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Abstract

We present a new framework for controlling a robot col-
laborating with a human to accomplish a common mission.
Knowing that we are interested in collaboration domains
where there is no shared plan between the human and the
robot, the constraints on the decision process are more chal-
lenging. We study the decision process of a robot agent for a
specific shared mission with a human considering the effect
of the human presence, the planning flexibility according to
human comfortability and achieving mission. We choose to
formalize this problem with Partially Observable Markov
Decision Process, then we describe a new domain example
that represent human-robot collaboration with no shared
plan and we show some preliminary results of solving the
POMDP model with standard optimal algorithms as a base
work to compare with state-of-the-art and future-work ap-
proximate algorithms.

1. Introduction

A lot of research interest in human-robot interaction do-
mains is focusing nowadays on assistant robots, in [?] as-
sistant robots for elderly people are presented as part of the
Nursebot Project, and the increasing success of those re-
search is leading to more trust of robots not only entering
our daily life but also to help those of us who have cogni-
tive disabilities [?]. Those kinds of applications explain the
need to develop systems with increased capability of oper-
ating autonomously, and increased flexibility to be able to
co-exist with humans around them.

In this paper we are interested in robot planning while
simply sharing a mission with a human but not sharing a
plan with him, adding an extra challenge which is the un-
certainty of the human’s next action and his intentions. The
robot planning for best action to perform should consider
the frequent change in main environment variables, and as

robots exist to help not to disturb, it should dis-consider ac-
tions that would incommode the human. For that reason, it
is very important to find the best way to represent the en-
vironment and human information (acts and movements) in
order to interpret his intention into the decision process.

We propose a Partially Observable Markov Decision
Process POMDP framework for addressing this problem,
knowing that POMDP’s are one of few decision models that
handles uncertainty. We suggest a domain example that fits
the human-robot collaboration with no shared plan. This
example is quite limited, but it could be applied to real-life
examples like moving in/out of a flat, filling commands in
warehouses or cleaning an area.

2. Decision Making with POMDP’s

The uncertainty about the human’s intention raise the
need to observe information about the human that would
help in constructing a better belief over his intentions, and
use that to build a policy that will take into consideration
the human’s intention.

The POMDP standard model: A Partially Observ-
able Markov Decision Process POMDP [?] relies on
a probabilistic model that is represented by a tuple
(S,A,T,Z,0,R,by), where S is a finite set of states that
represent the environment for an agent; A is a finite set of
the agent’s actions; 7 is a state transition probability distri-
bution, T'(s,a,s’) = Pr(s; = §'|st—1 = s,a;—1 = a) is
the probability of transitioning from state s to state s’ after
doing action a, where ), T(s,a,s") = 1¥(s,a); Z is a
finite set of observations; O is a discrete probability distri-
bution over Z, O(a, s', z) = Pr(z; = z|lai—1 = a,8; = &)
is the probability of observing z from state s’ after making
action a, where ) __, O(a,s', z) = 1¥(a, s'); R is the re-
ward function mapping S x A x S to a real number that
represent the agent’s immediate reward for making action
a while being in state s and ending in state s’; given that
the state is not directly observable, the agent instead main-



tains a belief distribution over S, by is the initial state prob-
ability distribution, b;(s) is the probability that the system
is in state s, given the history of all observations/actions
the agent received/affected and the initial belief state by,
bi(s) = Pr(s; = s|zt,a1—1,2¢—1, -, G0, bp)-

Optimal Policies: Knowing the last action a; and last ob-
servation z;_1, the agent calculates a new belief state at
each time step ¢ by applying the belief update function:

bi(s) = 7(bs—1,a8,24-1)
Pr(z—1|s',ar, bi—1) Pr(s'|as, bi—1)
Pr (Zt,1 |at7 btfl)

The objective of the agent is to calculate a policy
Tpompp - by — a which assigns for each possible belief
an optimal action that maximizes the long-term expected re-
ward E [>° v'r,] where v is a discount factor and ry is the
reward at time ¢.

Difference from MDP’s: An MDP is a fully observ-
able Markov Decision Process represented by a tuple
(S, A, T, R) where the state of the environment at any time
t is completely observable. An MDP policy maps each ac-
tual state of the system to an action mp;pp : St — a which
is the reason of the low complexity compared to POMDP’s.
Solving POMDP’s: One of the most famous optimal ap-
proaches to find POMDP policies is the value iteration ap-
proach, where iterations are applied in order to compute
more accurate values for each belief state b depending on
a chosen action and best reward the agent could receive up
to time 7. Equation (??) describes the value function:

V*(b) = maxg Z b(s)R(s,a) +~ Z Pr(zla,b)V*(7(b, a, 2))
sES z€Z

()]
where, Vy(b) = max, ) .5 b(s)R(s,a). Once iterations
lead to a convergence, an optimal policy is defined by map-
ping the action that gives the maximum value given by
V(b). Other algorithms exist for solving POMDP’s opti-
mally [?], but the enormous computational complexity of
those optimal algorithms has been an obstacle toward ap-
plying POMDP’s to practical problems. Due to that, a
wide variety of approximate methods has been developed
like Point-Based value Iteration (PBVI) [?], Forward Search
Value Iteration (FSVI) [?], Heuristic Search Value Iteration
(HSVI) [?], Topological Orders Based Planning [?] and oth-
ers.

POMDP model for our domain: In order for a robot to
be able to plan through a shared mission with a human, it
should access information that will help it succeed in its
mission. Those information should include details about the
robot (its position, power status...), details about the human
(his position, his possible intentions...) and finally details
about the environment (status of objects, navigation con-
straints...), S = Sg X Sy X Sg. As there is no shared

plan between the robot and the human, information that
represent human’s intention are the most important in our
model. Supposing that robot actions are fully determinis-
tic: the transition function shows uncertainty about the end
state as a cause of the uncertain changes caused by the hu-
man, i.e. the end state in the transition function 7'(s, a, s’)
will include only one possible s’ with any possible combi-
nation of s%; and s’;. Observations will help in recovering
part of this uncertainty. Observed information about the hu-
man or the changes in the environment will help the robot
to update its knowledge about the state and also update its
belief over the human’s intention. What is different in this
model is that the observation function does not depend on
the action of the robot, instead it depends only on the ob-
servation the robot gets about the human and the possible
end state. Thus, O(s’, 2) = Pr(z = z|, st = s’). Depend-
ing on the robot’s belief about the human’s intention, the
reward function will lead the robot into choosing the right
action knowing that the reward function must be defined in
a way that motivates the robot for doing actions that respect
the human’s intention and avoid conflict actions with possi-
ble human intentions.

3. Formalizing Arranging Objects Mission

In this section we will describe a domain example that
represent a robot planning in a shared mission with a hu-
man, in Fig. ?? we present the arranging objects shared
mission environment, it consists of a robot, a human, a box
and some scattered objects that should be gathered in the
box. Mission is considered accomplished when all the ob-
jects are put in the box. We remind that the decision process
has no control over the human actions. The mission can be
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Figure 1: Arranging objects mission Environment.

divided into subtasks; we refer to a subtask the fact that
robot/human intend a specific object, moves toward its po-
sition, carries it, moves toward the box position and drops
it. There is no preference upon the objects: they may be
handled in any order. However, generalizing to any priority
or manipulation restriction (for example, only the human
should handle crystal glasses) is just a matter of tweaking
the reward function.

During the mission, the robot should respect the human’s



intention to complete a specific subtask: Having no shared
plan, the robot will not be able to know for sure what sub-
task the human has chosen, the only information that will
help is an observation that will be received by the robot at
each time step holding the human’s last action. In other
words, the robot will observe the changes related to hu-
man(new position and environment changes) and will use
that to build a belief over all possible intentions(subtasks).
From here, the robot will be able to choose the best action
(towards the best subtask) following the calculated policy .
Another condition conclude that the robot existence should
not be a burden for the human towards accomplishing his
subtask: This can be the case if the robot kept standing as
an obstacle in the human’s path.

The robot’s belief over the human’s intended subtask is
subject to the observations that the robot receives, this be-
lief might not be exactly true as cause of bad belief update,
or maybe a sudden change of the human’s real intention.
Our goal of this work is to compute a policy that would
adapt fast enough to any possible change in the environ-
ment’s variables including human’s intention with respect
to mission’s success.

State Representation: The state space is characterized as
S = Sg x Sy x Sg where: Spg includes robot’s po-
sition r(, ,,) and his status r(if he is carrying an object
or not), Sy includes human’s position h(xyy), his status
hs: and his intended subtask h;,, and Sg includes constant
objects positions, constant box position and the status of
each object e(;1 42,43) (still on floor or already in the box).
The human intention can be subtask to pick up any of the
still on ground objects or a non specified intention. Ac-
tions: A = {south,west, north, east, wait}, possible ac-
tions for the robot are: moving south, moving west, mov-
ing north, moving east and do nothing. Transition Func-
tion: The effects of the robot action « on a state s are rel-
atively clear, however, the transition from state s to state
s’ is not only defined by the robot action. Human un-
known actions have similar affects on the state transition.
As result, the transition function is the sum of all possi-
ble end states given all possible human actions at state s.
T(s,a,s") = Pr(s'|s,a). Where all possible end states s’
has the same changes caused by the robot’s action, but each
one of them has a different possible change caused by the
human (new human position, change in items status). Given
§ = T(z,y), sty h(m,y)7 Pty Pin, €(i1,i2,i3)» the Pr(s'ls,a) =

Pr(< rzac,y)’r;t‘rhzm,y)’h.’s‘t7ezil,i2,i3)|s7a) X E Pr(h;,|s). (2

In case the robot has any information about the human’s
policy, a way to represent that in the model is to build
a Completely Observable Markov Decision Process MDP
with state representation including only the human posi-
tion and items status and actions similar to robot actions
and integrate the information about the humans policy in

the transition function and the reward function of this MDP.
Then, the state value for certain task in the human MDP
can be used in calculating Pr(h},|s) in eq. ??. Rewards:
There are two different rewards received, R(s,a,s’) =
reward > 0 if an object goes into the container by robot
or human, R(s,a,s’) = highreward When the last ob-
ject goes to the container by robot or human. On the other
hand, the robot receives a penalty in one of these cases:
R(s,a) = penalty < 0if a is an impossible moving action
due to obstacle existence, R(s,a) = highpenalty if robot
picked up an item that was intended by human or if a led the
robot to the same position as human intend to be. Obser-
vations: At each time step, the robot observes the changes
in human position, human status, environment information.
An observation can be any possible combination of those
three type of information z = <h($7y), hst, e(i17i27i3)>. Ob-
servation Function: Depending only on the end state s,
the probability for each observation:

1 2=
P’I“(Z‘S,) — (h(z,y)shst,e(i1,i2,i3))
0 else

4. Tested Solvers & Experimental Results

In this paper we present results for three solvers: belief-
MDP [?], QMDP [?] and MMDP [?]. We note that this
paper does not discuss results of new approximate state-of-
the-art approaches, QMDP: Q-Function MDP is a POMDP
approximation based on a fully observable MDP, where:

Qupp(s,a) = R(s,a) + v Z Pr(s'ls,a)Vypp(s)
s'esS

The QMDP is then used to calculate the value of each belief
state depending on action:

V(b) = mazeea Z b(s)Qnmpp(s,a)
sesS

Belief MDP: an approximation for POMDP by represent-
ing continuous belief space with a discretized number of
values (eg. n values discretized equally over the belief
space). MMDP: An MMDP M = (a, A;f;cay, ST, R)
where « is a finite collection of n agents and A = xA;
represents possible joint action by n agents. Consider-
ing the joint action space as the basic set of actions, an
MMDP can be viewed as a standard (single-agent) MDP,
and can be solved to an optimal joint policy using stan-
dard MDP solvers like value iteration. We can manipulate
a Multi-agent MDP approach in a way that we handle the
POMDP uncertainty of the human information by repre-
senting MMDP with a joint action A = Ar x Ay con-
sists of the robot action and the human action, which means
that the solver calculates the optimal joint policy for both of
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Figure 2: State space and computation time for grid sizes.

them. Later at run time, we apply only the robot’s optimal
action from the optimal policy’s joint action, but the human
does not necessarily follow the human action part from the
policy’s optimal joint action.

We present some results we obtained with a simulator
written in Java running on 64 bits Linux and Sun’s JDK6
with 2GB of memory. Figure ?? compares the number of
states and computation time for each of the solvers. We im-
plemented and tested 2 different human behaviors: follow-
ing random policy and following closest-first policy. In the
first case, the human agent chooses a random action from
the 5 possible ones, which implies worst case scenario. In
the second behavior, the human just go and fetch the closest
object, moving through shortest path to take the object, and
then returning to the container. Of course, the robot is not
informed of the chosen human strategy. Figure ?? shows the
test results for the three solver’s policies given a random hu-
man behaviour. We can see that the MMDP behaves badly
in all the trials and generating lots of human-robot conflicts.
On the other hand, the results in the case when human fol-
lows closest-first policy are much more better and almost
alike for all three solvers, where MMDP behaves much bet-
ter than in the first case.

5. Conclusion & Future Work

We have formalized the addressed problem using a
POMDP that relies on a partially observable state of the
human. The model has been solved with Belief-MDPs,
QMDPs and MMDPs, and it has shown a great potential,
at the expense of a large computational cost. The addressed
problem is exponential, we are aware that results will be
much more interesting in time and state space using special
approximate solvers or divide-and-conquer approaches like
Policy-Contingent-Abstraction PolCA+ [?], and we leave
the proof and details for later work.

In case we succeed in future work to handle missions
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Figure 3: Policy results with random Human behavior.

with bigger subtask space(more objects), the agent can
maintain a belief over the human’s different possible poli-
cies (possible chain of tasks). This belief will be updated
at each time the human is done with a subtask, which will
give the robot more clear belief about the human’s policy
specially in an advanced time step during the mission.



