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Abstract: 

The drainage of particulate foams is studied under conditions where the particles are not 

trapped individually by constrictions of the interstitial pore space. The drainage velocity 

decreases continuously as the particle volume fraction    increases. The suspensions jam  

– and therefore drainage stops – for values     which reveal a strong effect of the particle size. 

In accounting for the particular geometry of the foam, we show that     accounts for unusual 

confinement effects when the particles pack into the foam network. We model quantitatively 

the overall behavior of the suspension – from flow to jamming – by taking into account 

explicitly the divergence of its effective viscosity at    . Beyond the scope of drainage, the 

reported jamming transition is expected to have a deep significance for all aspects related to 

particulate foams, from aging to mechanical properties. 

 

1. Introduction: 

Foams are used in a lot of industrial processes: gas is mixed in many materials to improve 

their thermal performance or to make them lighter, which is favourable to sustainable 

development. The matrix of those aerated materials is often composed of a complex fluid, 

such as a suspension. Typical examples for such mixtures can be found in food and cosmetic 

industries [1], in the production of construction materials [2] and of ceramic foams [3] that are 

used in numerous fields of technological processes such as filtering, membranes, catalysis, … 

Note also that the mining industry extensively resorts to mixtures of foam and particles 

through the flotation process that is used to separate ores [4].  



The homogeneity of a foam sample can be drastically affected by the drainage of the liquid 

and the simultaneous rise of the bubbles, resulting in a degradation of the quality and the 

properties of the final material. During the last two decades, most of the progress realized in 

the field of foam drainage has concerned aqueous foams, i.e. dispersions of densely packed 

gas bubbles in a liquid [5]. Some very recent studies have focussed on the drainage behaviour 

of foamy complex fluids, such as clays [6], coal fly ashes [7], colloidal suspensions [8], 

granular suspensions [9], emulsions [10]. Despite the results provided by these studies, a 

sound understanding of drainage laws in the presence of suspended particulate matter is still 

lacking. In order to explain the reported drainage velocities the authors have resorted to 

particle trapping phenomena, which can be classified into two distinct mechanisms: (i) the 

individual capture of particles by the foam constrictions, and (ii) the collective trapping – 

jamming – of the suspension. 

With regard to the first mechanism (i), Louvet et al. [11] studied the capture/release 

transition of a single spherical particle confined within the interstitial network of foam. The 

authors introduced a confinement parameter  which compares the size of the suspended 

particles to that of the foam constrictions. Afterwards,  has been proved to control the 

drainage behaviour of aqueous foams containing a moderate volume fraction of density-

matched spherical particles [9]. A sharp transition has been highlighted: for  < 1 particles are 

free to drain with the liquid, which involves the shear of the suspension in foam interstices, 

for  > 1 particles are trapped and the mobility of the interstitial phase is strongly reduced. 

Moreover, simple modelling has been found to describe the reported drainage behaviour as a 

function of . This study, that involved a dedicated model experimental system, has shown a 

promising way to progress further in the understanding of particulate foams. In this paper we 

follow this approach and we investigate the second trapping mechanism (ii), i.e. the jamming 

of the suspension within the interstitial foam network. This phenomenon is expected to be 

observed at a sufficiently high particle volume fraction [12]. The foam network induces 

confinement constraints that could influence this jamming transition. Indeed this confinement 

effect has been reported in studies involving small gap sizes in conventional rheometers [13-

16] as well as dedicated set-up [17]. Therefore we will pay a particular attention to this issue. 

In order to fully uncouple the two trapping mechanisms, we consider the situation  < 1, for 

which particles are not subjected to the individual capture process (i) [9], and we measure the 

drainage velocity as a function of both particle volume fraction and .  



 

 

2. Experimental set-up: 

Particulate foams samples are prepared from a precursor liquid foam which is subsequently 

mixed with a granular suspension (Fig. 1). The foaming solution contains 10 g/L of 

TetradecylTrimethyl-Ammonium Bromide (TTAB) in distilled water with 20% w/w glycerol. 

With such a proportion of glycerol the density of the solution is 1050 kg/m3 and matches with 

that of polystyrene particles used in the study. The surface tension of the liquid/gas interface 

is 38 mN/m and shear viscosity of the bulk is     1.7 mPa.s. As we can see on Fig. 1a, 

bubbles are generated in a T-junction with two entries (nitrogen and foaming solution) and 

one exit (bubbly solution). Thanks to the flow focusing mechanism [18], small volumes of gas 

and liquid pass alternatively through the junction, resulting in the production of bubbles, 

which size is controlled by tuning the flow rates of gas and liquid. For this study the bubble 

diameter has been set to        µm      µm. The bubbles are continuously produced and 

released at the bottom of a column which is partially filled with the foaming solution (Fig. 

1b). This results in the formation of foam in the column. During the production, the foam is 

imbibed with the same foaming solution in order to obtain stationary drainage conditions with 

a constant value of the gas fraction (  ) throughout the foam column [19]. Once the column is 

filled, the foam is flushed towards a mixing device (which is also based on a T-junction) 

where the granular suspension is introduced (Fig. 1c). The suspension is prepared at a given 

particle volume fraction (    by mixing the foaming solution and polystyrene spherical beads 

(Microbeads®). The beads are quite monodisperse:      ⁄     and we have used the four 

following diameters:               µm. In the foaming solution, those particles behave as 

fully hydrophilic particles and they do not adsorb at bubble interfaces. We have checked that 

the mixing device does not break bubbles and therefore, the bubble size in the final sample is 

also     660 µm. The outlet of the mixing device is connected to a cylindrical tube (26 mm 

in diameter) in which the produced particulate foam is continuously introduced (Fig. 1d). It is 

equipped with a piston which rate for withdrawing motion compensates exactly the volume 

flow rate of the injected particulate foam. Moreover, the tube is rotated (0.3 Hz) along the 

horizontal axis in order to compensate the effects of gravity during the filling step. We stop 

this step once the volume of produced particulate foam equals 60 mL, which corresponds to a 

foam length approximately equal to 11.5 cm. Then the foam tube is turned to the vertical and 



we start to measure the drainage properties of the samples. We follow the evolution of the 

height  (   locating the transition between the foam and the drained suspension at the bottom 

of the column (see Fig. 1-II ). Note that the main contribution to the global error on  (   is 

related to the apparent thickness of the transition due to bubble size. This error is close to    ⁄   15% excepted for the very low values of  (  . 
The other parameters are controlled by the relatives flow rates of the precursor foam (    

and the suspension (   . The resulting gas fraction is       (      ⁄ . For the particle 

fraction, rather than considering the entire particulate foam volume, we will see that it is more 

appropriate to define the volume fraction of particles in the interstitial phase:        [  (        ]⁄ . For all the samples presented in the following we have controlled 

the production stage in such a way that      . As we are interested in confinement effects 

on the drainage of particulate foams, we refer to the confinement parameter   [11,9], that 

compares the particle size to the size    of passage through constrictions in the interstitial 

network of the foam. In [11],  

             (            √        (               (   
has been determined from both experiments involving the trapping/release of a single particle 

in foams and numerical simulations of foam structures. Using the values for   ,    and  , we 

obtain for the following  -values probed in this study:                      . 

 

3. Kinetics of drainage: 

For the particle free samples, Fig. 2a shows the measured curve  (     ⁄ , where      (        ): a first stage is characterized by a rapid linear increase for times     

(inset Fig. 2a), followed by a slower evolution towards the equilibrium value    . The time    , is identified as the characteristic time for which half of the liquid volume has drained 

off the foam [5]. During this regime, the volume of liquid/suspension drained out of the foam 

has flowed through foam areas that have not yet been reached by the drainage front, i.e. areas 

where the gas fraction has remained equal to the initial value  . Because the linear regime 

accounts for drainage properties of foam characterized by a constant gas fraction  , we 

measure the drainage velocity   from the slope of this linear evolution,       ⁄ . In order 



to characterize the effect of particles on drainage, we normalize the measured drainage 

velocity by the one measured without particle, i.e.    ⁄ . Note that because of uncertainties 

related to the measurement of  (   for    , linear fits are not applied to the early stage of 

the linear regime. Consequently, the relative error on the reduced drainage velocity is 

estimated to be close to 15%. 

Fig. 2 illustrates the measured evolutions for  (     ⁄  as    (Fig. 2a) or    (Fig. 2b) varies. 

Both parameters modify significantly the drainage of particulate foams: (i) the initial slope 

decreases as both    and    increase, (ii) the final value        (      ) decreases as 

well. The linear regime remains rather well defined for each sample, which suggests that the 

slope reasonably accounts for drainage corresponding to stationary conditions within the 

imposed initial conditions.      accounts for the final retention level for particles in the foam. 

Even if particles are not captured during the linear regime of drainage (    within these 

drainage conditions), they get trapped as the drainage front reaches them and imposes the 

condition    . The larger the particles are, the earlier they get trapped when the drainage 

front goes down, and the higher the retention level is. Note that images from the bottom of the 

foam column confirmed that the released particles are effectively released during the first 

regime of drainage [9]. On Fig. 2c, reducing  (   by      and   by   make all the curves of 

Fig. 2a and 2b collapse onto a single one. Note that although   and      vary significantly 

from one sample to the other (see Fig. 2d and 2e), this confirms that free-particle and 

particulate foams exhibit the same drainage behavior. 

All the drainage velocities are now plotted in Fig. 3. For the different values of  , it shows a 

regular decrease of    ⁄  as the particle volume fraction    increases. The effect of particle 

size is not significant as       , but discrepancies appear for larger values. Drainage 

velocities seem to vanish, i.e.    ⁄   , as    reaches approximately 0.5. The inset in Fig. 3 

reveals that the particular value of    for which the drainage velocity vanishes increases with 

the particle size. 

 

4. Discussion: 

Drainage experiments have provided results for the flow of granular suspensions through 

the interstices of foams. As a starting point, we analyze these results in terms of the reduced 



effective viscosity of the suspension, i.e.  ̃   (  )      (  )   ⁄ , which is deduced from 

the drainage velocities through the relation:  ̃   (  )     (  )⁄  [5]. Fig. 4 shows this 

quantity as a function of    for the four studied values of  . For        the viscosity of the 

suspension is consistent with the theoretical values for the bulk viscosity of diluted non-

brownian solid spheres estimated with the expression  ̃   (  )                  [20]. 

Whereas this agreement is expected for    , one can question the agreement observed for    . It should be realized that for the rather wet foams considered here, the suspension is 

mostly contained within the foam nodes and the volume of a foam node,   , is large enough 

to be a representative volume of suspension.    can be estimated in assuming 6 nodes per 

bubble [5]:     (          ⁄ . In relating the bubble size to the radius of Plateau 

borders     through      ⁄      (         [5], the node volume reads           , or 

equivalently         , which corresponds approximately to 60 sphere volumes. This means 

that although the geometrical confinement is extreme in the constrictions of the foam network 

for    , the concept of effective viscosity makes sense in foam nodes where the suspension 

is effectively sheared. Moreover, this effect is specific to foams due to the interfacial mobility 

which allows the particles to flow easily in constrictions [21]. For        Fig. 4 shows 

deviations in the viscosity corresponding to different values of  . Moreover these deviations 

increase as a function of the particle volume fraction. In fact, the data corresponding to each 

value of   define a distinct curve and can be fitted with the Krieger-Dougherty relation:  ̃   (  )  (          ⁄ )          , where        is the critical particle volume fraction for 

which the viscosity diverges [22]. As shown in Fig. 4, the critical particle volume fraction 

obtained by fitting the data depends on  :                       and      for                  and      respectively. The physical meaning of        is usually interpreted as 

a consequence of the particle packing at     [23,24,14], i.e.           . Therefore, in the 

following we seek for a physical interpretation for the reported evolution of     as a function 

of  . In doing so we determine the packing fraction of particles in the structural elements of 

the foam network, namely the nodes and the Plateau borders, i.e.          and        

respectively. First,          can be estimated from existing results for bisdisperse packings of 

spheres [25,26]. Whereas monodisperse assemblies of fine or coarse particles have the same 

bulk packing fraction (      ), the overall packing fraction of bidisperse assemblies 

(            ) depends on both   , the volume fraction of fine particles in the mixture and  , 



the coarse to fine particle size ratio. We are interested in situations characterized by    , 

where the fine particles are sufficiently small to fill the spaces in the packing of coarse 

particles. In such a case, the maximum overall packing fraction is               =        (            (  , where        refers to the packing of coarse particles and    (   is the 

packing fraction for the fine particles confined in the spaces formed by the packed coarse 

particles. For     ,    (         , but due to wall effects    (          for any finite 

value of  . Models accounting for the wall effect in mixtures of spheres have been proposed 

and here we refer to the model of de Larrard et al. [26,27]. For large   values              is 

given by the following set of equations: 

{  
                   (                              (     [            (         ]   (   

where     [  (    ⁄      ]     [27] is the function accounting for the geometrical wall 

effect.              is plotted in the inset of Fig. 5 and it shows how                decreases due 

to wall effects as   decreases (      . As the geometry of a foam node differs from that 

resulting from the contacting coarse spheres discussed above, one as to define an equivalent 

coarse sphere radius for foam. The shape of foam nodes is imposed by capillary forces and the 

Young-Laplace law implies that the mean curvature is approximately constant for the node 

surface, i.e.        ⁄       ⁄      , where      and      are the two principal radii of 

curvature. At the node ends, where it connects to Plateau borders, these radii can be 

approximated by               , so that       ⁄ . At the centre of the node surface, the 

two radii take the same value, i.e.               , and the resulting mean curvature writes:      ⁄ . Therefore, the central area of the node surface can be described by a spherical cap 

of radius        , showing how the two principal radii evolve from the node ends to the 

central area. In order to average this evolution, one can determine the radius of spheres 

forming a tetrahedral pore which volume is equal to that of a foam node,            as 

calculated above. The volume of a tetrahedral pore formed by 4 contacting spheres of radius          is given by                      [5], which provides an equivalent coarse sphere 

radius for foam nodes:                . Thus, the relation between   and   reads             ⁄      ( √ ⁄   ) ⁄  and we plot               (   



 (                     ) (         ⁄  in Fig. 5. Note that (i) the particular choice for        

has no influence on          and (ii) the choice made for the ratio           ⁄  has a very 

limited influence on         (   within the investigated   range. Fig. 5 shows that the 

decrease of the packing fraction of particles confined in a foam node reaches 25% as   raises 

up to unity. For practical purposes, the curve         (   can be approximated by the 

polynomial curve:         (        ⁄       ⁄       . 

Now we turn to the determination of        for particles confined in Plateau borders. As far as 

we know, this problem has never been considered in literature, which justifies the 

experimental and theoretical elements we develop in the following. We perform a simple 

packing experiment in a straight solid Plateau border: monodisperse glass beads of diameter 

dp = 1.5 – 10 mm are poured in the space between 3 vertical PMMA cylinders in contact of 

radii rPb = 11.5 – 40 mm. Bead density is measured and then, from the height and the mass of 

the beads deposited in this Plateau border geometry, we deduce the particle packing fraction 

as a function of the confinement parameter λ. In Fig. 6a, the measurements reveal an overall 

decrease of        with λ, illustrating the increasing importance of both wall effect – the local 

density is lower at the wall than in the bulk – and corner effect – the 3 corners of the Plateau 

border are not accessible to particles. An analytical expression of this decrease can be derived 

by taking into account these two effects:  

                                        
where     ቀ√    ቁ      is the cross-section of the Plateau border and       (resp.      ) is 

the area covered by beads packed at        (resp.       ) as shown in Fig. 6b. The wall effect 

is approached by considering the ordered configuration, i.e. 
                         , where           √   is the maximum volume fraction of a bead monolayer in a triangular lattice between two 

planes and         √  is the volume fraction of a faced centered cubic packing.      ,       

and         (the corner area that is not accessible to the particles), are derived from simple 

geometric considerations:  



{  
        ቀ     ቁ            ቀ    ቁ             (             ቀ    ቁ                       

  (   
where the angle   is shown in Fig. 6b. From these expressions, Eq. 3 is plotted in Fig. 6a and 

it is found to describe well the overall decrease measured for       . Eq. 3 can be 

approximated by       (                       . 

As λ > 0.55, the experimental data show large fluctuations, due to ordering induced by 

increasing confinement effects. Several ordered packings  – from 1 sphere (λ = 1) to 4 spheres 

(λ = 0.530)  in the Plateau border cross-section – have been calculated. They are reported in 

Fig. 6a and are illustrated in the appendix. One can derive analytically (see the appendix) the 

transition between two close configurations as illustrated by the lines in Fig. 6a These results 

increase our knowledge on sphere packings with geometric constraints such as those obtained 

for the cylindrical channels geometry [28].          and        are plotted in Fig. 7 against the critical particle volume fractions reported 

from Fig 4. The experimental data are found to be in good agreement with          within the 

whole range of  -values. This good agreement is due to the fact that the studied foams are 

rather wet, i.e. most of the suspension is confined in the nodes. This suggests that the 

geometrical approximation based on bidisperse mixtures of spheres is sufficient to describe 

this confinement in wet foams. Unfortunately our experimental setup does not allow to 

explore the behavior of dry particulate foams at high   , but the relevance of the lower 

bound, i.e.       , certainly deserves a dedicated study. 

 

5. Conclusion 

We performed drainage experiments of particulate foams, where a granular suspension is 

confined within the interstitial pore space of the foam. Under our experimental conditions, the 

particles are not trapped individually by the constrictions of the network. We observed the 

jamming transition when the particle volume fraction reaches a critical value    , that is found 

to be very sensitive to the particle size.     is unexpectedly low due to confinement effects 

when the particles pack into the geometrical elements of the foam network. We model 

quantitatively the overall behavior of the suspension – from flow to jamming –  by taking into 



account explicitly the divergence of its effective viscosity at    . Our complete study of the 

geometrical confinement suggests that even lower     values could be reached by using dryer 

foams, for which the proportion of liquid contained in the Plateau borders is significantly 

raised. Beyond the scope of drainage, the reported jamming transition is expected to have a 

deep significance for all aspects related to particulate foams: rheology and ripening of liquid 

foams, and mechanics of cellular solids. 
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Appendix: Sphere packings in a Plateau Border 

Analytical expressions for        are derived from simple geometrical considerations and they 

are reported in Table 1. These configurations are represented by the star-symbol on Fig. 6a.  

Table 1: ordered sphere packings in a Plateau border for different confinement ratio 
illustrated by the star-symbol on Fig. 6a. 
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From these particular patterns, we derive the transitions      , from 1 particle to 3 particles in 
a Plateau border cross-section,          , from 3 particles to 3.5 particles and        , from 3.5 

to 4 particles (      ):     (  √ )    √  ( √   )    

{   
        √   ቆ    ቇ 
        (   √ ) ቀ√    ቁ      (       )
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These expressions are illustrated by the fine lines on Fig. 6. 

  



 

 

 

 

 

 

 

Fig. 1: Experimental setup. I- Production of particulate foams: monodisperse bubbles are 
generated from the simultaneous injection of gas and foaming solution through a T-junction 
(a). The bubbles are released at the bottom of a column partially filled with the foaming 
solution and foam is produced. Imbibition with the same foaming solution allows setting the 
gas fraction over the whole foam sample (b). Once the foam has filled the column, it is 
injected along with a granular suspension in a small device in order to obtain the final mixture 
(c), the proportion of each phase being accurately controlled during this stage. The mixture is 
continuously introduced in a horizontal column where rotation allows for gravity effects to be 
compensated (d). II - Study of drainage: after the generation step, the rotating motion is 
stopped and the column is turned to the vertical. A camera is then used to follow the evolution 
for the position of the foam/liquid transition, from which the drainage velocity is determined. 

  



  
 
Fig. 2: Temporal evolution of the reduced height of liquid/suspension drained out of the foam. 

(a) Effect of the particle volume fraction at fixed particle size     40 m:     0 ( ), 0.16 

( ), 0.37 ( ) and 0.45 ( ); inset: zoom on the linear regime of the particle-free foam. (b) 

Effect of the particle size at fixed particle volume fraction     0.45:     6 m ( ), 20 m 

( ) and 40 m ( ). (c) Rescaled drainage curves from all the data of (a) and (b). (d) and (e)    ⁄  and        ⁄  versus    for several particle sizes:     6 m ( ), 20 m ( ),  30 m (

),  and 40 m ( ). 

 

 
  



 

 

Fig. 3: Reduced drainage velocity (deduced from the slope of the linear regime in  (     ⁄  vs   plots) as a function of the particle volume fraction for several particle sizes: 

     6 m ( ), 20 m ( ),  30 m ( ),  and 40 m ( ). Inset: zoom on vanishing 

drainage velocities. 

 

 

 

  



 

Fig. 4: Reduced effective viscosity of the suspension as a function of the particle volume 
fraction for several   values. The solid lines correspond to Krieger-Dougherty curves using 
the critical particle volume fractions reported on the abscissa for each   value. The dash line 

corresponds to  ̃   (  )                 .  

  



 

Fig. 5: Packing fraction of spheres confined in a foam node (       is the packing fraction 
within unconfined conditions). Inset: Packing fraction of bidisperse assemblies of coarse and 
fine particles as a function of the proportion of fine particles – computed from eq. (2). The 

maximum value is shown to decrease as the coarse to fine size ratio decreases from  to 6.5, 
or equivalently as   increases from 0 to 1. 

 

  



  

 
(a) (b) 

Fig. 6. Packing of spheres in an ideal Plateau border. (a) () experimental data for glass beads 
poured in the space between 3 cylinders in contact, thick brown line: Eq. 3, thin green lines: 
Eqs. 5, 6 and 7 (appendix) and () ordered sphere packings (appendix) (b) Sketch of the 
Plateau border cross-section filled with particles. 

 

  



 

 

Fig. 7: Critical volume fractions measured for particles suspensions confined in foams (the 
symbols are the same than those presented in Fig. 4). The lines correspond to packing 
fractions calculated for nodes and Plateau borders (respectively         (   and       (   
defined in the text). 

 

 

 

 

 

 

 


