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1) Université Paris-Est, Laboratoire Navier (UMR 8205),

CNRS, ENPC, IFSTTAR, F-77420 Marne-la-Valle, France and
2) Institute of Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany

(Dated: August 19, 2013)

Using numerical simulation of a 2D Lennard-Jones system, we study the cross-over from shear-
thinning to Newtonian flow. We find the short-time elastic response of our system essentially
unchanged through this cross-over, and show that, in the Newtonian regime, thermal activation
triggers shear transformations, i.e. local irreversible shear events that produce Eshelby (long-ranged,
anisotropic) deformation fields as previously seen in low-T glasses. Quite surprisingly, these Eshelby
fields are found to persist much beyond the α-relaxation time, and shear-thinning to coincide with
the emergence of correlations between shear relaxation centers.

It is now well documented that, in glassy solids, plas-
tic deformation results from the accumulation of “shear
transformations” occuring within “zones” a few parti-
cle wide [1]. These rearrangements give rise, in the sur-
rounding (isotropic) elastic medium, to “Eshelby” stress
changes [2], which are anisotropic – with cos(4θ) sym-
metry in 2D – by virtue of the tensorial character of the
shear sources. Eshelby fields bias the occurrence proba-
bilities of plastic events depending on their locations rel-
ative to prior ones and, at low temperature, when strain
sources are predominantly oriented (in a tensorial sense)
along external deformation, promote avalanche behav-
ior, i.e. the organization of plastic events along bands-
like patterns [3, 4]. Studies of stress [5] and diffusion [6]
in systems sheared at finite temperature (T) have evi-
denced that avalanche dynamics remain at work up to
T <
∼ 0.75Tg, with Tg, the glass transition temperature.
Knowledge, however, is still fragmentary as to how de-

formation mechanisms change around Tg. The response
of a supercooled liquid is Newtonian (steady shear stress
σ ∝ strain rate γ̇), at high T and low γ̇; it progressively
becomes shear-thinning (σ grows sublinearly in γ̇), when
decreasing T /increasing γ̇ [7]. Furukawa et al [8], have
found the spatial correlation of the displacement field to
be anisotropic in the shear-thinning regime but not in
Newtonian flows. Since the low-T flips create anisotropic
deformation fields we must ask whether this observation
signals a change in the very nature of elementary relax-
ation events, or a change of correlation properties be-
tween them. This question is crucial to any theoretical
approach to the rheology of supercooled liquids.
To characterize flow events at both high and low tem-

peratures, we will focus on the shear strain field and its
spatial auto-correlation, an approach apparented to re-
cent studies of avalanche dynamics in numerical simula-
tions [9] and of the transition to shear banding in exper-
iments [10]. Borrowing from recent advances in diffuse
wave acoustics [11] we show that the auto-correlation of
the short time (non-affine) strain field captures the dy-

namic elastic Green function of the material; this en-
ables us to show that the longitudinal and transverse
sound speeds are unchanged through the shear-thinning-
to-Newtonian cross-over. Using direct measurements of

elastic moduli in inherent states (IS’s) we then find that
the high frequency elastic properties of our system are es-
sentially T -independent and very weakly γ̇-dependent up
into the Newtonian regime. From long-time strain auto-
correlation data we next bring evidence that, in the New-
tonian regime, thermal fluctuations trigger irreversible
shear transformations giving rise to (anisotropic) Eshelby
fields, like in low-T glasses; quite strikingly, these fields
are found to persist much beyond the α relaxation time.
Our work thus substantiates the idea that supercooled

liquids are “solids that flow” [12], and meanwhile re-
veals two major surprises: (i) Eshelby strains are ob-
served around and above Tg, in the Newtonian regime
– when they are usually thought to be peculiar to low-
T , plastic, deformation; (ii) correlations between shear
relaxation centers emerge as soon as the system enters,
for T decreasing, into the shear-thinning regime. The
Newtonian-to-shear-thinning cross-over thus appears to
be controlled by the competition between the flow events
needed to relax shear and randomly oriented shear events
triggered by thermal activation.
Simulations are performed using the same 2D binary

LJ mixture as in [4–6]. From athermal simulations [4]
the bulk and shear moduli are: K ≃ 85, µ ≃ 25. The
mass density ρ ≃ 1.77, whence p- and s-wave speeds (in

2D) cl =
√

(K + µ)/ρ ≃ 7.9 and ct =
√

µ/ρ ≃ 3.8. (We
use throughout reduced LJ units). From the decay of
the incoherent scattering function, we find τα = 104 at
T = Tg ∼ 0.27. Simple shear is implemented using Lees-
Edwards boundary conditions with flow lines along the
x axis. Only steady state data are considered for each
parameter set (linear system size L, γ̇, and T ). Plots of
viscosity η = σ/γ̇ (with σ the steady shear stress) vs γ̇
are presented on Fig. 1 for different T ’s, using L = 40,
a size beyond which η is size-independent [5]. We find
the usual cross-over from a Newtonian plateau at low γ̇
and high T , to shear-thinning. For T ≤ 0.2, plastic flow
is known to be governed by the same mechanisms – zone
flips and avalanche behavior – as athermal systems [5, 6].
To construct a coarse-grained non-affine strain field,

ǫ(r; t, t+∆t), between times t and t+∆t, we follow the
method proposed in [13], using the normalized coarse-
graining function: φ(r) ∝ 1−2(r/rc)

2+(r/rc)
8 for r < rc,
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FIG. 1. Left: Steady flow viscosity η = σ/γ̇ vs. γ̇ for different
T ’s; bullets: (γ̇c(T ), η(γ̇c(T )) with γ̇c(T ) from [6]; thick lines:
KIS and µIS (see text). Right: A typical strain map (color
online), using L = 160, T = 0.35, γ̇ = 10−4, ∆t = 100, rc = 2.

φ(r) = 0 otherwise [14]. A typical map of the shear strain
ǫxy is shown on Fig. 1-(right) for rc = 2: regions where
inelastic events have occurred exhibit large strain val-
ues, which contrast against the background of small elas-
tic fluctuations. We have systematically used different
coarse-graining scales rc = 1, 2, and 4, to check for con-
sistency, and found similar conclusions; in the rest of this
paper, we take rc = 1, which provides better statistics.
On Fig. 2, plots of the space and ensemble average

〈ǫ2xy〉 vs. ∆t present the usual sequence of convective,
caging and diffusive regimes. For all of our T ’s and γ̇’s,
〈ǫ2xy〉/T [see Fig.2-(a)] collapse at short times: strain fluc-
tuations are then ∝ T , i.e. result primarily from fast
thermal vibrations around IS’s. At long times, 〈ǫ2xy〉/∆t
reaches a plateau, which defines a diffusion coefficient
Dxy = lim∆t→∞ 〈ǫ2xy〉/∆t. Plots of Dxy vs T for differ-
ent γ̇ [Fig. 2-(right)] show the same features as a similar
display of transverse particle diffusion data [6]: (i) for
T >

∼ Tg, Dxy(T ; γ̇) matches at low γ̇’s its value Deq
xy(T )

in the unsheared equilibrated supercooled liquid (thick
solid line); (ii) Dxy(T ; γ̇) deviates from Deq

xy(T ) at low T ,
high γ̇, thus marking the entry in a regime where strain
diffusion is primarily due to plastic events. The cross-
over between the “temperature-controlled” and “strain-
controlled” regimes can be roughly located by identifying
where the Dxy(T ; γ̇) curves merge onto the equilibrium
line Deq

xy(T ). The resulting γ̇c(T ) values (not shown) are
consistent with those identified in [6] from diffusion data.
On the viscosity plot of Fig. 1-(left), we place bullets at
the (γ̇c(T ), η(γ̇c(T ))) points to show that they also mark
the merging of η(γ̇) into the low-γ̇ Newtonian plateaus.
We concentrate in the following, on the spatial autocor-

relation of the accumulated strain field: Cαβκχ(R; ∆t) =
〈ǫαβ(r; t, t +∆t)ǫκχ(r + R; t, t +∆t)〉, and start by con-
sidering its short-time dynamics. For this purpose, we
adapt in [14] an argument by Lobkis and Weaver which
establish a fluctuation theorem for the dynamic response
of elastic systems [11]. Namely, we show that if par-
ticle motion subsumes to harmonic thermal vibrations
around IS’s: C(R; ∆t) = T G∗(R; ∆t), with G∗(R; t) the
ensemble-averaged dynamic strain-strain Green function.
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FIG. 2. Left: 〈ǫ2xy〉/T (a) and 〈ǫ2xy〉/∆t (b) vs ∆t, for T =
0.05, 0.1, 0.2, 0.3, 0.35, 0.4, and γ̇ = 4.10−5. (c): symbols:
Dxy vs. T for γ̇ = 10−5, 4.10−5, 10−4, 4.10−4, 10−3, 4.10−3,
10−2 and both L = 80 (circles) and 160 (triangles); thick solid
line: Deq

xy in the equilibrated supercooled liquid with L = 80.

2D plots of Cxyxy (as of now, abbreviated as Cxy) at short
times are displayed on Fig. 3: as per above, they reveal
the strain response to a stress dipole [15] applied at the
origin at t > 0, and accordingly show two wave fronts
propagating away from the origin at (roughly) the veloc-
ities cl and ct which are estimated using athermal sim-
ulation data [16]. Quite remarkably, the front velocities
match their T = 0 estimates, even though we use here
T = 0.3 and γ̇ = 10−5, which sets our system well inside
the Newtonian regime. Cuts of Cxy along the x axis,
on Fig. 3 (bottom) [17], emphasize that the transverse
sound speed is insensitive to T over all of our tempera-
ture range, which extends beyond Tg.
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FIG. 3. (Color online): Top: 104 Cxy(R; ∆t)/T for R ∈
[−L/2, L/2]2 (L = 160), T = 0.3, γ̇ = 10−5, rc = 1,
times ∆t = 5, 10, and 15 (from left to right). White semi-
circles have radii ∆t ct (solid) and ∆t cl (dashed). Bottom:
Cxy(xex;∆t)/T vs x at ∆t = 5 and 10 (the latter shifted by
5 10−5) for γ̇ = 10−5, T = 0.05, 0.1, 0.2, and 0.3.

Beyond T = 0.3, the caging regime is too short to
probe elasticity using this method. We have thus also
measured the elastic moduli of IS’s (using [18]) sampled
from steady flow configurations. KIS and µIS are re-
ported on the viscosity plot, Fig. 1-(left), for all our γ̇’s
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FIG. 4. (Color online) (a) Cxy vs distance R = x or y along
both the x and y axes for γ̇ = 10−4, ∆t = 100, T = 0.1,
L = 40, 80, 160, and 320; (b,c,d) present only cuts along x;
(b) γ̇ = 10−4, ∆t = 2.103, L = 160, T = 0.05, 0.1, 0.2, 0.3,
0.35; (c) Cxy/Cxy(R = 1), same parameters, but T=0.35 and
0.4; (d) Cxy/Cxy(0), for γ̇ = 10−5, T = 0.35, and ∆γ = 1%,
2%, 5%, 10%, and 20%, i.e. time intervals ∆t = 103, 2.103,
5.103, 104, and 2.104. Thin dashed lines: slope -2.

and T ’s up to 0.4. The near-constancy of elastic moduli
sharply contrasts with the order-of-magnitude changes
in viscosity [19]. We thus find that, through the shear-
thinning-to-Newtonian cross-over, the short-time elastic
properties of our sheared systems are only marginaly sen-
sitive to temperature and strain-rate.
If the elastic properties of the IS are similar on either

side of the crossover, then shouldn’t the relaxation events
occurring in the the liquid couple with the elastic matrix,
like low-T flips, and emit acoustic signals carrying, at
least for short times, Eshelby strain fluctuations? What
kind of perturbation are these events thus creating in the
liquid? To answer this crucial question we now examine
the non-affine strain field accumulated over long times,
in the diffusive regime of strain fluctuations.
Beyond the caging regime, ǫxy(t, t + ∆t) compounds

thermal strain fluctuations with the accumulating plastic
deformation. Denoting ǫplxy(t, t+∆t) the strain associated

with the change of IS between t and t + ∆t, and ǫelxy(t)
that associated with the departure of each instantaneous
configuration from its IS, we have: ǫxy(t, t + ∆t) =
−ǫelxy(t)+ ǫplxy(t, t+∆t)+ ǫelxy(t+∆t). The short-time au-
tocorrelation of the strain field, which we studied above,
is nothing but the autocorrelation of ǫelxy(t+∆t)− ǫelxy(t).
Moreover, because vibration modes have uncorrelated
phases, the autocorrelation of any field ǫelxy(t) alone is
zero [11, 14]. At long times, hence, as hopping events
accumulate, the autocorrelation of ǫelxy(t + ∆t) − ǫelxy(t)
must vanish and then only remains in Cxy(R; ∆t) the
contribution of ǫplxy.
Before proceeding, our discussion has to address one

technical difficulty: as shown on Fig. 4-(a), typical cuts
of Cxy(R; ∆t), at low temperature, present a strong x, y

asymmetry. Clearly, this is a finite size effect arising from
the Lees-Edwards boundary conditions [14]. As system
size increases, however, the Cxy values along both the
x and y axes noticeably collapse on the same master
curve; in particular, we see that Cxy cuts along x, for
L = 160, provide a meaningful approximation for the
large L autocorrelation data, up to significant distances
≃ 40. We focus of such cuts in the next plots.
Correlation data for γ̇ = 10−4, in the diffusive regime

of 〈ǫ2xy〉 (namely, for ∆t = 2.103) are presented both
as cuts on Fig. 4-(b-c) and as 2D plots on Fig. 5. As
discussed above, the conspicuous x, y asymmetry on the
low-T 2D plots is a finite size effect. Fig. 4-(b) shows
that the correlation tails decrease slowly in the regime
where avalanche behavior is expected to be at work, up
to T = 0.2 [5, 6], and more sharply between T = 0.2,
and 0.35. The decay of correlations with increasing T is
accompanied, on 2D plots, by a progressive emergence of
the cos(4θ) symmetry. A decrease of the correlation tail
can still be seen between T = 0.35 and T = 0.4 on Fig 4-
(c). At this latter temperature, the correlation function
present both a 1/R2 decay and cos(4θ) symmetry.
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FIG. 5. 2D plots of 102 Cxy(R) at ∆t = 2.103, γ̇ = 10−4,
T = 0.2, 0.3, 0.35, 0.4 (from left to right).

It is striking here to find non-vanishing anisotropic
correlations of the strain field at T = 0.4, a very high
temperature, much above Tg. We observe the same
feature for all our (γ̇, T )’s in the Newtonian regime:
namely Cxy ∝ cos(4θ)/R2, the same analytic form as
the far-field strain (or stress) produced by an Eshelby
event [20]. To interpret this observation, let us write the
strain accumulated between t and t+∆t, ǫxy =

∑

e ǫ
e
xy,

as the sum of the contributions of individual events,
and note that Cxy(R; ∆t)/Cxy(0;∆t) = 〈ǫexy(r)ǫ

e
xy(r +

R)〉/〈(ǫexy)
2〉 when events are independent. Decomposing

each ǫexy into the large but localized contribution of the
relaxing center, and the order-of-magnitude smaller, spa-
tially extended, elastic strain field, ǫexy = ǫcorexy + ǫfieldxy , we
now see that Cxy(R; ∆t)/Cxy(0;∆t) ∝ 〈ǫcorexy (r)ǫcorexy (r +

R)〉 + 2〈ǫcorexy (r)ǫfieldxy (r + R)〉. The first term on the rhs
captures details of particle motion inside relaxation cen-
ters; it must hence quickly vanish with distance and
become negligible beyond length scales ∼ a zone size:
only the second term remains in the far-field and hence
Cxy(R; ∆t)/Cxy(0;∆t) capture the average strain field
produced by an irreversible event [21].
On this basis, we interpret the cos(4θ)/R2 form of the

correlation function in the Newtonian regime as signaling
that strain fluctuations result from the accumulation of
independent Eshelby events. Since we learned from strain
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diffusion that, in this regime, strain fluctuations are also
identical to those of the equilibrated supercooled liquid,
we now conclude that in supercooled liquids, thermal
fluctuations activate independent shear transformations,
i.e. local shear events, which couple elastically with the
embedding medium and give rise to Eshelby strains.
The idea that relaxation events produce Eshelby fields

in supercooled liquids seems quite contrary to current ex-
pectations. So, to further assess the degree of persis-
tence of these long-ranged elastic effects, we provide on
Fig. 4-(d), Cxy(R; ∆t)/Cxy(0;∆t) data for T = 0.35 and
γ̇ = 10−5, in the Newtonian flow, at increasing time in-
tervals, up to ∆t = 2.104. This latter value is much
larger than our estimate of τα(0.35) ∼ 100 [6] based on
the usual analysis of the intermediate scattering function;
over this time interval, 〈ǫ2xy(∆t)〉 increases 103-fold from
the caging plateau. The curve collapse entails that the
Eshelby strains created in the supercooled liquid by ir-
reversible events are not erased by later ones but persist
and accumulate diffusively at timescales much beyond τα.
The observation of lasting Eshelby fields in a Newtonian
liquid is the primary outcome of our work.
We now know that the Newtonian flow proceeds by the

accumulation of Eshelby events which have similar fea-
tures to the low-T plastic ones. Moreover, we observed on
Fig. 5 that the signature of avalanche behavior at low-T is
not the x, y asymmetry (which is just a finite size effect):
it is instead the imbalance between positive and negative
lobes, which reflects the preferential alignement of shear
events along both the x and y axes. With this at hand,
let us now come back to the comparison of T = 0.35 and
T = 0.4, γ̇ = 10−4, data: these two temperatures were
chosen because [see Fig. 1-(left)] the system lies in the
middle of the cross-over at γ̇ = 10−4, T = 0.35, and in-
side the Newtonian regime for T = 0.4. The slower than
1/R2 decay of Cxy at T = 0.35 associated with the slight
imbalance between ± lobes on the corresponding 2D plot
now shows that the entry (with decreasing T ) inside the
shear-thinning regime is associated with the emergence
of correlations between shear relaxation events. This is
the second important result of our work.
The following picture is now unfolding. Measurements

of sound propagation and of elastic moduli in IS show
that the elastic properties of sheared supercooled liquids,

i.e. the local curvatures of the potential energy land-
scape, are essentially statistically unchanged when cross-
ing over from the glassy to the shear-thinning and up
into the Newtonian response, a result which extends to
sheared systems recent findings in equilibrated ones [22].
At the time scale relevant to the unfolding of shear trans-
formations, high and low T systems are hence statisti-
cally identical. The first important outcome of our work
is the direct evidence that in supercooled liquids thermal
activation triggers local shear events which create long-
ranged, and lasting, Eshelby fields. The second, that
the emergence of correlations between shear relaxation
events with decreasing T coincides with the Newtonian
to shear-thinning cross-over. Clearly, these correlations
will have to be taken into account in future theories of
shear-thinning behaviour.
The striking persistence of Eshelby fields entails that

the strain changes due to irreversible events simply add
up, up to very large times. Of course, this result is here
obtained using 2D Lennard-Jones system with periodic
boundary conditions, and up to moderate deformations
that permit a small strain (geometrically linear) analy-
sis. Pending future studies, possibly in 3D, using com-
plex loading paths that can probe finite deformation ef-
fects, we tentatively interpret our observation as follows.
In undercooled liquids, where the Newtonian-to-shear-
thinning crossover is found, irreversible events are ex-
pected to be local [23], i.e. to involve a change of ref-
erence state in small regions. As explained by Eshelby,
such changes amount to introducing localized forces act-
ing on the underlying elastic structure (inherent states).
As time proceeds, the total deformation is hence that due
to the accumulation of all these force sources. Additivity
follows if these events are unlikely to unfold at the same
time and place – a not so stringent condition which is
expected to be fullfilled at least in supercooled liquids,
where irreversible processes are activated.
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