
n be the normed vector defined as

yi =
Dℓ(i)

√

∑n
j=1 Dℓ(j)2

, i = 1, . . . , n. (32)

Let x be a vector in R
n such that we have the convergence

in probability

lim
n→∞

||x− y|| = 0. (33)

For all τ ∈ R that is a point of continuity of the distribution
of both ∆∞ and −∆∞, one has the following convergence in
probability for both signs ±

lim
n→∞

1

n

∑

i∈N :σi=±

1
xi≥τ/

√
nE(∆2

∞)
=

1

2
P(±∆∞ ≥ τ). (34)

We now establish (31); the rest of the proof, which relies on
similar ideas, is deferred to the Appendix.

Proof. (of (31)) By the coupling lemma 4.6, with proba-
bility 1−O(n−ǫ) for fixed positive ǫ, σ(i)β−ℓDℓ(i) coincides
with ∆ℓ, an event denoted C. Define events Ωk(i) by

Ωk(i) = {Sk(i) ≤ C(log n)αk} (35)

and Ω by

Ω := ∩i∈NΩ(i) where Ω(i) := ∩k≤ℓΩk(i), (36)

where constant C is as in Theorem 2.3. When C fails,
β−ℓDℓ(i) is O(log(n)) on the event Ω. Let P̃ and Ẽ denote
probability and expectation conditional on Ω respectively.
The left-hand side of (31) thus verifies

Ẽ

(

1

n

n
∑

i=1

β−2ℓD2
ℓ (i)

)

= O(log2(n))n−ǫ + Ẽ(∆2
ℓ1C).

Write

|Ẽ(∆2
ℓ1C)−E(∆2

∞)| ≤ ( 1
P(Ω)

− 1)E(∆2
∞) +

E|∆2
ℓ−∆2

∞|

P(Ω)

+
E∆2

∞1
Ω∩C

P(Ω)
.

By Theorem 2.3 and Corollary 4.2, the first and second term
in the right-hand side go to zero with n and ℓ respectively;
the third term goes to zero as P(Ω∩C) → 1 (e.g. by Hardy-
Littlewood-Polya’s rearrangement inequalities). Thus the
expectation of the left-hand side of (31) converges to E∆2

∞.

We now evaluate Ẽ
(

1
n

∑n
i=1 β

−2ℓD2
ℓ (i)

)2
, the second mo-

ment of this empirical sum. We break it into two terms, the
first being

1

n2
Ẽ

n
∑

i=1

β−4ℓD4
ℓ (i).

By Theorem 2.3, this is O(log(n)4)/n = o(1). The second
term reads

2

n2

∑

i<j

β−4ℓ
Ẽ(D2

ℓ (i)D
2
ℓ (j)). (37)

Fix i < j. As P(Ω) ≥ 1 − O(n−ǫ), (37) is equivalent to
E(1Ωβ

−4ℓD2
ℓ (i)D

2
ℓ (j)), itself equivalent to

E(1Ω(i)∩Ω(j)β
−4ℓD2

ℓ (i)D
2
ℓ (j)) +O(log4(n)P(Ω)).

The second term in the right-hand side is o(1) by Theo-
rem 2.3, while the first term in the right-hand side is asymp-

totic to
(

E(1Ω(i)β
−2ℓD2

ℓ (i))
)2

by Lemma 4.1. This is in turn

equivalent to [E(∆2
∞)]2 by the analysis of the first moment

of the empirical sum. It readily follows that

lim
n→∞

Ẽ

[

1

n

n
∑

i=1

β−2ℓD2
ℓ −E(∆2

∞)

]2

= 0.

Convergence (31) then follows by Tchebitchev’s inequality.



Theorems 4.1 and 4.2 readily imply Theorem 2.1.

5. CONCLUSIONS
The methods developed here may find further applica-

tions, e.g. to prove the more general conjecture by Heim-
licher et al. [4] of a phase transition in the labeled stochastic
block model or the “spectral redemption” conjecture of [9].
More generally one might ask what is the range of applica-
bility of path expansion approaches to “fix” spectral meth-
ods by recovering Ramanujan-like spectral separation prop-
erties. It is likely that a similar regularization would occur
by considering matrix B̂ defined by B̂ij = 1dG(i,j)=ℓ but we
have not been able to prove this yet.

acknowledgements: The author gratefully acknowledges
stimulating discussions on the topic with Marc Lelarge and
Charles Bordenave.
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APPENDIX

A. PROOF OF PROPOSITION 3.2

Proof. The trace of [Γℓ,m(Γℓ,m)′]k upper-bounds ρ2k where
ρ is the spectral radius of Γℓ,m. This trace is the sum over
circuits of length 2ℓk of products of terms that can be either
Ae − Āe, Āe or Ae such that a length ℓ chunk of the circuit
is the concatenation of two simple paths of length m − 1
and ℓ − m, and that the two of them have a non-empty
intersection.

We represent such contributions as follows. Denote by
v the number of nodes and by e the number of edges tra-
versed by the circuit, while ignoring edges that are weighed
by an Ā-term. Note that by the constraint that the con-
catenated simple parts of each length ℓ-chunk intersect, the
corresponding graph is necessarily connected. We adopt the
following representation of the corresponding circuits.

Nodes are again denoted by the order in which they are
first met, starting with node 1. We represent each simple
path that constitutes the circuit by sequences of three phases
as in the proof of Proposition 3.1. Note that there are now 4k
such simple paths: each length ℓ chunk of the original circuit
is broken into an m− 1- and an ℓ−m-path. We adopt the
same representation as before, except that we must now also
incorporate the label of the starting point after traversal of
an Ā-edge.

Thus we have the upper bound on the number of valid
circuit labels with v nodes and e edges:

v2k[(v + 1)2(ℓ+ 1)]4k(1+e−v+1).

Let us bound the values that v and e can take. Necessarily,
v ≥ max(m, ℓ−m+1): indeed, each length ℓ chunk comprises
simple paths of length m−1 and ℓ−m. Moreover, there are
overall 2k(ℓ−1) edges (recall that we discount the Ā-edges).
Out of these, 2k(ℓ−m) must be doubled for the expectation
not to vanish. There are thus at most 1+k(ℓ+m) nodes v in
total, and at most k(ℓ+m) distinct edges in total. Finally,
bounding the contribution of each Ā term and each cycle
edge by (a∨ b)/n, arguing as in the proof of Proposition 3.1
one obtains (19).

B. PROOF OF THEOREM 2.3
The following inequality is easily seen to hold for any non-

negative u, v, a, b, n such that a/n, b/n ≤ 1:

au+ bv

n
− 1

2

(

au+ bv

n

)2

≤ 1−(1− a

n
)u(1− b

n
)v ≤ au+ bv

n
.

(38)
Next lemma is the key ingredient to establish Theorem 2.3.

Lemma B.1. Let ǫ ∈ (0, 1), γ > 0 and ℓ = c log(n) with
c log(α) < 1/2. Then there exists some constant K > 0 such



that with probability 1−O(n−γ) the following properties hold
for all i ∈ N and all t ≤ ℓ.

(i) For T := inf{t ≤ ℓ : St ≥ K log(n)}, then ST =
Θ(log(n)).

(ii) Let ǫt := ǫα−(t−T )/2. Then for all t, t′ ∈ {T, . . . , ℓ},
t > t′, the vector Ut = (U+

t , U−
t ) verifies the coordinate-wise

bounds:

Ut ∈





t
∏

s=t′+1

(1− ǫs)M
t−t′+1Ut′ ,

t
∏

s=t′+1

(1 + ǫs)M
t−t′+1Ut′



 ,

(39)
where M denotes the matrix (a/2 b/2, b/2 a/2).

Proof. By definition of T , UT−1 < K log(n). Thus
by (21)

U±
T ≤ Bin(n±, (a ∨ b)

K log(n)

n
).

The mean of the Binomial distribution in the right-hand
side of the above is equivalent to (a ∨ b)(1/2)K log(n) and
less than κ log(n) for κ = (a ∨ b)K. Hence by Chernoff’s
inequality, for h(x) := x log(x)− x+ 1 and K′ > 2κ,

P(U±
T ≤ K′/2 log(n)|FT−1) ≥ e−κ log(n)h(K′/2κ).

Take K′ > 2κ so that κh(K′/2κ) > 2 + γ. The right-hand
side of the above is then no larger than n−2−γ .

Thus by the union bound, Property (i) holds with proba-
bility 1−O(n−1−γ) for all i ∈ N .

Conditional on FT , the binomial distribution of U±
T+1 has

mean

[n± − U±
<T+1]× [1− (1− a/n)U

±
T (1− b/n)U

∓
T ],

which by the inequalities (38) lies in the interval

[(a ∧ b)
1

3
K log(n), (a ∨ b)K′ log(n)].

For a given ǫ > 0, we can choose K sufficiently large so that2

(a ∧ b)
1

3
Kh(1 + ǫ) > 2 + γ.

It follows that U±
T+1 admits a relative deviation from its

conditional mean by ǫ with probability at most n−2−γ .
We now define the events At := {U±

t ∈ [1 − ǫt, 1 +

ǫt]
aU±

t−1+bU∓
t−1

2
} where ǫt is as in Statement (ii) of the Lemma.

Conditionally on AT , . . . ,At, the vector Ut = (U+
t , U−

t ) ver-
ifies the announced inequality (39). This in turn implies that
U±

t ≥ (1−O(ǫ))αt−TK′′ log(n) where K′′ := (a∧b)K/3. We
now check that Chernoff’s bound applies to show by induc-
tion that (39) holds at step t with high enough probability.
It suffices to ensure that

U±
t h̃(ǫt) ≥ (2 + γ) log(n),

where h̃(u) := min[(1+u) log(1+u)−u, (1−u) log(1−u)+u).
However as we just saw the left-hand side of this expression
is lower-bounded by

(1−O(ǫ))αt−TK′′ log(n)h̃(ǫt) ≥ (1−O(ǫ))αt−TK′′ log(n)
ǫ2t
3
,

where we took a second-order expansion of h̃ around 0. The
condition is therefore met as soon as (1 − O(ǫ))K′′ǫ2/3 ≥
2 + γ. For K large enough this holds.
2We assume here that a∧ b > 0, as the result trivially holds
if a ∧ b = 0.

Proof. (of Theorem 2.3). For t ≤ ℓ, if t ≤ T , we neces-
sarily have that St, |Dt| = O(log n). Consider then t > T .
Note that matrix M is such that

Mk =
1

2

(

αk + βk αk − βk

αk − βk αk + βk

)

·

Using (39), we readily have for t, t′ ≤ T , with t > t′:

St ≤∏t
s=t′+1(1 + ǫs)(1, 1)M

t−t′Ut′

=
∏t

s=t′+1(1 + ǫs)α
t−t′St′ .

A similar lower bound holds with −ǫs in place of +ǫs. Set-
ting t′ = T in the upper bound, since ST = O(log(n)), the
upper bound (10) follows for St, as

∏t
s=T+1(1+ ǫs) = O(1).

It readily follows that (11) holds for St by noting that

max
(

t
∏

s=t′+1

(1 + ǫs)− 1, 1−
t
∏

s=t′+1

(1− ǫs)
)

= O(ǫt′)

= O(α−t′/2).

Consider now Dt. Using (39) again, we have

βDt−1 − αǫtSt ≤ Dt ≤ βDt−1 + αǫtSt.

Iterating, we obtain

|Dt − βt−t′Dt′ | ≤
t
∑

s=t′+1

αβt−sǫsSs. (40)

Since Ss = O(log(n)αs−T ), |DT | = O(log(N)) and ǫs =

O(α−(s−T )/2), we obtain for t′ = T :

|Dt| = O
(

log(n)βt +
∑t

s=T+1 β
t−s log(n)α(s−T )/2

)

= O(log(n)βt),

where we used inequality β2 > α to bound
∑

u>0 β
−uαu/2.

Property (10) thus holds for Dt.
Finally, the right-hand side of (40) is of order

t
∑

s=t′+1

βt−sα(s−T )/2 log(n) = O(log(n)βt−t′αt′/2).

Thus setting t = ℓ, for ℓ > t′ ≥ T we have

Dt′ = βt′−ℓDℓ +O(log(n)αt′/2).

Since for t′ < T we readily haveDt′ = O(log(n) by definition
of T , property (11) follows for Dt.

C. PROOF OF LEMMA 4.2

Proof. There are two ways for creating cycles within the
distance k-neighborhood of i: an edge may be present be-
tween two nodes at distance k − 1 of i, or two nodes at dis-
tance k− 1 may be connected to the same node at distance
k of i. The number of edges of the first type is stochasti-
cally dominated by Bin(S2

k−1, a ∨ b/n). Its expected num-
ber conditionally on Ωk−1(i), as defined in (35), is at most
O(log2(n)α2ℓ/n). Thus by the union bound the probability
that there is such an edge in the ℓ-neighborhood of i is, by
Theorem 2.3 at most:

ℓ×O(log2(n)α2ℓ/n)+

ℓ
∑

k=1

(1−P(Ωk(i))) = O(log3(n)α2ℓ/n).



The number of cycle edges of the second type is stochasti-
cally dominated by

Bin(n, (a ∨ b/n)2S2
k−1).

On Ωk−1(i) its conditional expectation is O(log2(n)α2ℓ).
By the same argument, the probability that there are

two cycle-edges within the ℓ-neighborhood of i is upper-
bounded by O(log6(n)α4ℓ/n2). By the union bound we read-
ily have that with high probability no node has two cycle-
edges within its ℓ-neighborhood as soon as log6(n)α4ℓ ≪ n,
which holds for ℓ = c log(n) with c log(α) < 1/4.

Let Zi denote the event that the ℓ-neighborhood of i
contains a cycle. On the event Ω defined by (36), the ℓ-
neighborhoods of an arbitrary pair of distinct nodes i, j are
disjoint with probability 1−O(log2(n)α2ℓ/n), conditionally
upon which the probability that they both have a cycle in
their neighborhood is upper-bounded by O(log6(n)α4ℓ/n2).
Conditionally on the event that their neighborhoods meet,
the expectation of the product ZiZj is still upper-bounded
by O(log3(n)α2ℓ/n).

Eventually Markov’s inequality yields

P(
∑

i Zi ≥ m log3(n)α2ℓ) ≤ E(
∑

i Zi)
2

m2 log6(n)α4ℓ

≤ nE(Z1)+n2
E(Z1Z2)

m2 log6(n)α4ℓ

≤ O(log3(n)α2ℓ)+n2[O(log6(n)α4ℓ/n2)+(log2(n)α2ℓ/n)(log3(n)α2ℓ/n)

m2 log6(n)α4ℓ

= O( 1
m2 ).

Takingm = log(n) (say), then with high probability
∑

i Zi =

O(log4(n)α2ℓ).

D. PROOF OF LEMMA 4.3
Let i /∈ B be a node whose ℓ-neighborhood is a tree. For

any k ∈ N and any m ≤ ℓ, B
(m)
ik = 1dG(i,k)=m. For such i,

one therefore has the following identities:

i /∈ B ⇒
{

(B(m)e)i = Si(m),

(B(m)σ)i = Di(m),
(41)

Relations (22) readily follow from Theorem 2.3.
Let i ∈ B. By Lemma 4.2, such nodes i have in their ℓ-

neighborhood only one cycle. Clearly only nodes at distance
at most ℓ of i can be counted in (B(ℓ)e)i, and they can be
counted at most twice because the neighborhood contains
only one cycle. Control (23) readily follows.

E. PROOF OF COROLLARY 4.1

Proof. Let B denote the set of nodes i such that their
ℓ-neighborhood contains a cycle. Let x be a normed vector
such that x′B(ℓ)e = 0. We then have

|e′B(m−1)x| = |∑i∈N xi(B
(m−1)e)i|

≤ |∑i∈B xi(B
(m−1)e)i|+ |∑i∈B xiα

m−1−ℓ(B(ℓ)e)i|
+|∑i∈N xi[α

m−1−ℓ(B(ℓ)e)i +O(log(n) +
√

log(n)αm−1)|.
(42)

Using the bound (23) for i ∈ B, we can bound the first
summation, using Cauchy-Schwarz’s inequality by

|∑i∈B xi[(B
(m−1)e)i| ≤ O(log(n)αm−1)

√

|B|
≤ O(log3(n)αℓ+m−1),

where we have used the bound on the size of B derived
in Lemma 4.2. The second summation in (42) is similarly

bounded. As for the third summation, using the fact that
e′B(ℓ)x = 0, it is upper-bounded by

|
∑

i∈N

xiO(log(n) +
√

log(n)αm−1)|.

By Cauchy-Schwarz again, this is no larger than

O
(√

n(log(n) +
√

log(n)αm−1)
)

.

The announced bound (24) on |e′B(m−1)x| follows. Simi-

larly, the bound (25) on |σ′B(m−1)x| follows by using prop-

erty σ′B(ℓ)x = 0 instead of property e′B(ℓ)x = 0.

F. PROOF OF THEOREM 4.2

Proof. We now turn to establishing (34). We shall only
consider the case of sign +, the other being handled sim-
ilarly. Fix some arbitrarily small δ > 0. Because τ is a
continuity point of the distribution of ∆∞, we can find two
bounded Lipschitz-continuous functions f , g such that

f(u) ≤ 1u≥τ ≤ g(u), u ∈ R

and

0 ≤ E(g(∆∞)− f(∆∞)) ≤ δ.

Consider then the empirical sum

1

n

∑

i∈n+

f(xi

√

nE(∆2
∞)).

Denoting byK the Lipschitz constant of function f , it differs
from the simpler one

1

n

∑

i∈n+

f(β−ℓDℓ(i)) (43)

by at most

K
n

∑

i∈n+

∣

∣

∣
(xi − yi)

√

nE(∆2
∞)
∣

∣

∣
+ · · ·

· · · K
n

∑

i∈n+
β−ℓ|Dℓ(i)| ×

∣

∣

∣

∣

1−
√

E(∆2
∞)

A

∣

∣

∣

∣

,

where A is the empirical sum in (31). The first sum tends
to zero in probability by the assumed convergence in proba-
bility limn→∞ ||x − y|| = 0 and Cauchy-Schwarz inequality.
The second sum tends to zero in probability by dominated
convergence. Indeed, convergence to zero of 1−

√

E(∆2
∞)/A

has just been established, and with similar arguments one
easily shows that the empirical average of the |β−ℓDℓ(i)|
converges in probability to E|∆∞| and is hence bounded in
probability.

Convergence in probability of (43) to (1/2)E(f(∆∞)) is
similarly established.

The same argument with g instead of f yields convergence
in probability

lim
n→∞

1

n

∑

i∈n+

g(xi

√

nE(∆2
∞)) =

1

2
E(g(∆∞)).

It readily follows that

lim sup
n→∞

∣

∣

∣

∣

∣

∣

1

n

∑

i∈n+

1
xi≥τ/

√
nE(∆2

∞)
− 1

2
P(∆∞ ≥ τ)

∣

∣

∣

∣

∣

∣

≤ δ.

As δ is arbitrary, this establishes (34).



G. PROOF OF LEMMA 4.4

Proof. The first and second evaluations follow by noting
that the vectors whose difference is considered in the left-
hand side agree on the set of entries i whose ℓ-neighborhood
is cycle-free. Thus

|B(ℓ)e− {Sℓ(i)}| ≤
√

|B|O(log(n)αℓ)
≤ O(log3(n)α2ℓ),

and the same bound holds for |B(ℓ)σ−{Dℓ(i)}|. This upper
bound is o(

√
nβℓ) so that the first two assertions follow, by

further noticing that |{Dℓ(i)}| = Θ(
√
nβℓ), as follows from

Theorem 4.2, (31).
For the third assertion, consider the scalar product <

{Sℓ(i)}, {Dℓ(i)} >. The same arguments as in the proof of
convergence (31) in Theorem 4.2 allow to establish (details
omitted for brevity) the following convergences in probabil-
ity:

lim
n→∞

1

n

∑

i∈N

α−2ℓS2
ℓ (i) = EM2

∞,

lim
n→∞

1

n

∑

i∈N

α−ℓSℓ(i)β
−ℓDℓ(i) = 1

2
E[M∞∆∞ −M∞∆∞]

= 0,
(44)

where M∞ is the almost sure limit of martingale Mt as
in (30). Thus the scalar product < {Sℓ(i)}, {Dℓ(i)} > is
o(nαℓβℓ) and is indeed negligible compared to |{Sℓ(i)}| ×
|{Dℓ(i)}|, which is precisely of order Θ(nαℓβℓ).

H. PROOF OF LEMMA 4.5

Proof. To establish the lower bound of (27), note that
by Cauchy-Schwarz,

< e,B(ℓ)B(ℓ)e >≤ |e| × |B(ℓ)B(ℓ)e|.

However the left-hand side reads |B(ℓ)e|2. Thus

|B(ℓ)B(ℓ)e| ≥ |B(ℓ)e|2
|e| ·

However |B(ℓ)e| = Θ(
√
nαℓ) by (44) and Lemma 4.4. Since

|e| = √
n, the lower bound in (27) follows. For the upper

bound, we note that by Lemma 4.3 and Theorem 2.3, the
max row sum for matrix B(ℓ) is of order O(log(n)αℓ).

The lower bound in (28) is established similarly, from the
inequality

< σ,B(ℓ)B(ℓ)σ >≤ |σ| × |B(ℓ)B(ℓ)σ|

We turn to the upper bound. Write vector B(ℓ)B(ℓ)σ as a
sum z + z′ + z′′ where

zi = 1B̄(i)
∑

j:dG(i,j)=ℓ D
(ℓ)(j),

z′i = 1B̄(i)
∑

j:dG(i,j)=ℓ Õ(αℓ)1B(j),

z′′i = 1B(i)Õ(α2ℓ).

Adapting the results of Lemma 4.2 one has that both |z′|
and |z′′| are Õ(α3ℓ). This is O(n−γβℓ|B(ℓ)σ|) by our choice
of ℓ for some γ > 0.

Write then

Ẽ|z|2 = n1−ǫÕ(α2ℓβ2ℓ) + nẼ(X2
1C), (45)

where C is the event that coupling between 2ℓ-neighborhood
of i with random tree as per Lemma 4.6 has succeeded, n−ǫ

is the coupling failure probability and X is defined as

X =

ℓ
∑

d=0

∑

j:d(j,i)=2d

σj |{k : d(j, k) = d(i, k) = ℓ}|.

Let T denote a branching process with offspring Poi(α). The
process of spins is constructed by sampling uniformly the
root’s spin, and then propagating spins in a Markovian fash-
ion with transition matrix (a/(a+b)b(a+b), b(a+b), a(a+b))
that is α−1M . Its eigenvalues are thus (1, β/α). Write

X2 =
∑ℓ

d=0

∑ℓ
d′=0

∑

j′:d(j′,i)=2d′

∑

j:d(j,i)=2d σjσj′ × · · ·
· · · |{k : d(j, k) = d(i, k) = ℓ}| · |{k′ : d(j′, k′) = d(i, k′) = ℓ}|.

Now it holds that

E(σjσj′ |T ) = O

(

(

β

α

)d(j,j′)
)

.

We will use this formula, and further distinguish nodes j′

according to their distance 2(d + d′ − τ) from j for τ =
0, . . . , 2(d ∧ d′). This yields

E(X2|T ) =

ℓ
∑

d,d′=0

2(d∧d′)
∑

τ=0

∑

j′:d(j′,i)=2d′

∑

j:d(j,i)=2d

· · ·

· · ·1d(j,j′)=2(d+d′−τ)O
(

(

β
α

)2(d+d′−τ)
)

× · · ·
· · · |{k : d(j, k) = d(i, k) = ℓ}| · |{k′ : d(j′, k′) = d(i, k′) = ℓ}|.
Note that on Ω the following evaluations hold uniformly for
all nodes involved in the above expression:

|{k : d(j, k) = d(i, k) = ℓ}| = Õ(αℓ−d),

|{k′ : d(j′, k′) = d(i, k′) = ℓ}| = Õ(αℓ−d′),

|{j : d(j, i) = 2d}| = Õ(α2d),

|{j′ : d(j′, i) = 2d′&d(j, j′) = 2(d+ d′ − τ)}| = Õ(α2d′−τ ).

Plugging these in, we have

E(X21Ω|T ) =

ℓ
∑

d,d′=0

2(d∧d′)
∑

τ=0

Õ

(

(

β

α

)2(d+d′−τ)
)

α2ℓ+d+d′−τ

=
∑ℓ

d,d′=0

∑2(d∧d′)
τ=0 Õ

(

α2ℓ(β
2

α
)d+d′−τ

)

= Õ(α2ℓ(β2/α)2ℓ)

= Õ(β4ℓ).

This combined with (45) and Tchebitchev’s inequality en-
tails that |z| is with high probability no larger than

(
√
nβℓ)Õ((βℓ) ∨ (αℓn−ǫ/2)).

Since |B(ℓ)σ| = Θ(
√
nβℓ) the result follows.


