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Many applications involve coupling between prestressed solids and fluids (possibly flowing). Typical problems
might be given by vibroacoustics of fluid-filled pressurized cavities, wave propagation, dynamics and stability of
pipes conveying fluids... The goal of this work is to investigate jump conditions that hold for small linear
perturbations at any impermeable interfaces, slip or bonded, plane or not, between fluids and structures in the
presence of initial flow and prestress. First, the concept of generalized functions in distribution theory and its
applications to interface conditions is briefly recalled. One also gives a review about the mixed Eulerian-
Lagrangian description, that yields an interesting unification between existing formulations for inviscid fluids
(Galbrun's equation) and solids (updated Lagrangian formulation). Based on conservative equations obtained
from this description, interface conditions are then derived in an elegant manner thanks to the concept of
generalized functions. Interface conditions for displacement and stress are obtained and agree with results found
in the literature. As an example, these conditions are applied to the analysis of vibroacoustic wave propagation
inside an inviscid fluid-filled pressurized duct. The combined effects of prestress, initial flow and acoustic

coupling are briefly discussed.

1 Introduction

Many applications involve small wave motion through an
interface between prestressed solids and fluids, initially
moving or not: aeroengine ducts, human arteries, acoustic
measurements  in  geophysics,  ultrasonic  stress
characterization, heat exchangers, nuclear reactors, storage
tanks...

The motion of particles at the interface between both media
in contact can occur with slip (when the fluid is considered
as inviscid) or without (for a viscous fluid). In the absence
of flow and prestress, interface conditions are well-
established: the kinematic and dynamic jump conditions
respectively correspond to the continuity of the normal
components of the acoustic velocity or displacement (and
their tangential components in the no slip case) and of the
acoustic stress tensor. However, the derivation of the
appropriate interface conditions is somewhat complicated
when an initial flowing or prestressed state exists. The
possibility of slip further complicates this derivation.

For the acoustic kinematic jump condition, considerable
discussion appeared years ago in the literature as to whether
continuity of particle normal displacement or normal
velocity is the appropriate boundary condition for an
inviscid flowing fluid [1]. Myers [2] derived a kinematic
condition based on the Eulerian acoustic velocity. Godin [3]
proved the equivalence between the latter and the normal
Lagrangian displacement continuity.

Few papers deal with the dynamic jump condition for a slip
interface in the presence of prestress. Poirée [4] used
distribution theory in order to derive a stress jump condition
for plane interfaces and Goy [5] later extended his work to
arbitrary  non-plane  interfaces. = When  studying
incompressible hydroelastic vibrations, Schotté and Ohayon
[6] obtained linearized boundary conditions on the interface
between a prestressed structure and an inviscid fluid in the
absence of flow. Norris et al. [7] made a thorough analysis
of non-moving fluid/solid systems and derived some stress
jump conditions valid for both slip and bonded interfaces.
Most of these studies point out the benefits of an
intermediate formulation compared to a full Lagrangian or
Eulerian approach. This intermediate formulation is often
referred to as “updated Lagrangian” in non-linear
mechanics and sometimes “mixed Eulerian-Lagrangian” in
flow acoustics.

The goal of this paper is to investigate and clarify jump
conditions that hold for linear perturbations at fluid-
structure interfaces (slip or bonded, plane or not) in the

presence of initial flow and prestress. This work is based on
the concept of generalized functions in distribution theory
and its application to a mixed FEulerian-Lagrangian
formulation. It is restricted to impermeable interfaces
(immiscible media always in contact with no void).

2 Theoretical background

2.1 Generalized functions and interface
conditions

One elegant way to derive jump conditions is to interpret
conservative equations of continuum mechanics in terms of
distribution theory through the concept of generalized
derivatives and to postulate that these equations hold in the
sense of distributions [8, 4]. This procedure is now briefly
recalled.

For instance, let us start with the momentum conservative
equation:

O(pv

%—FV(pv@v—o):pf (1)
where p,v,o,f respectively denote density, velocity,
Cauchy stress tensor and force per unit mass.

Let us denote [H]SZO the jump ()= _(*) on the interface
defined by the implicit surface equation S(x,#)=0 having a
unit normal n(x,?). Left subscripts — and + denote the
media considered, respectively defined by S<0 and S>0.
The unit normal is oriented from — medium to + so that
n=V S/|V S|. The interface is assumed smooth (S is
differentiable). Every physical variable might be
discontinuous at the interface, so that we assume the
following decompositions:

VY= ¥ H(-S)+,¥H(+S) Q)
for ¥={p,v,o,f} and where H denotes the heavyside
function.

Now, recall that time and spatial derivatives of H (£S) are:
D (H (£5))=%w,| VS|5(S) .

ot (3)
V(H (£S8)=+n|VS|5(S)

where w, is the normal velocity of the surface S=0 and 6
denotes the Dirac distribution.



Using Eq.(2) into (1) and using (3), it can be verified that
the following equation is arrived at:

_EH(-S)+,EH(+S)+,E|VS|s(S)=0 4)
with the following notations:

0(.p
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and:

sE=[pv(vn—w,)—c n] (6)

The identification of each term in Eq.(4) yields _E=0 for
S<0and ,E=0 for $>0, corresponding to the equilibrium
equations (1) inside media — and +. It also yields ;sE=0 on
S§'=0: this is the interface jump conditions associated with
momentum conservation. Note that w,=_v-n=_v-n for
impermeable interfaces (fundamental assumption of this
paper), so that the jump condition degenerates into the well-
known result [on]s_,=0.

2.2 Eulerian-Lagrangian description

This section reviews the governing equilibrium equations
associated with the mixed Eulerian-Lagrangian description.

When analyzing the dynamics of continuum media non
initially at rest, one can choose to write physical fields with
respect to:

— the Lagrangian
configuration),

variables (Xm,- 1) (reference

— the intermediate variables (X,(¢),¢) (intermediate
configuration  corresponding  the  unperturbed
flowing/prestress state),

— or the Eulerian variables (X(#),#) (total or current
configuration including perturbations).

Physical fields referring to these configurations will
respectively be denoted with a subscript ref, a subscript 0
and a tilde. Their respective gradients will then be denoted
by V,.g,, V, and V. The absence of symbol will be left for
superimposed oscillatory perturbations. Denoting u as the
particle small oscillatory displacement, X, and X are then
related by X=xX,+e€u. Let ¥ (X, 7) denote any field — scalar,
vector or tensor — describing the current state in terms of
Eulerian coordinates. Both the following linear
perturbations can be defined:

eV =V (X,1)-¥,(X,1), eV =V (X,1)-¥,(x,.t) (7)

Superscripts £ and L will respectively denote Eulerian and
Lagrangian perturbations. One exception is for the
displacement perturbation, u=u" (avoiding cumbersome
expressions). Eulerian perturbations are naturally used in
fluid acoustics. They are associated with the same
geometrical point but not necessarily the same material
point. Lagrangian perturbations, usually used in solid
mechanics, are associated to the same particle; when they
are written with respect to (X,,?), as done here, the
description might be called mixed Eulerian-Lagrangian
description (in contrast with a full Lagrangian description,
written with respect to the Lagrangian variables (X,,;,7)).

From definitions (7), the relation between Eulerian and
Lagrangian first order perturbations is ¥ "= ¥ “+(u-V,) ¥,
The Lagrangian perturbations rules for derivatives are not
straightforward and are shown to be:

V¥ =V, ¥ -V, ¥, V,u ,
AN & ou (8)
(E o Vo¥oy,

Applying the perturbation rules (8) to mass conservation,
one arrives at the simple result:

L
£ +Vyu=0 )
Po

After rearrangements, the perturbation of momentum
conservation Eq.(1) yields the following conservative
equilibrium equation for perturbations:
L
d(pyv")

L
T+VO-(pOV ®V0_O'

_Uo'((vo'u)l_vo “T)):PofL

For more details about the mixed Eulerian-Lagrangian
description, the reader can refer to the work of Poirée [4].

L

(10)

The Cauchy stress increment ¢* (Lagrangian perturbation
of Cauchy stress) is barely used in solid mechanics.
Another kind of stress increment, denoted o, naturally
appears from a transformation from current to intermediate
coordinates: o=det(X,)X;'cX," -0, (with
5(02 V,x=I+V, u). ¢ may be referred to as the updated
Kirchhoff stress increment tensor in the so-called updated
Lagrangian formulation [9]. The linearized updated
Lagrangian formulation and the mixed Eulerian-Lagrangian
formulation are indeed the same. A formal proof can be
obtained by linearizing the above definition of o, yielding:

c'+o,(V,ul-Vou')=c+V,u0, (11)

Using Eq.(11) into (10) gives after simplifications:
podeul di' =V (o +V u-a,)=p,f". This is the linearized
updated Lagrangian formulation. For a linearly elastic solid,
the stress-strain relationship is given by o=C:€, where
€=1/2(V,yu+V,u') is the linearized incremental strain
tensor and C is the constitutive tensor.

Now for inviscid fluids, o“=—p"I. p" is barely used, in
acoustics also, FEulerian perturbations being usually
preferred.  Nevertheless,  the  Eulerian-Lagrangian
description yields an interesting wave equation for arbitrary
inviscid flowing fluids. This equation is sometimes called
Galbrun's equation and is written in terms of u only (further
details in [4, 10, 11]).

Hence, the use of Lagrangian perturbations written in terms
of the intermediate coordinates gives a straightforward
unification between existing fluid and solid formulations.
Another interest lies in the fact that Eqs.(9) and (10) can be
interpreted in the sense of distributions, as shown in the
next section.



3 Interface conditions for perturbations

3.1 Kinematic condition

One postulates that Eq.(9) is valid in the sense of
distribution theory. This equation has a conservative form.
Following the same procedure as in Sec. 2.1, it can be
verified that its associated jump condition gives the
continuity of normal Lagrangian perturbation of
displacement:

H“'no}]sﬂ:ozo (12)

The validity of this condition must be discussed. As stated
earlier, some ambiguity may arise when an inviscid mean
flow is present. The reference kinematic condition is the
well known condition of Myers [2], valid for any stationary
interface. Myers condition is written in terms of v”, the
Eulerian acoustic velocity, and has a more complex form
than condition (12). Although one can doubt about the
validity of Eq.(12) at first sight, both conditions are indeed
equivalent: this has been already proved by Godin [3].

3.2 Dynamic condition

The same method is now applied to Eq.(10), which is also a
conservative equation. Calculations are somewhat tedious
and will not be detailed here for conciseness. One arrives at
an equation of the following form:

_EH(-S)+.EH(+S)+;E|VS|5(S)+5;ES'(S)=0 (13)

This form is similar to that given in Eq.(4), except for the
Dirac derivative term 5 E. Calculations show that this term
indeed vanishes thanks to the kinematic condition Eq.(12).
Besides, _.E=0 and ,E=0 correspond to Eq.(10) in both —
and + media respectively. The dynamic jump condition that
we are looking for is ;E=0, which is explicitly given as
follows:

[HUL"‘O'O'((VO'“) I_VouT))'noHsozo

1 —
_|V0SO| Vo'{(|VOSO|(O'O~n0)®[[uL]]]Sn:0}_O

(14)

with u; =u—(u-ny)n, defining the displacement tangential
component. Note that the second line term vanishes in the
no-slip case. As a side remark, the dynamic condition
remains unchanged in the presence of initial flow.

The above condition is in fact exactly the jump condition
derived by Norris [7] and generalized to non-uniform
prestress along the interface. This is proved from the
following identity:

5 VoIV Sl s o =Vou=ng(Voupnlio - (15)

which allows to rewrite condition (14) as the following
Norris form:

[[P'no—(vo'll—no'(voll)'110)0'0'110]]50:0
_[{(ui'vo)(ao'no)ﬂs(,:oz 0

with the notation: P=c""+a ,(V,u)I-V,u').

(16)

3.3 Note for energy and entropy conditions

As far as energy and entropy conservation are concerned,
the same procedure could be applied. The first step is to
perform a Lagrangian perturbation (with a mixed Eulerian-
Lagrangian description) of energy and entropy conservative
equations. The second step is to rewrite the resulting
equations under a conservative form, analogous to Eq.(10).
Finally, interpreting them with the help of generalized
functions will yield jump conditions for heat flux and
temperature perturbations.

4 Example: vibroacoustic waves in a
pressurized cylindrical shell

4.1 Equations

Wave propagation inside a pressurized cylindrical thin shell
coupled with an acoustic internal fluid is studied. The
prestress state is static. An initial uniform flow might be
present in the fluid. For simplicity, the external fluid effect
is arbitrarily neglected (vacuum). The initial fluid pressure
Po (which should be thought as the difference between
internal and external pressures) is assumed spatially
constant. For the shell, the following assumptions are
adopted: the radius-thickness ratio is small (R/A>20 in
practice), the material is linearly elastic and isotropic, shear
strains are neglected (Kirchhoff hypothesis) as well as
normal stresses. Ones chooses to make the simplification of
Reissner-Naghdi-Berry. Axial and torsional prestresses are
not considered in the analysis. The only non-zero prestress
is the circumferential prestress, denoted N, due to
pressurization. For an infinitely long cylinder, the
approximation N ,= p, R holds. Wave solutions are sought
of the form e'¥**"~“*) (s=x/ R corresponds to the cylinder
axis). The shell equilibrium equations are as follows (see
Leissa [12] for more details):

(L+Ly)u=f (17)

where L is the Reissner-Naghdi-Berry operator:

N 2_1—Vnz

2 ——1+Vyn vy

1-v 2 2
+ > Q
1—v 2
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and L is the Herrmann-Armenakas prestress operator:

-’ 0 0
Noo| 0 —1-n* 2in 19)
0 2in 1+n

1—v°
L=
" Eh



f represents the force exerted by the fluid. One has
u=[uvw|, where u, v w are respectively the shell
displacement amplitudes with respect to the axial,
azimuthal and radial directions. £, Vv, p, are respectively
the Young modulus, Poisson coefficient, density and
k=h/12R>. Q denotes the adimensional angular
frequency, chosen as w R/c,, where ¢,=VE/2p (14+V) is
the shear velocity.

Note that the above expression of L, also implicitly
assumes that prebending stresses and predisplacements
have a negligible effect upon vibrations (as usually done in
prestressed dynamics).

For acoustics, the presence of internal pressure does not
alter the governing equation, corresponding to the
convected Helmholtz equation, so that p“(r)=4J (xr)
with the notation: o(szz(QcS/cf—Moy)z—yz. prcp M,
denote fluid density, sound celerity and initial flow Mach
number.

When the effect of p, is neglected on the shell, one simply
has:

1—v°
Eh

7

f= 00 p' R (20)
However, if pressurization effect is taken into account —
which is barely done in the literature — it is shown that
some additional terms appear in the structural equilibrium
equations. A rigorous derivation of the operator f is now
made based on the general jump conditions previously
presented.

Let us start from a variational formulation of the structure.
The term of interest is given by the boundary integral on the
interface. The application of dynamic condition (14) yields:

fso §.u (o +V0+u~00)-n0dS=—fs0 s.u-(phn,
+p0(V0~_u)n0—p0V0_llT'n0 21)

1 Vo'{“VoSolP0n0®[{“imsu:o})ds

VoSl

where .,u, u respectively denotes solid and fluid
displacement Lagrangian perturbations. n, is the outward
normal of the structure.

+

After expressing the above integral in the cylindrical
coordinate system and taking into account condition (12),
one finally arrives at:

fsn s.u(o+ V0+u-00)-n0dS=ff (swp"R+

ow ou Ov (22)
6_9)+6W( g'ﬁ‘%'l-w) )dsd O

ow

+ —
35 Sv(v

DPoR| —6u
where we have neglected z/ R terms according to Reissner-
Naghdi-Berry simplifications, as well as prebending terms.
The first term of the right hand side, in terms of p”, yields
the force expression (20). The other terms (second line) are
written in terms of the shell displacement only, yielding the
following operator that must be added to the left-hand side
of Eq.(17):

2 0 0 iy
RO -1 in (23)
iy in 1

1—v
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This additional operator L, represents the effect of
pressurization. It is due to the fact that a hydrostatic
pressure is indeed a following force (non-constant
directional). One emphasizes that this operator exactly
coincides with the one found by Armenakas [13] for small
h (hypothesis of our work) when studying the dynamics of
in vacuo pressurized thin cylindrical shells (no fluid
coupling in their analysis).

For solving the coupled vibroacoustics problem, the system
must be rewritten in terms of the full eigenvector
u={uvw A]I (now including pressure amplitude), thanks to
the normal displacement continuity Eq.(12):

pc(Qele,~Myy)'w=R0p"lor|,_, (29)

The obtained 4x4 eigensystem is then numerically solved
by searching the roots 2 for fixed y that make the
determinant vanish with a Newton-Raphson method.

4.2 Results

For all results, solid and fluid media are assumed to have
the following properties: £E=2.0e+11Pa, v=0.3, p;
=7800kg/m’, ¢ ,=1500m/s, p,=1000kg/m’. Shell radius
and thickness are R=Im and #=0.01m. The initial pressure
is py=2.2et6Pa. Note that the effect of initial pressure
might change fluid properties, but this has been neglected
here. For clarity of figures, only modes with n varying from
0 to 4 are computed. Besides, the following analysis and
plots are only given for Q2€[0,0.5].

Figure 1 gives the dispersion curves (2 vs. y of the in vacuo
shell (no fluid interaction), for p,=0 as well as for p,;=2.2¢
+6Pa. Pressurization effects appear negligible for n=0 and
n=1 modes. However, n>1 modes are strongly affected.
Their frequencies are increased for fixed & — or
equivalently, their phase velocities are increased for fixed
Q. This effect is greater for small wavelengths and
becomes negligible for higher wavelengths. These
observations coincide with the results already found by
Armenakas [13]. Figure 1 also plots the only rigid-wall
acoustic mode propagating for the frequency band
considered, corresponding to the #=0 plane wave mode.
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Fig.1 Q vs. y for in vacuo elastic modes with
pressurization (solid lines), without (dashed), and for the
rigid wall acoustic mode (dashed gray).



Figure 2 exhibits the dispersion behavior of the coupled
fluid-solid system. Strong differences are observed when
compared to the results of Fig.1. It can be seen that the fluid
loading have a significant effect for the n=0 fluid-type
mode as well as n=1 modes. These modes are yet only little
changed by pressurization. However, frequencies of n>1
modes are sensitive both to pressurization and fluid loading.
Taking into account fluid loading significantly reduces their
frequencies compared to the in vacuo pressurized shell
results.
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Fig.2 Q vs. y for structure-type modes with pressurization
(solid lines), without (dashed). Gray lines: fluid-type mode.

Figure 3 shows the influence of an initial flow M ;=0.05 on
dispersion curves (with pressurization). As can be observed,
the presence of flow increases the frequencies of non-
axisymmetric modes (n#0) and of the fluid-type mode
(n=0). Axisymmetric structure-type modes are left nearly
unchanged.
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Fig.3 Q vs. y for M;=0.05 (with pressurization). Same
legend as Fig. 2.

5 Conclusion

In this paper, one has derived some general vibroacoustic
interface conditions in the presence of an initially flowing
fluid and a prestressed structure. These conditions have
been obtained in an elegant manner thanks to the concept of
generalized functions and the use of a mixed Eulerian-
Lagrangian description. They have then been applied to the
dispersion analysis of vibroacoustic wave propagation
inside an inviscid fluid-filled pressurized shell. The
combined effects of pressurization, fluid loading and initial
flow have been briefly outlined.
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