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MARTINGALE PROBLEMS FOR SOME DEGENERATE

KOLMOGOROV EQUATIONS

STÉPHANE MENOZZI

Abstract. We obtain Calderón-Zygmund estimates for some degenerate equa-
tions of Kolmogorov type with inhomogeneous coefficients. We then derive
the well-posedness of the martingale problem associated to related degenerate
operators, and therefore uniqueness in law for the corresponding stochastic
differential equations. Some density estimates are established as well.

1. Introduction

1.1. Statement of the problem. Consider the following system of Stochastic
Differential Equations (SDEs in short)

(1.1)

dX1
t = F1(t,X

1
t , . . . , X

n
t )dt+ σ(t,X1

t , . . . , X
n
t )dWt,

dX2
t = F2(t,X

1
t , . . . , X

n
t )dt,

dX3
t = F3(t,X

2
t , . . . , X

n
t )dt,

· · ·
dXn

t = Fn(t,X
n−1
t , Xn

t )dt,

t ≥ 0,

(Wt)t≥0 standing for a d-dimensional Brownian motion, and each (X i
t)t≥0, i ∈

[[1, n]], being Rd-valued as well.
From the applicative viewpoint, systems of type (1.1) appear in many fields.

Let us for instance mention for n = 2 stochastic Hamiltonian systems (see e.g.
Soize [Soi94] for a general overview or Talay [Tal02] and Hérau and Nier [HN04]
for convergence to equilibrium). Again for n = 2, the above dynamics is used in
mathematical finance to price Asian options (see for example [BPV01]). For n ≥ 2,
it appears in heat conduction models (see e.g. Eckmann et al. [EPRB99] and Rey-
Bellet and Thomas [RBT00] when the chain of differential equations is forced by
two heat baths).

Under suitable assumptions on the coefficients, namely mild smoothness assump-
tions of the coefficients (Fi)i∈[[1,n]], σ, non degeneracy of the bounded diffusion ma-
trix a(t, .) := σσ∗(t, .) and the gradients (Dxi−1Fi(t, .))i∈[[2,n]] (weak Hörmander
condition), some multi-scale Gaussian Aronson like estimates have been proved in
[DM10] for the density of (1.1) uniformly on the time set (0, T ], for fixed T > 0 (see
Theorem 1.1 of that reference). For Hölder continuous diffusion coefficient a(t, .)
and gradients (Dxi−1Fi(t, .))i∈[[2,n]] uniqueness in law has been investigated through
the well posedness of the martingale problem in [Men11].

Anyhow, when studying the martingale problem, the natural framework is to
consider non-degenerate continuous coefficients. In the special case n = 1 if a(t, .)
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is bounded and uniformly elliptic, i.e. (1.1) corresponds to a non-degenerate SDE,
it is well known that the martingale problem associated to the generator (Lt)t≥0 of
(1.1) is well posed as soon as the coefficient F1 is bounded measurable and that a(t, .)
is continuous in space, see e.g. Stroock and Varadhan [SV79]. The key ingredient
consists in proving Calderón-Zygmund estimates, that write in that framework as
controls in Lp norms, p ∈ (1,+∞), of the second order derivatives of a suitable
Gaussian convolution solving the parabolic Cauchy problem with Lp source term
for an operator with constant coefficients when p := p(d) is large enough. These Lp

controls then allow to derive a unique solution, for the parabolic Cauchy problem
with Lp source term involving (Lt)t≥0, by a perturbative argument (appropriate
operator inversion) when the coefficients of (Lt)t≥0 do not vary much. This pro-
cedure is recalled in Section 3 below. As a by product, this gives the uniqueness
to the martingale problem, up to a suitable localization argument which is needed
to extend the result for an operator whose coefficients are not almost constant.
We refer to the monographs of Stein [Ste70] or Gilbarg and Trudinger [GT83] for
a presentation of the Calderón-Zygmund theory for non-degenerate elliptic equa-
tions. In that framework a more probabilistic approach is proposed in Bass [Bas95].
We also mention the monograph of Coifman and Weiss [CW71], from which some
Calderón-Zygmund estimates can be derived in some degenerate frameworks when
there is an underlying homogeneous space.

In this work, for n > 1, under the previous assumptions of non-degeneracy and
continuity on a and weak Hörmander condition of the (Dxi−1Fi(t, .)i∈[[2,n]]), we are
interested in proving the well-posedness of the martingale problem for the generator
(Lt)t≥0 of (1.1).

To achieve this goal, we will establish some Calderón-Zygmund estimates for a
suitable singular Gaussian kernel deriving from the degenerate system (1.1), already
used in [DM10], [Men11], and reproduce the previously described arguments. This
procedure will also lead to some density estimates for the unique weak solution of
(1.1).

The main difficulty to derive the Calderón-Zygmund estimates consists in choos-
ing a good parabolic metric associated to the system and in defining suitable metric
balls that allow to average the singularities of the kernel. The parabolic metric will
be chosen in order to reflect the multi-scale behavior of system (1.1) when a weak
Hörmander like hypothesis is assumed to hold. Namely, if the (Dxi−1Fi(t, .))i∈[[2,n]]

are non-degenerate, the intrinsic time scale of the ith component is (2i− 1)/2, i ∈
[[1, n]] (characteristic time scale of the ith iterated time integral of the Brownian
motion). It will be seen in Section 3.1 that the geometry of the balls will be deter-
mined by the indicated multi-scale aspect and the transport of the spatial center
by the deterministic differential system deriving from (1.1), that is the indicated
equation with σ = 0.

Let us now mention some related works. In particular the papers by Bramanti
et al. [BCLP10], [BCLP13]. They consider an operator

A :=

p0
∑

i,j=1

aij∂xi,xj +

N
∑

i,j=1

bijxi∂xj ,

where the matrices (aij)(i,j)∈[[1,p0]]2 are symmetric positive definite, constant in
[BCLP10], with continuous variable homogeneous coefficients in [BCLP13], and
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the (bij)(i,j)∈[[1,N ]]2 are s.t. A is hypoelliptic. The authors then establish global Lp

estimates p ∈ (1,+∞) of the following type: ∃c := c(a, b, p0, N, p), ∀u ∈ C2
0 (R

N ),

‖∂xixju‖Lp(RN ) ≤ c{‖Au‖Lp(RN ) + ‖u‖Lp(RN )}, (i, j) ∈ [[1, p0]]
2.

Weak (1-1) estimates are also obtained. Observe that for p0 < N , the operator A
is a particular case of generator associated to (1.1). The strategy in those works
consists in estimating suitable singular integrals related to the fundamental solution
of L = A−∂t. To this end, a specific local quasi-distance related to a homogeneous
norm associated to the “principal part of L” is used; Here, by principal part we
mean the operator formed taking only the drift coefficients of A that guarantee the
associated parabolic operator is homogeneous w.r.t. a family of dilations1 and also
left-invariant w.r.t. a suitable Lie group. The quasi-distance is local in the sense
that it satisfies the quasi-triangle inequality on metric balls, i.e. compact sets, the
associated constant depending on the radius of the ball (see Section 6.1). Such
singular integrals involving that type of local quasi-distance have been investigated
by Bramanti [Bra10]. The local quasi-distance in [BCLP10] (see Section 2 therein),
associated to the particular structure of the degeneracy, is very close to the one
we use for our analysis, see Section 4. Let us also mention that for variable ho-
mogeneous coefficients (namely in VMOloc (resp. Cα) w.r.t. the distance induced
by the vector fields), local Lp (resp. Schauder) estimates have been obtained by
Bramanti and Zhu [BZ11] following the same lines. Concerning the link between
the Lp estimates of [BCLP13] and the well-posedness of the martingale problem,
we can refer to the recent work of Priola [Pri13] who introduces a rather general
localization procedure that allows to extend the well posedness of the martingale
problem from the case of almost constant coefficients to the natural one of contin-
uous coefficients. The novelty of [Pri13], w.r.t. to the classic localization results
of Stroock and Varadhan (see e.g. Chapter 6.6 in [SV79]), being the handling of
unbounded coefficients.

The main novelty in our approach consists in considering inhomogeneous and
non-linear coefficients for the degenerate part of equation (1.1). To this end we
introduce a suitable kernel and do not exploit some underlying Lie group proper-
ties appearing in the quoted works. The key idea consists in viewing (1.1) as an
ODE perturbed by a noise. This naturally yields to consider balls that are build
around the characteristic lines of the ODE and reflect the multi-scale behavior of
the process, where the various scales are once again those of the Brownian motion
and its iterated integrals. This approach also allows, through a suitable localization
procedure, to establish density estimates in Lq spaces.

The article is organized as follows. We state our assumptions and main results in
Section 2. We then introduce in Section 3 the degenerate Gaussian kernel for which
we establish Calderón-Zygmund estimates, recalling formally how uniqueness can
be derived from these controls when the coefficients do not vary much. In Section
4 we specify the various steps that lead to the Calderón-Zygmund estimates of
Theorem 3.1. We then perform in Section 5 a localization procedure and give some
local and global controls on the density from the previous estimates. This requires
some careful adaptations of the arguments of the non-degenerate framework, see

1The time-homogeneity of the dilations is actually the same than the one associated to iterated
integrals of the Browian motion.
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e.g. Sections 7.1, 7.2 and 9.1 in [SV79]). Section 6 is the technical core of the paper
and is devoted to the proof of the technical results of Section 4.

2. Assumptions and Main Results

2.1. Notations and Assumptions. In what follows, we denote a quantity in Rnd

by a bold letter: i.e. 0, stands for zero in Rnd and the solution (X1
t , . . . , X

n
t )t≥0

to (1.1) is denoted by (Xt)t≥0. Introducing the embedding matrix B from Rd into
Rnd, i.e. B = (Id, 0, . . . , 0)

∗, where “∗” stands for the transpose, we rewrite (1.1)
in the shortened form

dXt = F(t,Xt)dt+Bσ(t,Xt)dWt,

where F = (F1, . . . , Fn) is an Rnd-valued function.
With these notations the generator of (1.1) writes for all t ≥ 0:

(2.1)

∀ϕ ∈ C2
0 (R

nd), ∀x ∈ Rnd, Ltϕ(x) = 〈F(t,x),Dxϕ(x)〉 +
1

2
tr(a(t,x)D2

x1
ϕ(x)).

Also, for a point x := (x1, · · · ,xn) ∈ Rnd, we will often denote for all i ∈ [[1, n −
1]], xi,n := (xi, · · · ,xn).

Let us now introduce some assumptions concerning the coefficients of (1.1).

(C) The diffusion coefficient (a(t, .))t≥0 is bounded measurable and continuous in
space, i.e.

lim
y→x

sup
0≤s≤T

|a(s,y) − a(s,x)| = 0

for all T > 0 and x ∈ Rnd.
(UE) There exists Λ ≥ 1, ∀t ≥ 0,x ∈ Rnd, ξ ∈ Rd, Λ−1|ξ|2 ≤ 〈a(t,x)ξ, ξ〉 ≤ Λ|ξ|2.
(ND) The functions (Fi)i∈[[1,n]] are once continuously differentiable and uniformly
Lipschitz continuous in space (with constant κ > 0), bounded measurable in
time. Also, there exists a closed convex subset Ei−1 ⊂ GLd(R) (set of invert-
ible d × d matrices) s.t., for all t ≥ 0 and (xi−1, . . . ,xn) ∈ R(n−i+2)d, the matrix
Dxi−1Fi(t,xi−1, . . . ,xn) belongs to Ei−1. For example, Ei, i ∈ [[1, n− 1]], may be a
closed ball included in GLd(R), which is an open set.

Assumptions (UE), (ND) can be seen as a kind of (weak) Hörmander condition.
They allow to transmit the non degenerate noise of the first component to the
other ones. Let us also recall that the last part of Assumption (ND) and the
particular structure of F(t, .) = (F1(t, .), · · · , Fn(t, .)) yield that the ith component
of the system (1.1) has intrinsic time scale (2i − 1)/2, i ∈ [[1, n]]. This fact will
be thoroughly used in our analysis (see Section 3 for details). We notice that the
coefficients may be irregular in time. We say that assumption (ASD) is satisfied
if F1(t,x) := F1(t,x1), ∀i ∈ [[2, n]], Fi(t,x) := Fi(t,xi−1,xi), assumptions (C),
(UE), (ND) hold and

(SSD) For each integer i ∈ [[2, n]], (t,xi) ∈ R+ × Rd, the function xi−1 ∈ Rd 7→
Dxi−1Fi(t,xi−1,xi) is uniformly η-Hölder continuous with constant κ (η ∈ (0, 1]).

Precisely, under (ASD) the dynamics of the deterministic differential system as-
sociated to (1.1) is subdiagonal. Under this assumption, the local quasi-distance
we introduce below is actually a usual quasi-distance in the sense of Coifman and
Weiss, see Chapter 3 in [CW71]. This could allow to derive the Calderón-Zygmund
estimates rather directly. The problem is that we unfortunately did not succeed
in establishing the required L2 estimate on our kernel without some additional
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smoothness on the drift term F. In the special case where F is inhomogeneous and
linear, we obtained the required estimate thanks to Theorem 2.4 in [CW71] (see
Sections 4 and 6 for details).

In whole generality, we say that (AG) holds if (C), (UE), (ND) are satisfied
and

(SG) The (Fi)i∈[[1,n]] and the (Dxi−1Fi)i∈[[1,n]] are twice continuously differentiable
with bounded derivatives.

This allows to consider a general non linear dynamics of the form Fi(t,x) :=
Fi(t,x

i−1,n) in (1.1). In such case, we need to localize the singularities of the
kernel and to adapt the techniques of [BCLP10], which requires some additional
smoothness on the coefficient F since the symmetrized kernel is involved. We say
that (A) is in force whenever (ASD) or (AG) holds true. Under (AG), the variables
η appearing in the results below should be set to 1.

2.2. Main Results. Our main result is the following theorem.

Theorem 2.1. Under (AG) the martingale problem associated to (Lt)t≥0 in (2.1) is
well-posed. That is, for every x ∈ Rnd, there exists a unique probability measure
P on C(R+,Rnd) s.t. denoting by (Xt)t≥0 the canonical process, P[X0 = x] = 1

and for all ϕ ∈ C1,2
0 (R+ × Rnd,R), ϕ(t,Xt)− ϕ(0,x)−

∫ t

0 (∂s + Ls)ϕ(s,Xs)ds is a
P-martingale. In particular, weak uniqueness in law holds for the SDE (1.1).

Also, if the diffusion coefficient a is uniformly continuous, the unique weak so-
lution of (1.1) admits a density in the following sense. Letting P (s, t,x, .) be the
transition probability determined by (Lt)t≥0, then for a given T > 0, almost all
t ∈ (s, T ] and all Γ ∈ B(Rnd), P (s, t,x,Γ) =

∫

Γ p(s, t,x,y)dy.

More specifically, for any f ∈ Lp([0, T ]×Rnd), p > (n2d+2)
2 , there exists C2.2 :=

C2.2(T, p, (AG)) s.t. for all (s,x) ∈ [0, T )× Rnd:

(2.2) |EP

s,x[

∫ T

s

f(t,Xt)dt]| ≤ C2.2(1 + |x|)‖f‖Lp([0,T ]×Rnd).

Remark 2.1. By duality, the previous control gives a bound for the density in
Lq([0, T ]× Rnd where q−1 + p−1 = 1.

3. “Frozen” Kernel and Formal derivation of uniqueness from
Calderón-Zygmund estimates

Assume (A) is in force. One of the main differences between the uniform Hölder
continuity assumed in [BP09] in the non degenerate case or in [Men11] for the
current framework and the continuity statement of (C) is that in the first two cases
no localization is needed. Indeed, the global Hölder continuity allows to remove
globally the time singularities coming from the second order spatial derivatives of
suitable Gaussian kernels arising in a parametrix like expansion of the density. In
the current framework we first focus on the “local case”. As in the non-degenerate
case, we assume the diffusion coefficient a(t, .) := σσ∗(t, .) of (1.1) “does not vary
much” (see e.g. Chapter 7 of [SV79]). For technical reasons (see the proofs of
Lemmas 4.2 and 6.1), we also suppose that the gradients (Dxi−1Fi(t, .))i∈[[2,n]] do
not vary much as well, that is the degenerate components are “almost affine” w.r.t
the components that transmit the noise. Precisely, we first assume that there exists
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x0 ∈ Rnd such that:

εa := sup
0≤t≤T

sup
x∈Rnd

|a(t,x)− a(t,x0)|,

εF := sup
i∈[[2,n]]

sup
0≤t≤T

sup
(x,z)∈(Rnd)2

|Dxi−1Fi(t,xi−1, z
i,n)−Dxi−1Fi(t, (x0)i−1, z

i,n)|

(3.1)

are small, without supposing a priori continuity of a.
To define the Gaussian kernel needed for the analysis we first introduce the

backward deterministic differential system associated to (1.1). For fixed T > 0, y ∈
Rnd we define:

(3.2)
.

θt,T (y) = F(t, θt,T (y)), θT,T (y) = y.

Consider now the deterministic ODE

(3.3)
d

dt
φ̃t = F(t, θt,T (y)) +DF(t, θt,T (y))[φ̃t − θt,T (y)], t ≥ 0,

where for all x ∈ Rnd,

DF(t,x) =

















0 · · · · · · · · · 0
Dx1F2(t,x) 0 · · · · · · 0

0 Dx2F3(t,x) 0 0
...

... 0
. . .

...
0 · · · 0 Dxn−1Fn(t,x) 0

















denotes the subdiagonal of the Jacobian matrix DxF at point x.

We denote by (θ̃
T,y

t,s )s,t≥0 the associated flow, i.e. θ̃
T,y

t,s (x) is the value of φ̃t when

φ̃s = x. It is affine:

θ̃
T,y

t,s (x) = R̃T,y(t, s)x

+

∫ t

s

R̃T,y(t, u)
(

F(u, θu,T (y)) −DF(u, θu,T (y))θu,T (y)
)

du

:= R̃T,y(t, s)x+mT,y(s, t).

(3.4)

Above, (R̃T,y(t, s))s,t≥0 stands for the resolvent associated with the subdiagonal
matrices (DF(t, θt,T (y)))t≥0.

We now introduce for all 0 ≤ s < t, (x,y) ∈ (Rnd)2 the kernel:

q̃(s, t,x,y) :=
1

(2π)nd/2(K̃y(s, t))1/2

× exp

(

−
1

2
〈K̃y(s, t)−1(θ̃

t,y

t,s (x)− y), θ̃
t,y

t,s (x) − y〉

)

,(3.5)

where K̃y(s, t) :=
∫ t

s
R̃t,y(t, u)Ba(u,x0)B

∗R̃t,y(t, u)∗du. In other words, under

(A), q̃(s, t,x,y) is the density at time t and point y of the diffusion (X̃t,y
u )u∈[s,t]

with dynamics:

dX̃t,y
u = [F(u, θu,t(y)) +DF(u, θu,t(y))(X̃

t,y
u − θu,t(y))]du +Bσ(u,x0)dWu,

∀u ∈ [s, t], X̃t,y
s = x.(3.6)
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Assumption (A) also guarantees that the covariance matrix (K̃y(s, t))0≤s<t sat-
isfies uniformly in y ∈ Rnd a good scaling property in the sense of Definition 3.2 in
[DM10] (see also Proposition 3.4 of that reference). That is: for all fixed T > 0,
there exists C3.7 := C3.7(T, (A)) ≥ 1 s.t. for all 0 ≤ s < t ≤ T , for all y ∈ Rnd:

(3.7) ∀ξ ∈ Rnd, C−1
3.7(t− s)−1|Tt−sξ|

2 ≤ 〈K̃y(s, t)ξ, ξ〉 ≤ C3.7(t− s)−1|Tt−sξ|
2,

where for all t > 0, Tt = diag((tiId)i∈[[1,n]]) is a scale matrix. As pointed out in

the previous section, equation (3.7) indicates that the ith component of (3.6) has
characteristic time scale of order (2i− 1)/2.

From (3.5) and (3.7), we directly derive that for all T > 0 there exists C3.8 :=
C3.8(T, (A)) ≥ 1 s.t. for all 0 ≤ s < t ≤ T, (x,y) ∈ (Rnd)2:

C−1
3.8(t− s)−n2d/2 exp(−C3.8(t− s)|T−1

t−s(θ̃
t,y

t,s (x) − y)|2) ≤ q̃(s, t,x,y)

≤ C3.8(t− s)−n2d/2 exp(−C−1
3.8(t− s)|T−1

t−s(θ̃
t,y

t,s (x) − y)|2).(3.8)

Also, Lemma 5.3 and Equation (5.11) from the proof of Lemma 5.5 in [DM10]
give that there exists C := C(T, (A)) s.t.:

C−1|T−1
t−s(x− θs,t(y))| ≤ |T−1

t−s(θ̃
t,y

t,s (x)− y)| ≤ C|T−1
t−s(x− θs,t(y))|,

|Dxj q̃(s, t,x,y)| ≤ C(t− s)−j+1|T−1
t−s(θ̃

t,y

t,s (x)− y)|q̃(s, t,x,y), j ∈ [[1, n]].

(3.9)

On the other hand it is crucial to observe that q̃(s, t,x,y) satisfies the following
Backward Kolmogorov equation for all (t,y) ∈ R+∗ × Rnd :

(3.10)
(

∂s + L̃t,y
s

)

q̃(s, t,x,y) = 0, (s,x) ∈ [0, t)× Rnd, q̃(s, t, .,y) −→
s↑t

δy(.).

In the above equation we wrote:

L̃t,y
s q̃(s, t,x,y) := 〈F(s, θs,t(y)) +DF(s, θs,t(y))(x − θs,t(y)),Dx q̃(s, t,x,y)〉

+
1

2
tr(a(s,x0)D

2
x1
q̃(s, t,x,y)).

For 0 ≤ s < T and a function f ∈ C∞
0 ([0, T )×Rnd) we now define for all x ∈ Rnd:

(3.11) G̃f(s,x) :=

∫ T

s

dt

∫

Rnd

q̃(s, t,x,y)f(t,y)dy.

From (3.10) one easily gets that

∂sG̃f(s,x) + M̃f(s,x) = −f(s,x), (s,x) ∈ [0, T )× Rnd, G̃f(s, ·) −→
s↑T

0,

with M̃f(s,x) :=
∫ T

s dt
∫

Rnd dyL̃
t,y
s q̃(s, t,x,y)f(t,y).

Hence,

∂sG̃f(s,x) + LsG̃f(s,x) = (−f +Rf)(s,x), (s,x) ∈ [0, T )× Rnd,

where Rf(s,x) := (LsG̃f − M̃f)(s,x) =
∫ T

s dt
∫

Rnd dy(Ls − L̃t,y
s )q̃(s, t,x,y)f(t,y).

Now, the local condition (3.1) yields:

|Rf(s,x)| ≤ |Nf(s,x)|+

n
∑

i=2

|DxiRif(s,x)|+
εa
2
|D2

x1
G̃f(s,x)|,(3.12)
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where setting

Ft,y(s,x) :=
(

F1(s, θs,t(y)),F2(s,x1, (θs,t(y))
2,n),F3(s,x2, (θs,t(y))

3,n), · · · ,

Fn(s,xn−1, (θs,t(y))n)
)

,

Nf(s,x) :=

n
∑

i=1

∫ T

s

dt

∫

Rnd

dy〈
(

(F− Ft,y)(s,x)
)

i
,Dxi q̃(s, t,x,y)〉f(t,y),

(3.13)

and for all i ∈ [[2, n]],

Rif(s,x) :=

∫ T

s

dt

∫

Rnd

dyq̃(s, t,x,y)f(t,y)
{

Ft,y
i (s,x)

−
[

Fi(s, θs,t(y)) +Dxi−1Fi(s, θs,t(y))(x − θs,t(y))i−1

]}

.(3.14)

Remark 3.1. Observe from the above equation that if, for all i ∈ [[2, n]], the function
Fi is linear w.r.t. to the (i − 1)th variable (component that transmits the noise),
then for all (s,x) ∈ [0, T )× Rnd, Rif(s,x) = 0.

The terms Nf in (3.13) and (DxiRif)i∈[[2,n]] in (3.14) do not have time singu-
larities. Let us justify this point. Write first:

Dxj q̃(s, t,x,y) = −[(R̃t,y(t, s))∗(K̃y(s, t))−1(θ̃
t,y

t,s (x) − y)]j q̃(s, t, x,y), j ∈ [[1, n]].

Using (3.8), (3.9), we then derive from (3.13) that:

|Nf(s,x)| ≤ C

n
∑

i=1

∫ T

s

dt

∫

Rnd

dy|(x − θs,t(y))
i,n||Dxi q̃(s, t,x,y)||f(t,y)|

≤ C
n
∑

i=1

∫ T

s

dt

∫

Rnd

dy

{

|(x− θs,t(y))
i,n|

(t− s)(2i−1)/2

}

(t− s)1/2|T−1
t−s(θ̃

t,y

t,s (x) − y)|q̃(s, t,x,y)|f(t,y)|

≤ C

∫ T

s

dt

∫

Rnd

dy

(t− s)n2d/2
exp(−C−1(t− s)|T−1

t−s(θ̃
t,y

t,s (x)− y)|2)|f(t,y)|, C := C((A)).

Now, as a consequence of Hölder’s inequality we derive that for all p > 1, p−1 +
q−1 = 1:

|Nf(s,x)|p ≤ C(p, (A))T p/q

∫ T

s

dt

∫

Rnd

dy

(t− s)n2d/2

exp(−C−1(t− s)|T−1
t−s(θ̃

t,y

t,s (x) − y)|2)|f(t,y)|p.

The Fubini Theorem and (3.9) then yields:

(3.15) ‖Nf‖Lp([0,T )×Rnd) ≤ C(p, (A))T ‖f‖Lp([0,T )×Rnd).
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From (3.8), (3.9) we also derive for all i ∈ [[2, n]]:

|DxiRif(s,x)| ≤ C

∫ T

s

dt

∫

Rnd

dy

(t− s)n2d/2
(t− s)−i+1/2|(x− θs,t(y))i−1|

1+η

× exp
(

−C−1(t− s)|T−1
t−s(θ̃

t,y

t,s (x)− y)|2
)

|f(t,y)|

≤ C

∫ T

s

dt(t− s)−1+(i− 3
2 )η

∫

Rnd

dy

(t− s)n2d/2
|f(t,y)|

× exp
(

−C−1(t− s)|T−1
t−s(θ̃

t,y

t,s (x)− y)|2
)

.

Hence, by Hölder’s inequality and for p > 2/η, p−1 + q−1 = 1:

|DxiRif(s,x)|
p ≤ C(p, (A))

(

∫ T

s

dt(t− s)(−1+(i− 3
2 )η)q

)p/q

×

(

∫ T

s

dt

∫

Rnd

dy

(t− s)n2d/2
exp

(

−C−1(t− s)|T−1
t−s(θ̃

t,y

t,s (x)− y)|2
)

|f(t, y)|p

)

,

‖DxiRif‖Lp([0,T )×Rnd) ≤ C(p, (A))(T η/2 ∨ T (n−3/2)η)‖f‖Lp([0,T )×Rnd),(3.16)

where the last control again follows from Fubini’s theorem.
Now, the key tool to prove uniqueness for the martingale problem derives from

the following Calderón and Zygmund type estimate for the Green function G̃f .
Namely, we have the following theorem.

Theorem 3.1. Assume that Assumption (AG) is in force. Suppose also that the
local condition (3.1) holds for F, i.e. εF ≤ ε0(n, d) for a small enough ε0(n, d),
and that T ∈ (0, T0], T0 := T0((AG)) ≤ 1. Then, for all p ∈ (1,+∞) there exists
C3.17 := C3.17(T0, p, (AG)) s.t. for all f ∈ Lp([0, T )× Rnd),

‖D2
x1
G̃f‖Lp([0,T )×Rnd) ≤ C3.17‖f‖Lp([0,T )×Rnd),(3.17)

where the Green function G̃f is defined in (3.11) with the kernel q̃ introduced in
(3.5).

Remark 3.2. Let us specify here that the small time condition appearing here is
due to the fact that we are led to compare the flow θ and its linearization. It is
clear that this procedure can be a good approximation in small time only.

Hence, plugging (3.17), (3.16) and (3.15) into (3.12) we derive that under (AG)
2,

for p > 2,

(3.18) ‖Rf‖Lp([0,T )×Rnd) ≤ (
εa
2
C3.17 + C(p, (A))T

1
2 )‖f‖Lp([0,T )×Rnd).

Thus, for εa < C−1
3.17 and T < (4C(p, (A)))−2, the operator I−R admits a bounded

inverse on Lp([0, T )×Rnd), and formally Gf(s,x) := G̃◦ (I−R)−1f(s,x), (s,x) ∈
[0, T ]× Rnd solves the Cauchy problem:

{

(∂t + Lt)u(t,x) = −f(t,x), (t,x) ∈ [0, T )× Rnd,

u(T,x) = 0,

2recall indeed that under (AG) the parameter η must be set to 1.
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for f ∈ Lp([0, T )×Rnd), p > (n2d+2)/2∨2/η. This last condition on p is needed to
give a pointwise sense to Gf . Observe indeed from (3.8) that, for all p > n2d+2/2,
f ∈ Lp([0, T )× Rnd),

(3.19) |G̃f(s,x)| ≤ CT 1−(2+n2d)/(2p)‖f‖Lp([s,T )×Rnd).

From the probabilistic viewpoint we will prove that there is only one probability P

on C([0, T ],Rnd) solving the martingale problem and therefore derive Gf(s,x) =

EP[
∫ T

s
f(t,Xt)dt], (Xt)t∈[0,T ] being the canonical process. A localization argument

similar to the one in Priola [Pri13] then allows to extend the well posedness of the
martingale problem under the sole continuity assumption (C) in (A), i.e. without
the local condition (3.1), see Section 5.

4. Derivation of the Calderón-Zygmund estimates

We assume (A) is in force and that T ≤ T0((A)) ≤ 1. We also suppose for the
whole section that the local condition (3.1) on F holds.

4.1. Quasi Metric Structure and Covering. To derive Theorem 3.1, a crucial
step consists in considering a “good” parabolic metric and in taking into account
the unbounded transport term in (1.1). In order to take into consideration our
various time-scales, associated to the propagation of the noise into the system, we
introduce the following metric:

(4.1) ∀(t,x) ∈ R+ × Rnd, ρ(t,x) :=

(

t2n−1 +

n
∑

i=1

|xi|
2(2n−1)
(2i−1)

)
1

2(2n−1)

.

Remark 4.1. Recalling the definition of the scale matrix Tt := diag((tiId)i∈[[1,n]]),

we can now observe that x ∈ Rnd 7→ ρ(t, t−1/2Ttx) is 1/2 homogeneous in the time
variable, i.e. ρ(t, t−1/2Ttx) = t1/2ρ(1,x).

The metric introduced in (4.1) is equivalent to the one that appears in all the
quoted works related to equation (1.1), in Priola, see [Pri09] to study regularity
properties in Hölder spaces for semi-groups associated to special cases of equations
of the form (1.1), and in [BCLP10], [BCLP13] for Lp regularity.

Setting now S = [−T, T ]×Rnd, we then define for (s,x), (t,y) ∈ S2 the distances:

d((s,x), (t,y)) := ρ(|t− s|, θt,s(x)− y),

d∗((s,x), (t,y)) := d((t,y), (s,x)) := ρ(|t− s|,x− θs,t(y)),(4.2)

with ρ as in (4.1). We now define the metric balls in the following way:

∀(s,x) ∈ S, ∀δ > 0,

B((s,x), δ) := {(t,y) ∈ S : d((s,x), (t,y)) ≤ δ}.

(4.3)

We mention that the natural extension of the balls considered in [BCLP10], [BCLP13]
would have been to consider d∗ in the above definition. For this choice, in the lin-
ear, homogeneous case θs,t(y) := Rs,ty, R standing for the resolvent of the linear
differential system deriving from (1.1), which can indeed be seen as a group action.
We choose here to follow the characteristic associated with the center of the ball,
considering a metric tube around it. Anyhow those choices are very close and locally
equivalent, see Proposition 4.1.
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There is now, as in the previously mentioned works, a double difficulty, first the
“distance” used to define the balls satisfies the triangle inequality only locally. A
natural choice would then consist in considering singular integrals for the “homo-
geneous space” associated to the balls of the above form, but in such case it is not
clear that such balls enjoy the doubling property, which is however satisfied on the
whole strip S = [−T, T ]× Rnd.

The first key-point is the following result.

Proposition 4.1. Let S := [−T, T ] × Rnd. The space (S, d, dtdx) is a locally in-
variant quasi-metric space in the following sense: there exists a constant C4.1 :=
C4.1((A), T ) > 0 s.t.

a) For all (s,x), (t,y) ∈ S, if d((s,x), (t,y)) ≤ 1 then

d((t,y), (s,x)) ≤ C4.1d((s,x), (t,y)) = ρ(|t− s|, θt,s(x) − y)),

and for (σ, ξ) ∈ S s.t. d((s,x), (σ, ξ)) ≤ 1 and d((t,y), (σ, ξ)) ≤ 1 then

d((s,x), (t,y)) ≤ C4.1(d((s,x), (σ, ξ)) + d((σ, ξ), (t,y))).

b) Every d-ball in the sense of (4.3) has positive and finite measure and every non-
empty intersection of two balls has positive measure.

c) There exists R > 0 s.t. for 0 < R1 < R2 ≤ R there exists C := C(R1, R2) s.t. for
all (s,x) ∈ S,

|B((s,x), R2)| ≤ C|B((s,x), R1)|,

where |.| stands here for the Lebesgue measure of the balls.

Remark 4.2 (General and Subdiagonal structure). Let us stress, as it will appear
from the proof in Section 6.1, that for the general form of F in the dynamics of
θ (Assumption (AG)), the constant C4.1 appearing here depends on the specific
radius, 1, chosen for the balls.

However, the proof also emphasizes that when the function F has the following
structure, F1(t,x) = F1(t,x1), ∀i ∈ [[2, n]], Fi(t,x

i−1,n) = Fi(t,xi−1,xi) (subdi-
agonal case of Assumption (ASD)), then the constant C4.1 does not depend on
the radius (see Remark 6.1). Hence, in this latter case, point a) of the proposition
gives that the distances d and d∗ involving respectively the forward and backward
transport are actually equivalent. In such a case d is a usual quasi-distance in the
sense of Coifman and Weiss [CW71] and the strip S can be seen as a homogeneous
space.

From Proposition 4.1 we can use Theorem 25 in [BCLP10] that we now state in
our specific case.

Theorem 4.1 (Covering Theorem). For every δ0 > 0 and K > 1 there exists δ ∈
(0, δ0), a positive integer M and a countable set

(

(si,xi)
)

i∈A
⊂ S s.t.

1. S =
⋃

i∈A B((si,xi), δ).

2.
∑

i∈A IB((si,xi),Kδ) ≤ M2.

4.2. Singular kernel and associated estimates. Fix T > 0 and introduce for
ǫ ∈ (0, 1) and (s, t,x,y) ∈ (R+)2 × (Rnd)2, kǫ

(

s, t,x,y
)

:= IR+(s)I[ǫ,T−s](t −

s)D2
x1
q̃(s, t,x,y). From (3.4) and (3.5) a direct computation yields (see also the
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proof of Lemma 5.5 in [DM10]):

kǫ(s, t,x,y) = IR+(s)I[ǫ,T−s](t− s)
(

−[R̃t,y(t, s)∗K̃y(s, t)−1R̃t,y(t, s)]11

+[R̃t,y(t, s)∗K̃y(s, t)−1(θ̃
t,y

t,s (x) − y)]⊗2
1

)

q̃(s, t,x,y).(4.4)

In the above equation, for a matrix M ∈ Rnd ⊗ Rnd (resp. a vector z ∈ Rnd), the
notation [M]11 stands for the d× d submatrix (Mij)(i,j)∈[[1,d]] (resp. [z]1 stands for

the subvector of Rd, (zi)i∈[[1,d]]).
From (3.5), (3.7) and the scaling Lemma B.1 (see also equations (5.10), (5.11)

in [DM10]), we have that there exists C := C(T, (A)) s.t.:

|[R̃t,y(t, s)∗K̃y(s, t)−1(θ̃
t,y

t,s (x) − y)]i| ≤ C
(

(t− s)−i+1|T−1
t−s(θ̃

t,y

t,s (x) − y)|
)

,

|[R̃t,y(t, s)∗K̃y(s, t)−1R̃t,y(t, s)]11 + [R̃t,y(t, s)∗K̃y(s, t)−1(θ̃
t,y

t,s (x) − y)]⊗2
1 |

≤ C((t− s)−1|Id|+ |T−1
t−s(θ̃

t,y

t,s (x)− y)|2),

so that (3.7), (4.4) yield that ∃(c4.5, C4.5) := (c4.5, C4.5)(T, (A)) s.t.

|kǫ(s, t,x,y)| ≤ C4.5I[ǫ,T−s](t− s)(t− s)−1qc4.5(s, t,x,y),(4.5)

where for all c > 0,

qc(s, t,x,y) :=
cnd/2

(2π)nd/2(t− s)n2d/2
exp

(

−c(t− s)|T−1
t−s(θ̃

t,y

t,s (x) − y)|2
)

.

Observe that this is the same order of singularity than in the non-degenerate
case. This is anyhow expectable since we are considering the derivatives w.r.t.
the non-degenerate variables. From equation (4.5) and the cut-off in time, we
have

∫

dtdy|kǫ(s, t,x,y)| < ∞. Hence, for all ǫ ∈ (0, 1), ∀(i, j) ∈ [[1, d]]2, f ∈

L∞(R× Rnd) the kernel

Kǫ
ijf(s,x) :=

∫

dtdykǫij(s, t,x,y)f(t,y), ∀(i, j) ∈ [[1, d]]2,(4.6)

is well defined.

4.3. Proof of Theorem 3.1.

4.3.1. A priori controls. We have the following results.

Lemma 4.1 (L2-control of the kernel). Assume (A) is in force and that the drift is
linear. There exists C4.1 := C4.1(T, (A)) s.t. for all ǫ ∈ (0, 1), (i, j) ∈ [[1, d]]2, for
all f ∈ L2([0, T ]× Rnd) ∩ L∞([0, T ]× Rnd),

‖Kǫ
ijf‖L2([0,T ]×Rnd) ≤ C4.1‖f‖L2([0,T ]×Rnd), ∀(i, j) ∈ [[1, d]]2.

Lemma 4.2 (L∞-control of the kernel). Assume (A) is in force. There exist con-
stants c∞ := c∞(n, d) > 1, ε0(n, d) < 1, C∞ := C∞(T, (A), ε0) > 0 such that
∀(s,x), (σ, ξ) ∈ [0, T ]× Rnd and εF ≤ ε0 := ε0(n, d) in (3.1),

(4.7)

∫

ρ(t−s,y−θt,s(x))≥c∞ρ(|σ−s|,ξ−θσ,s(x))

|kǫij(s, t,x,y)−kǫij(σ, t, ξ,y)|dtdy ≤ C∞.



MARTINGALE PROBLEMS FOR SOME DEGENERATE KOLMOGOROV EQUATIONS 13

If (ASD) holds, from Remark 4.2, the local quasi-distance distance is actually
global and we can take the strip as homogeneous space. Theorem 3.1, as well as
associated weak (1, 1) estimates, then follow when the drift is linear from Lem-
mas 4.1,4.2 using Theorem 2.4 Chapter 3 in [CW71]. The only reason why we
require here the drift to be linear is because we failed to prove Lemma 4.1 under
(ASD) with a non-linear drift. Even with the subdiagonal structure we need the
same smoothness of the drift as in the general case to obtain the required L2 esti-
mate that could be for instance derived from Theorem 11 in [Bra10] which exploits
some properties of the symmetrized kernel (whereas we do not in order to establish
Lemma 4.1). In the general case we need some additional controls.

4.3.2. Additional Properties in the General Case. Under (AG) we need to be more
precise on the estimates. The first thing to do consists in splitting the kernel
into a singular and a non singular part observing that the singularity is diagonal.
Specifically, for a given fixed δ > 0 there exist (c, C) := (c, C)(T, (A), δ) s.t. if for
(s,x), (t,y) ∈ S2, d((s,x), (t,y)) = ρ(|t − s|, θt,s(x) − y) ≥ δ, then from (4.5) we
have:

(4.8) |kǫ(s, t,x,y)|Iρ(|t−s|,θt,s(x)−y)≥δ ≤ Cqc(s, t,x,y).

Let us now split Kǫ
ijf into:

Kǫ
ijf(s,x) =

∫

S

dtdykǫij(s, t,x,y)f(t,y)ηδ(|t− s|, θt,s(x) − y)

+

∫

S

dtdykǫij(s, t,x,y)f(t,y)(1 − ηδ)(|t− s|, θt,s(x) − y)

:= Kǫ,d
ij f(s,x) +Kǫ,∞

ij f(s,x),

where ηδ is a smooth cut-off function s.t. for all (u, z) ∈ R+ × Rnd, ηδ(u, z) = 1 if
ρ(u, z) ≤ δ and ηδ(u, z) = 0 if ρ(u, z) ≥ 2δ. It is then easily seen from (4.8) that
for all f ∈ Lp(S,R), p ∈ [1,+∞],

(4.9) ‖Kǫ,∞
ij f‖Lp(S,R) ≤ C4.9‖f‖Lp(S,R), C4.9 := C4.9(T, (A), δ, p).

The singular part of the kernel requires a much more subtle handling. Setting

kǫ,dij (s, t,x,y) = ηδ(|t−s|, θt,s(x)−y)kǫij(s, t,x,y) we will prove the following propo-
sition.

Proposition 4.2 (Calderón-Zygmund Kernel).

i) ∃C4.2 := C4.2(T, (AG), δ), ∀(s,x), (t,y) ∈ S2, |kǫ,dij (s, t,x,y)| ≤ C4.2

d((s,x),(t,y))n2d+2
.

ii) There exists a constant c4.2 s.t.

|kǫ,dij (s, t,x,y) − kǫ,dij (σ, t, ξ,y)| ≤ C4.2
d((s,x), (σ, ξ))

d((s,x), (t,y))n2d+3
,

∀(s,x), (σ, ξ) ∈ S2, c4.2d((s,x), (σ, ξ)) ≤ d((s,x), (t,y)) ≤ 1.
iii) The two previous “standard estimates” hold for the symmetric kernel

kǫ,d,∗ij (s, t,x,y) := kǫ,dij (t, s,y,x).
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iv) Cancellation Property:

sup
ǫ>0

|

∫

d((s,x),(t,y))>ǫ

kǫ,dij (s, t,x,y)dtdy|

+sup
ǫ>0

|

∫

d((s,x),(t,y))>ǫ

kǫ,d,∗ij (s, t,x,y)dtdy| < +∞.

Also the limits:

lim
ǫ→0

∫

d((s,x),(t,y))>ǫ

kǫ,dij (s, t,x,y)dtdy, lim
ǫ→0

∫

d((s,x),(t,y))>ǫ

kǫ,d,∗ij (s, t,x,y)dtdy

exist and are finite for almost every x ∈ S.

The strategy is now to exploit those estimates to derive Lp controls on the
covering of S with our metric balls introduced in the Theorem 4.1. But to do so,
we have to carefully check that the cancellation property appearing in Proposition
4.2 for the whole strip still holds on the metric balls. This property can be conserved
thanks to a Hölder continuous cut-off as in Proposition 18 from [BCLP10]. Namely,
from Proposition 4.2 it can be derived similarly to the previous reference that:

Proposition 4.3 (Localized Cancellation). There exists a constant R0 > 0 s.t.
for (s0,x0) ∈ S, R ≤ R0, if a, b stand for two cut-off functions belonging to
Cα(Rn+1,R), α > 0 and with support in B((s0,x0), R), then defining

kǫ,d,locij (s, t,x,y) := a(s,x)kǫ,dij (s, t,x,y)b(t,y),

we have that:

- kǫ,d,∗,locij satisfies the first three points of Proposition (4.2) and for all (s,x) ∈

B((s0,x0), R):

sup
ǫ>0

|

∫

(t,y)∈B((s0,x0),R), d((s,x),(t,y))>ǫ

kǫ,d,locij (s, t,x,y)dtdy|

+sup
ǫ>0

|

∫

(t,y)∈B((s0,x0),R), d((s,x),(t,y))>ǫ

kǫ,d,∗,locij (s, t,x,y)dtdy| < +∞.

- For almost all (s,x) ∈ B((s0,x0, R)) the limits

lim
ǫ→0

∫

d((s0,x0),(t,y))>ǫ

kǫ,d,locij (s, t,x,y)dtdy, lim
ǫ→0

∫

d((s,x),(t,y))>ǫ

kǫ,d,∗,locij (s, t,x,y)dtdy

exist and are finite.

Now from Propositions 4.2 and 4.3 we derive from Theorem 3 in [Bra10], that
for every (s,x) ∈ S, R ≤ R0, p ∈ (1,+∞), there exists a constant Cp,T,(AG)

independent of (s,x) s.t. setting

Tijf := lim
ǫ→0

∫

(t,y)∈B((s,x),R), d((s,x),(t,y))>ǫ

kǫ,d,locij (s, t,x,y)f(t,y)dtdy,

‖Tijf‖Lp(B((s,x),R)) ≤ Cp,T,(AG)‖f‖Lp(B((s,x),R)).

The covering Theorem 4.1 then gives, similarly to the proof of Theorem 22 in
[BCLP10], that the result can be extended to the strip for the initial operator
without cut-off, i.e. for every p ∈ (1,+∞), there exists a constant Cp,T,(AG) s.t.

‖D2
xi
1,x

j
1

G̃f‖Lp(S) ≤ Cp,T,(AG)‖f‖Lp(S),

which concludes the proof of Theorem 3.1 under (AG).
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5. Derivation of Theorem 2.1 from the Calderón-Zygmund estimates

5.1. Well posedness of the martingale problem. Existence can be obtained
by usual compactness arguments, see e.g. Theorem 6.1.7 in [SV79] that can be
adapted to the current framework. On the other hand, from the definition in (3.11)
and (3.8), observe that for f ∈ C∞

0 ([0, T ]× Rnd) and p > (n2d+ 2)/2,

∃C5.1 := C5.1(p, T, (A)), ∀(s,x) ∈ [0, T )× Rnd,

|G̃f(s,x)| ≤ C5.1T
1−(n2d+2)/(2p)‖f‖Lp([s,T )×Rnd).(5.1)

Assume now that εF ≤ ε0(n, d) as in Lemma 4.2, εa ≤ C−1
3.17 in the local condition

(3.1), and T < (4C(p, (A)))−2. Exploiting (5.1), (3.18), the uniqueness to the
martingale problem can be derived following the steps of Section 7.1 in [SV79].

Now, without the local condition, the continuity assumed in (A) allows to
localize. Precisely, , for all (s,x) ∈ [0, T ] × Rnd we can find δ > 0 s.t. if
G := [(s− δ) ∨ 0, s+ δ]×B(x, δ) then

sup
(t,y)∈G

|a(t,y) − a(t,x)| ≤ εa,

sup
i∈[[2,n]]

sup
(t,y)∈G, z∈Rnd

|Dxi−1Fi(t,yi−1, z
i,n)−Dxi−1Fi(t,xi−1, z

i,n)| ≤ εF.

Define then ∀(t,y) ∈ [0, T ] → Rnd, ã(t,y) = a(t,y)I(t,y)∈G + (1 − I(t,y)∈G)a(t,x)

and F̃ s.t. Dxi−1F̃i(t,yi−1, z
i,n) := Dxi−1Fi(t, (Πxi−1,δ(yi−1), z

i,n) where:

Πxi−1,δ(yi−1) = yi−1I|yi−1−xi−1|≤δ +

(

xi−1 +
yi−1 − xi−1

|yi−1 − xi−1|
δ

)

I|yi−1−xi−1|>δ.

Then the coefficients ã, F̃ satisfy (A) and the local condition (3.1). We can then
invoke Theorem 27 in Priola [Pri13] to derive global uniqueness in small time.
Indeed, it is not hard to directly construct a covering of S with sets of the previous
type. An alternative consists in exploiting the covering result of Theorem 4.1. Let
us emphasize that we cannot here directly apply Theorem 6.6.1 in [SV79], which
being valid for bounded coefficients would have required a truncation of the drift.
It is not clear to derive Calderón-Zygmund estimates of the previous type that are
uniform w.r.t. to the truncation.

The well posedness of the martingale for an arbitrary given T > 0 then follows
from the Markov property (see Chapter 6.2 of [SV79] for details).

5.2. Existence of the Density and Associated Estimates. The goal of this
section is to prove equation (2.2) of Theorem 2.1. To this end, we will need the
following result which extends to our current degenerate setting Theorem 9.1.9 in
[SV79] in small time.

Theorem 5.1 (Local existence of the density and associated estimates). Assume
T ≤ T0((A)) ≤ 1 as in Theorem 3.1.

- If the diffusion coefficient is uniformly continuous, then, for 0 ≤ s < T , and
q ∈ [1, 2), the density p satisfies:

(∫ T

s

dt(t− s)α
∫

Rnd

dy|p(s, t,x,y)|q
)1/q

≤ C1
5.1(1 + |x|),
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where α =
(

(n2d+2)
2

)

(q − 1) and C1
5.1 := C1

5.1(T, q, (A), δT ), denoting for all ε >

0, δT (ε) := argmaxζ∈R+{sups∈[0,T ],|x−y|≤ζ |a(s,x) − a(s,y)| < ε} the modulus of
continuity of a.

- For all 0 ≤ s < T and q ∈ [1, 2), δ > 0,

(∫ T

s

dt

∫

Rnd\BE(θt,s(x),δ)

dy|p(s, t,x,y)|q
)1/q

≤ C2
5.1(1 + |x|),

with C2
5.1 := C2

5.1(T, q, (A), δT , δ), B
E(θt,s(x), δ) standing for the Euclidean ball of

Rnd with radius δ and center θt,s(x), recalling θt,s(x) = x+
∫ t

s F(u, θu,s(x))du (i.e.
θt,s(x) is the solution at time t of the deterministic differential system associated
to (1.1) starting from x at time s).

Remark 5.1. There are three differences w.r.t. to the indicated theorem. First, the
norm of the initial point in the r.h.s. of the above controls is due to the trans-
port by unbounded coefficients. Second, the small time constraint follows from our
linearization strategy employed to derive the Calderon-Zygmund estimates of The-
orem 3.1. At last, the upper bound on q comes from the control on the remainders
in (3.16). When the system is linear w.r.t. the components that transmit the noise
(see Remark 3.1) this constraint disappears and the result of Theorem 5.1 hold for
q ∈ [1,+∞).

We provide below the principal lines needed to adapt the proof of that theorem,
stressing which specific modifications are needed in the degenerate case and mainly
concern the localization arguments. Once again the key idea is to localize along
the characteristic lines associated to the deterministic differential system instead
of using spatial balls only as in [SV79]. Observe anyhow that, when the drift
is bounded, the product of the time interval and the spatial ball can be seen as a
characteristic line. Indeed, if the drift is 0 then the deterministic differential system
does not leave its initial condition; if it is bounded, the image of a spatial ball by
the deterministic system will stay uniformly in time in a ball whose radius only
depend on the bound of the drift, the final time and the initial radius, but not on
the points of the initial ball.

5.2.1. Controls for Slowly Varying Coefficients. We use here freely the notations
of Section 3 for the operators G̃, R (see equations (3.11)-(3.14)). Also, in order to
keep notations close to those in [SV79], we introduce for r > 2, the class A(r, T ) of
measurable coefficients a : R+×Rnd satisfying (UE) and F satisfying (ND), (SG),
for which there exists x0 ∈ Rnd s.t. with the notations of (3.1), εF ≤ ε0 and for

all ρ ∈ [r, n2d+4
2 ∨ r], ( εa2 C3.17(T, ρ, (A))+C(ρ, (A))T

1
2 ) < 3/4 so that from (3.18),

we have that (I − R)−1 is consistent as bounded operator from Lρ([0, T ] × Rnd)
into itself. In particular this imposes that T ≤ 1 is sufficiently small. Setting
then K := G̃ ◦ R−1, we thus derive that it is consistent as bounded operator from
Lρ([0, T ]× Rnd) into Lσ([0, T ]× Rnd) provided that

0 ≤
1

ρ
−

1

σ
<

2

n2d+ 2
.

Here comes the first Lemma emphasizing some regularizing effects of K which can
be derived similarly to Lemma 9.1.2 in [SV79].
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Lemma 5.1. Let a,F ∈ A(r, T ). Then, for N = ⌈n2d
2

1
r ⌉, K

N+1 maps Lr([0, T ] ×

Rnd) into Cb([0, T ] × Rnd) (space of real valued bounded continuous functions).
Precisely, for all (s,x) ∈ [0, T ]× Rnd:

|KN+1f(s,x)| ≤ C5.1‖f‖Lr([0,T ]×Rnd),

where C5.1 := C5.1(T, r, (A)).

From Lemma 5.1, Lemma 9.1.3 in [SV79] and the well posedness of the martin-
gale problem, denoting by P (s, x, t, .) the associated transition function, one then

gets: Pf(s, x) =
∫ T

s dt
∫

Rnd P (s, t,x, dy)f(t,y) = Kf(s, x) if f ∈ Lρ([0, T ]×Rnd)∩

L∞([0, T ]×Rnd). Therefore, forN = ⌈(n2d+2)/2r⌉, f ∈ C0([0, T ]×Rnd) (functions
with compact support),

(5.2) |PN+1f(s,x)| ≤ C5.1‖f‖Lr([0,T ]×Rnd).

This observation then yields the following result.

Lemma 5.2. If a,F ∈ A(r, T ) denoting by P the transition function associated to
(Lt)t∈[0,T ] then for r ≤ ρ ≤ +∞,

∫ T

s

dt(t− s)N
∫

Rnd

P (s, t,x, dy)f(t,y) ≤ C1
5.2‖f‖Lρ([0,T ]×Rnd),

with C1
5.2 := C1

5.2(T, r, (A)). Also, for each δ > 0, r < ρ ≤ ∞,
∫ T

s

dt

∫

Rnd\BE(θt,s(x),δ)

P (s, t,x, dy)f(t,y) ≤ C2
5.2‖f‖Lρ([0,T ]×Rnd),

where C2
5.2 := C2

5.2(T, r, ρ, (A)).

Remark 5.2. This is the first statement that differs from [SV79]. Indeed, the un-
bounded transport contribution appears here for the first time. To fully justify this
aspect we give below the full proof of this result.

Proof. The first statement of the Lemma still follows from Lemma 9.1.3 in [SV79]
and (5.2) from an interpolation argument. For the second one, we can assume
w.l.o.g. that T ≥ s+ c, c > 0. In that case:

|

∫ T

s

dt

∫

Rnd\BE(θt,s(x),δ)

P (s, t,x, dy)f(t,y)|

≤
∑

n≥1

∫ s+c/n

s+c/(n+1)

dt

∫

Rnd\BE(θt,s(x),δ)

P (s, t,x, dy)|f(t,y)|

+c−N

∫ T

s+c

(t− s)N
∫

Rnd

P (s, t,x, dy)|f(t,y)|.

The last contribution can be bounded directly by the first statement of the Lemma.
To control the sum, we see that introducing

Λn
s,xϕ :=

∫ s+c/n

s+c/(n+1)

dt

∫

Rnd\BE(θt,s(x),δ)

P (s, t,x, dy)ϕ(t,y),

we indeed get, from Lemma 9.1.3 in [SV79] and the first part of the lemma, that
as a linear operator on Lr([0, T ]×Rnd), Λn

s,x is bounded by N !((n+ 1)/c)N . Now
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for ϕ ∈ L∞([0, T ]× Rd),

|Λn
s,xϕ| ≤

c

n
|ϕ|∞Ps,x[ sup

t∈[s,s+c/n]

|Xt − θt,s(x)| ≥ δ].

Let us emphasize that it is precisely because we consider the deviations of the
process from the deterministic differential system, that we can control the previous
term with Bernstein like inequalities. Precisely, from Gronwall’s lemma:

|Xt − θt,s(x)| ≤ exp(CT )|

∫ t

s

σ(u,Xu)dWu| ≤ exp(C)|

∫ t

s

σ(u,Xu)dWu|,

with C := C((A)), so that, from Bernstein’s inequality:

P[ sup
t∈[s,s+c/n]

|Xt − θt,s(x)| ≥ δ] ≤ C exp(−C−1nδ2/c), C := C((A)),

up to a modification of C. The result then once again follows from standard inter-
polation. �

5.2.2. Localization arguments. Now we adapt more significantly the arguments in
[SV79] to get or results. The leading idea is the same as in the proof of Lemma 5.2:
to exploit the Bernstein-like deviations of the process from the deterministic system.
We now want to localize carefully to get rid off the quasi-constant coefficients of
the previous section. We have the following tubular localization.

Lemma 5.3 (Tubular estimate). For s0 ∈ [0, T ), x1 ∈ Rnd let Ps0,x1 denote the
solution to the martingale problem associated to (Lt)t∈[s0,T ]. For 0 < R1 < R2,

x0 ∈ Rnd defining τ−1 = s0 and for all n ∈ N,

τ2n := inf{t ≥ τ2n−1 : |Xt − θt,s(x0)| = R2},

τ2n+1 := inf{t ≥ τ2n : |Xt − θt,s(x0)| = R1},

then

EPs0,x1 [
∑

n≥0

Iτ2n∈[0,T ]] ≤ C5.3 := C5.3(T, (A), R2 −R1).

The proof can be performed as in Lemma 9.1.6 in [SV79]. The previous defini-
tions of the stopping times allows to apply the required Bernstein like arguments
similarly to the proof of Lemma 5.2.

The following result differs once again in the localization argument from Lemma
9.1.7 in [SV79], even though it can be proved rather similarly from Lemma 5.3.
We emphasize here that the localization has to be performed in time and space.
Roughly speaking this is needed in order to partition in time the characteristic
tubes in subtubes for which the local condition 3.1 is valid. This is the key of the
proof.

Lemma 5.4 (First Localization Lemma). Let P solve the martingale problem for
(Lt)t∈[0,T ] starting from (s0,x1) ∈ [0, T ]× Rnd. Suppose now that the martingale
problem associated to the operator

L̃t = F̃(t, ·) · ∇+
1

2
Tr(ã(t, ·)D2

x1
)

is well posed and that F̃ = F, ã = a on Ct,t,R(s0,x0) := {(t,y) ∈ [0, T ] × Rnd :

t ∈ [t, t], θs0,t(y) ∈ BE(x0, R)} for some 0 ≤ t < t ≤ T, R > 0. Then for each



MARTINGALE PROBLEMS FOR SOME DEGENERATE KOLMOGOROV EQUATIONS 19

δ ∈ (0, R):

|EP[

∫ T

s0

f(t,Xt)dt]| ≤ EP̃s0,x1 [

∫ T

s0

|f(t,Xt)|dt]

+C5.4 sup
(s,x)∈∂Ct,t,R−δ(s,x0)

EP̃s,x [

∫ T

s

|f(t,Xt)|dt],

for all f ∈ C0(Ct,t,R−δ(s0,x0)) and C5.4 := C5.4(T, (A), R, δ).

We now specify how this Lemma needs to be used. As a direct corollary of
Lemmas 5.4 and 5.2 we derive:

Lemma 5.5 (Second Localization Lemma). Let ã(s,x) := a(s,x), F̃(s,x) := F(s,x)

in Ct,t,R(s0,x0) and ã(s,x) := a(s,x0), F̃(s,x) := F(s,x0) elsewhere. Assume that

the functions ã, F̃ ∈ A(r, T ) for some r ∈ (2,+∞). Let P solve the martingale
problem for L starting at s0,x1 ∈ [0, T ] × Rnd. Then for each 0 < α < R and
r < ρ ≤ +∞.

|EP[

∫ T

s0

(t− s0)
Nf(t,Xt)dt]| ≤ C1

5.5‖f‖Lρ([s0,T ]×Rnd),

for all f ∈ C0(Ct,t,α(s0,x0)), whereN = ⌈(n2d+2)/2r⌉ and C1
5.5 := C1

5.5(T, (A), r, ρ, R−

α). If additionally, |x1 − x0| > α, then

|EP[

∫ T

s0

f(t,Xt)dt]| ≤ C2
5.5‖f‖Lρ([s0,T ]×Rnd),

where C2
5.5 := C2

5.5(T, (A), r, ρ, R− α, |x1 − x0| − α).

5.2.3. Proof of Theorem 5.1. From the previous localization Lemmas, the idea is
now to specifically partition the space in order to have crowns of the previous
type, Ct,t,R(s0,x0) on which the local condition (3.1) holds. Let q′ denote the

conjugate of q ∈ (1, 2) and choose r ∈ (2, q′) s.t. N := ⌈n2d+2
2

1
r ⌉ = ⌈n2d+2

2
1
q

′
⌉.

Choose T ≤ (4(sup
ρ∈[r,(n2d+2

2 ∨r)+1]
C(ρ, (A))))−2 and set ε−1 = C(3.17)(T, r, (A))∨

C(3.17)(T, (
n2d+2

2 ∨ r)+ 1, (A))∨ ε−1
0 in (3.18). Let us introduce for a fixed starting

point (s,x) of the martingale problem, the spatial balls

Qk := {x+ y : |yj − kjγ/(nd)
1/2| ≤ γ/(nd)1/2, j ∈ [[1, nd]]}, k ∈ Znd,

where γ := δT (ε)
C1

, and recalling that δT stands for the modulus of continuity of

a, the constant C1 is then chosen large enough so that for all k ∈ Znd, y0,y1 ∈
Qk, t ∈ [s, T ],

|a(t, θt,s(y0)− a(t, θt,s(y1))|

+ sup
i∈[[2,n]],0≤t≤T,(x,z)∈(Rnd)2

|Dxi−1Fi(t, (θt,s(y0))i−1, z
i,n)

−Dxi−1Fi(t, ((θt,s(y1))i−1)i−1, z
i,n)| ≤ ε.(5.3)

This means that the local condition is satisfied on the time section of the transport
of Qk by the flow. In order to apply the previous results, we also need to handle
the time contribution. Define now hk := T−s

⌈C2(1+|kγ/(nd)1/2+x|)⌉
where the constant

C2 := C2(ε) is chosen large enough, so that for all i ∈ [[0, ⌈C2(1+|kγ/(nd)1/2+x|)⌉]],
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setting tki := s+ ihk, the coefficients a,F restricted to Ctki ,tki+1,γ
(s,x+ kγ/(nd)1/2)

coincide with some ã, F̃ satisfying A(r, T ).
This choice simply means that the length of the time intervals for which we

partition the set θT,s(Qk) := {(t, z) ∈ [s, T ]×Rnd : θs,t(z) ∈ Qk} (image of Qk by
the flow) highly depend on the norm of the starting point. This is specifically due
to the unbounded drift. Precisely we can write:

(5.4) θT,s(Qk) :=

⌈C2(1+|kγ/(nd)1/2+x|)⌉−1
⋃

i=0

Ctki ,tki+1,γ
(s,x+ kγ/(nd)1/2).

Now from Lemma 5.5 we get that for ρ = (r + q′)/2, for all i ∈ [[0, ⌈C2(1 +
|kγ/(nd)1/2 + x|)⌉ − 1]]
(5.5)

|

∫ T

s

dt(t−s)N
∫

C
tk
i
,tk

i+1
,γ
(s,x+kγ/(nd)1/2)

P (s, t,x, dy)f(t,y)| ≤ C5.5‖f‖Lρ([0,T ]×Rnd),

where C5.5 := C5.5(T, (A), r, ρ). On the other hand, comparing deviations along
the characteristics allows once again to use Bernstein inequalities, similarly to the
proof of Lemma 5.2. Namely,

P (s, t,x, Qk) ≤ Ps,x[∃u ∈ [s, t], |Xu − θu,s(x)| > |θu,s(x)− θu,s(x+ kγ/(nd)1/2|]

≤ Ps,x[ sup
u∈[s,T ]

|

∫ u

s

σ(v,Xv)dWv| ≥ C|kγ|]

≤ 2d exp(−C̄−1 |k|
2γ2

Td2
), C̄ := C̄((A)) ≥ 1,

using Gronwall’s Lemma (see proof of Lemma 5.2) and the bi-Lipschitz property of
the flow for the last but one inequality. We therefore obtain:

|

∫ T

s

dt(t− s)N
∫

C
tk
i
,tk

i+1
,γ
(s,x+kγ/(nd)1/2)

P (s, t,x, dy)f(t,y)|

≤ C5.6 exp(−C̄−1 |k|
2γ2

Td2
)|f |∞,

(5.6)

where C5.6 := C5.6(T, n, d,N). We thus get by interpolation that for ϑ = 1 − ρ
q′ ∈

(0, 1):

|

∫ T

s

dt(t− s)N
∫

C
tk
i
,tk

i+1
,γ
(s,x+kγ/(nd)1/2)

P (s, t,x, dy)f(t,y)|

≤ C1−ϑ
5.5 Cϑ

5.6 exp(−C̄−1ϑ|k|
2γ2

Td2
)‖f‖Lq′([0,T ]×Rnd).

Summing for a given k ∈ Zd first over i ∈ [[0, ⌈C2(1 + |kγ/(nd)1/2 + x|)⌉ − 1]] (that
is according to (5.4) on θT,s(Qk)) we obtain

|

∫ T

s

dt(t− s)N
∫

θT,s(Qk)

P (s, t,x, dy)f(t,y)|

≤ C̃(T 1/2 + |x|)C1−ϑ
5.5 Cϑ

5.6 exp(−C̄−1ϑ|k|
2γ2

Td2
)‖f‖Lq′([0,T ]×Rnd), C̃ := C̃((A), ϑ).
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Summing now over k ∈ Znd yields:

|

∫ T

s

dt(t− s)N
∫

Rnd

P (s, t,x, dy)f(t,y)|

≤ C5.7(1 + |x|)‖f‖Lq′ ([0,T ]×Rnd), C5.7 := C5.7(T, q, (A), γ).

(5.7)

This contribution already emphasizes the main difference w.r.t. the non degenerate
case: the estimate depends on the initial point. The proof can then be completed
similarly to Theorem 9.1.9 in [SV79]. This achieves the proof of the existence of
the density and the associated estimates when T is small enough.

The existence of the density in Theorem 2.1 then follows from a chaining argu-
ment.

5.2.4. Derivation of equation (2.2) in Theorem 2.1. To prove (2.2) we will induc-
tively apply the results of the previous section along a time grid which time-steps
are lower than T0 in Theorem 5.1. We can assume w.l.o.g. that T := T0N, N ∈ N.
Setting now ti := iT0, i ∈ [[0, N ]], write from the strong Markov property:

Ex[

∫ T

0

f(t,Xt)dt] =

N−1
∑

i=0

Ex[Eti,Xti
[

∫ ti+1

ti

f(t,Xt)dt]]

=
{

N−1
∑

i=0

Ex[Eti,Xti
[

∫ ti+1

ti

f(t,Xt)IXt∈BE(θt,ti
(Xti

),δ)dt]]
}

+
{

N−1
∑

i=0

Ex[Eti,Xti
[

∫ ti+1

ti

f(t,Xt)IXt 6∈BE(θt,ti
(Xti

),δ)dt]]
}

:= TC + TF ,

(5.8)

for some δ > 0 to be specified later on. From the second part of Theorem 5.1 we
obtain that for p > n2d/2 + 1,

(5.9) |TF | ≤ C2
5.1

N−1
∑

i=0

Ex[(1 + |Xti |)]‖f‖Lp([0,T ]×Rnd) ≤ NC2
5.1CF (1 + |x|),

where CF := CF (T0, (A)). On the other hand, we can follow the localization
procedure of the previous proof (see equation (5.3)), and find δ > 0 s.t. setting

h := ti+1−ti
⌈C2(1+|Xti

|)⌉ and tji := ti+hj, j ∈ [[0, ⌈C2(1+ |Xti |)⌉ then the coefficients ã, F̃

equal to a,F on Ctji ,t
j+1
i ,2δ(ti,Xti) and to a(ti,Xti),F(ti,Xti) elsewhere, belong to

the class A(r, T ) for some r ∈ (2, n2d/2 + 1). We then derive from Lemma 5.4:

|TC | ≤

N−1
∑

i=0

Ex

[⌈C2(1+|Xti
|)⌉−1

∑

j=0

Eti,Xti

[

E

P̃
t
j
i
,X

t
j
i [

∫ tj+1
i

tji

|f(t,Xt)|IXt∈BE(θt,ti
(Xti

),δ)dt]

+ sup
(s,y)∈∂C

t
j
i
,t

j+1
i

,δ
(ti,Xti

)

EP̃s,y [

∫ tj+1
i

s

|f(t,Xt)|IXt∈BE(θt,ti
(Xti

),δ)dt]
]

]

.

Now, from equation (3.19), we derive
(5.10)

|TC | ≤ C‖f‖Lp([0,T ]×Rnd)

N−1
∑

i=0

E[⌈C2(1 + |Xti |)⌉] ≤ CN(1 + |x|)‖f‖Lp([0,T ]×Rnd),

up to a modification of C. The result follows from (5.10), (5.9), (5.8).
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6. Proofs of the technical results

6.1. Proofs concerning the quasi-metric structure (Proposition (4.1)). Let
us first observe from the definition of the balls, see equations (4.1), (4.2), that there
exists C1 := C1((A)) > 0 s.t. for all δ > 0, (s,x) ∈ S,

|B((s,x), δ)| ≤ C1δ
2+d

∑n
i=1(2i−1) = C1δ

2+n2d.

On the other hand, introducing

B̄((s,x), δ) :=
{

(t,y) ∈ S : |t− s| ≤
δ2

4
, ρSp(θt,s(x)− y) ≤

δ

2

}

=
⋃

|t−s|≤ δ2

4 , s∈[−T,T ]

{y ∈ Rnd : ρSp(θt,s(x)− y) ≤
δ

2
},

∀z ∈ Rnd, ρSp(z) := (

n
∑

i=1

|zi|
2(2n−1)

2i−1 )
1

2(2n−1) ,

i.e. ρSp corresponds to the spatial contribution in the metric (4.1), we have that
B̄((s,x), δ) ⊂ B((s,x), δ). Indeed, for all (t,y) ∈ B̄((s,x), δ), d((s,x), (t,y)) :=
ρ(|t− s|, θt,s(x)−y) ≤ |t− s|1/2+ ρSp(θt,s(x)−y) ≤ δ. Since we also have, up to a

modification of C1 that for all (s,x) ∈ S, δ > 0, |B̄((s,x), δ)| ≥ C−1
1 δ we therefore

derive:

C−1
1 δ2+n2d ≤ |B((s,x), δ)| ≤ C1δ

2+n2d,

which gives b) and c). To derive a), we need to exploit the specific structure of the
dynamics. Let us first recall how to relate the forward and backward dynamics.
Precisely, one has for all v ∈ I(t, s) := ([s, t]Is<t) ∪ ([t, s]Is≥t),

(6.1) θv,s(x)− θv,t(y) = θt,s(x) − y −

∫ t

v

(F(u, θu,s(x)) − F(u, θu,t(y)))du,

which for v = s yields:

x− θs,t(y) = θt,s(x)− y −

∫ t

s

(F(u, θu,s(x)) − F(u, θu,t(y)))du.

Starting from the last components, and assuming w.l.o.g. that t > s, we have:

|(x− θs,t(y))n| ≤ |(θt,s(x)− y)n|

+C2

∫ t

s

(|(θv,s(x) − θv,t(y))n−1|+ |(θv,s(x)− θv,t(y))n|) dv

≤ exp(C2(t− s))

(

|(θt,s(x) − y)n|+ C2

∫ t

s

|(θv,s(x)− θv,t(y))n−1|dv

)

,

where C2 := C2((A)) and using Gronwall’s Lemma for the last inequality. Using
iteratively (6.1) and Gronwall’s Lemma we derive that there exists C3 := C3(T, (A))
s.t.

(6.2) |(x − θs,t(y))n| ≤ C3

n
∑

j=1

|(θt,s(x)− y)j ||t− s|n−j .
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Using Young’s inequality with pj =
2n−1
2j−1 , qj =

2n−1
2(n−j) in order to make the homo-

geneous exponent of coordinate j ∈ [[1, n− 1]] appear, we get:

|(x− θs,t(y))n|
1/(2n−1) ≤ C

1/(2n−1)
3

[

|(θt,s(x)− y)n|
1/(2n−1) +

n−1
∑

j=1

(

|(θt,s(x) − y)j)|
1/(2j−1)

pj
+

|t− s|1/2

qj

)]

≤ C4d((s,x), (t,y)),(6.3)

for C4 := C4(T, (A)).
The above estimate does not exploit the fact that d((s,x), (t,y)) ≤ 1. This last

assumption is actually needed for the components i ∈ [[1, n− 1]] whose differential
dynamics potentially involves coordinates j > i with higher characteristic time-
scales in small times but that are not neglectable in the “homogeneous” norm
we consider. Namely, similarly to (6.2) we derive for all i ∈ [[1, n − 1]] up to a
modification of C3:
(6.4)

|(x−θs,t(y))i| ≤ C3





i
∑

j=1

|(θt,s(x)− y)j ||t− s|i−j +
n
∑

j=i+1

|(θt,s(x)− y)j ||t− s|



 .

Thus,

|(x− θs,t(y))i|
1/(2i−1) ≤ C

1/(2i−1)
3





i
∑

j=1

(

|(θt,s(x) − y)j ||t− s|i−j
)1/(2i−1)

+
n
∑

j=i+1

(|(θt,s(x)− y)j ||t− s|)1/(2i−1)



 .

For the first contribution of the r.h.s. we can use again Young’s inequality with pj =
2i−1
2j−1 , qj =

2i−1
2(i−j) . For the second contribution we exploit that since d((s,x), (t,y)) ≤

1 then for all j ∈ [[1, n]], |(θt,s(x) − y)j | ≤ 1 which for j ≥ i + 1 yields |(θt,s(x) −

y)j |
1/(2i−1) ≤ |(θt,s(x) − y)j |

1/(2j−1). We therefore get up to a modification of C4

that:

|(x− θs,t(y))i|
1/(2i−1) ≤ C4d((s,x), (t,y)),

which together with (6.3) indeed gives that there exists C4.1 := C4.1((A), T )) s.t.
d((t,y), (s,x)) ≤ C4.1d((s,x), (t,y)) for (s,x), (t,y) ∈ S, d((s,x), (t,y)) ≤ 1 which
is the first part of a). It remains to prove the quasi-triangle inequality. Recalling
that ρ defined in (4.1) satisfies the quasi-triangle inequality, let us write:

d((s,x), (t,y)) = ρ(|t− σ + σ − s|, θt,s(x) − θt,σ(ξ) + θt,σ(ξ)− y)

≤ K(ρ(|σ − s|, θt,s(x)− θt,σ(ξ)) + ρ(|t− σ|, θt,σ(ξ)− y))

:= K(ρ(|σ − s|, θt,s(x)− θt,σ(ξ)) + d((σ, ξ), (t,y))).

(6.5)
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On the other hand, using the specific form of F in the dynamics of θ, we can derive
similarly to (6.2), (6.4) using the direct forward dynamics that for all i ∈ [[1, n]]:

|(θt,σ(θσ,s(x)) − θt,σ(ξ))i|

≤ C3





i
∑

j=1

|(θσ,s(x) − ξ)j ||t− σ|i−j +
n
∑

j=i+1

|(θσ,s(x)− ξ)j ||t− σ|



 .

Thus, using as above Young inequalities and the fact that d((s,x), (σ, ξ)) ≤ 1 we
get for all i ∈ [[1, n]],

|(θt,s(x)− θt,σ(ξ))i|
1/(2i−1)

≤ C
1/(2i−1)
3

( i
∑

j=1

[

|(θσ,s(x)− ξ)j |)
1/(2j−1)

pj
+

|t− σ|1/2 + |σ − s|1/2

qj

]

+
n
∑

j=i+1

|(θσ,s(x)− ξ)j ||
1/(2j−1)|t− σ|1/(2i−1)

)

≤ C4(d((s,x), (σ, ξ)) + d((σ, ξ), (t,y)),

with pj = 2i−1
2j−1 , qj = 2i−1

2(i−j) in the last but one equality. Hence ρ(σ − s, θt,s(x) −

θt,σ(ξ)) ≤ C5(d((s,x), (σ, ξ)) + d((σ, ξ), (t,y)), C5 := C5((A), T ), which plugged
into (6.5) concludes the proof up to a modification of C4.1. �

Remark 6.1 (Subdiagonal structure). Observe from the previous proof that when
the function F in the dynamics of θ has the following structure, F1(t,x) = F1(t,x1),
and for all i ∈ [[2, n]], Fi(t,x

i−1,n) = Fi(t,xi−1,xi), then the terms in j ∈ [[i+1, n]]
do not appear in equation (6.4). Hence, the distances respectively associated to the
forward and backward transport are actually equivalent.

6.2. Proofs of the results concerning the kernel.

6.2.1. Proof of Lemma 4.1. From now on for ϕ ∈ L1(R × Rnd), we denote by

ϕ̂x(s, ξ) =

∫

Rnd

exp(i〈ξ, x〉)f(s,x)dx its Fourier transform in space. For f ∈

C∞
0 ([0, T ] × Rnd) we easily derive from (4.4), (4.5) that Kǫ

ijf is continuous and

rapidly decreasing on R× Rnd. Hence, for all s ∈ [0, T − ǫ), ξ ∈ Rnd,

K̂ǫ
ijf

x

(s, ξ) =

∫

Rnd

exp(i〈ξ,x〉)

(

∫

Rnd

∫ T

s+ǫ

∂
xi
1x

j
1
q̃(s, t,x,y)f(t,y)dt dy

)

dx

(3.4)
= −ξi1ξ

j
1

∫

Rnd

dy

∫ T

s+ǫ

dt

∫

Rnd

dx exp(i〈ξ,x〉)f(t,y)

exp
(

− 1
2 〈K̃

y(s, t)−1(R̃t,y(t, s)x+ m̃t,y(s, t)− y), R̃t,y(t, s)x− m̃t,y(s, t)− y〉
)

(2π)nd/2det(K̃y(s, t))1/2

= −ξi1ξ
j
1

∫

Rnd

dy

∫ T

s+ǫ

dt

∫

Rnd

dx exp(i〈ξ,x〉)f(t,y)

exp
(

− 1
2 〈H̃

t,y(s, t)−1(x− R̃t,y(s, t)(y − m̃t,y(s, t)),x− R̃t,y(s, t)(y − m̃t,y(s, t))〉
)

(2π)nd/2det(K̃y(s, t))1/2
,

setting

H̃t,y(s, t) := R̃t,y(s, t)K̃y(s, t)R̃t,y(s, t)∗.(6.6)
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Observe now from equation (3.4) that R̃t,y(s, t)(y−m̃t,y(s, t)) = θs,t(y) (pull-back
by the deterministic system of the final point y from t to s). Thus, recalling from

the subdiagonal structure in (3.4) that det(R̃t,y(s, t)) = 1 :

K̂ǫ
ijf

x

(s, ξ) = −ξi1ξ
j
1

∫ T

s+ǫ

dt

∫

Rnd

dyf(t,y) exp(i〈ξ, θs,t(y)〉)

×

(∫

Rnd

dz
exp

(

− 1
2 〈H̃

t,y(s, t)−1z, z〉
)

(2π)nd/2det(H̃t,y(s, t))1/2
exp(i〈ξ, z〉)

)

= −ξi1ξ
j
1

∫ T

s+ǫ

dt

∫

Rnd

dyf(t,y) exp(i〈ξ, θs,t(y)〉) exp

(

−
1

2
〈H̃t,y(s, t)ξ, ξ〉

)

.

(6.7)

Remark 6.2. Observe that up to now we have not exploited the specific linear struc-
ture of the drift assumed in Lemma 4.1. From (6.7) this is indeed a very useful
way to get rid-off the transport by simply changing the Fourier argument, writing
exp(i〈ξ, θs,t(y)〉) = exp(i〈ξ,R(s, t)y〉) = exp(i〈R(s, t)∗ξ,y〉), the flow writing as
the transport by the resolvent3. In the non-linear case, even under the local condi-
tion (3.1), that expresses that the deterministic differential system is almost linear,
it does not seem easy to control the remainders in a Fourier inversion starting from
(6.7). This is mainly due to the dependence in the integration variable y of the

covariance matrix H̃t,y.

When the drift is linear, we manage to adapt the proofs of Fabes, Stroock and
Varadhan (see Appendix in [SV79]). In that case, equation (6.7) rewrites:

K̂ǫ
ijf

x

(s, ξ) = −ξi1ξ
j
1

∫ T

s+ǫ

dt

∫

Rnd

dyf(t,y) exp(i〈R(s, t)∗ξ,y〉) exp

(

−
1

2
〈H̃(s, t)ξ, ξ〉

)

= −ξi1ξ
j
1

∫ T

s+ǫ

dtf̂(t,R(s, t)∗ξ) exp

(

−
1

2
〈H̃(s, t)ξ, ξ〉

)

.

Observe now from (6.6), Lemma B.1 and (3.7) (good scaling property) that there
exists c := c(T, (A)) s.t.:

|K̂ǫ
ijf

x

(s, ξ)| ≤ |ξ1|
2

∫ T

s

dt|f̂(t,R(s, t)∗ξ)| exp(−c(t− s)−1|Tt−sξ|
2).

Thus, the Cauchy-Schwarz inequality yields:

‖K̂ǫ
ijf

x

‖2L2([0,T ]×Rnd) ≤

∫ T

0

ds

∫

Rnd

dξ|ξ1|
4

∫ T

s

dt|f̂(t,R(s, t)∗ξ)|2

× exp
(

−c(t− s)−1|Tt−sξ|
2
)

∫ T

s

dt exp
(

−c(t− s)−1|Tt−sξ|
2
)

≤ c−1

∫ T

0

ds

∫

Rnd

dξ|ξ1|
2

∫ T

s

dt|f̂(t,R(s, t)∗ξ)|2 × exp
(

−
c

C2
(t− s)−1|Tt−sR(s, t)∗ξ|2

)

recalling from the Scaling Lemma B.1 that |Tt−sR(s, t)∗ξ| ≤ C|Tt−sξ|, C(T, (A))
for the last inequality. The key idea is now to set ξ̄ := R(s, t)∗ξ and to exploit the

3We stress that even in the linear case R 6= R̃, the latter corresponding to the resolvent
associated to the subdiagonal part of the system. In that case, the matrices K̃, H̃ are defined
from R̃ as before and do not depend on t nor y.
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structure of the resolvent. Still from the Scaling Lemma B.1, one indeed derives
that there exists C̄ := C̄(T, (A)), ∀i ∈ [[1, n]], |(R(t, s)∗)1,i| ≤ C̄|t − s|i−1. We
therefore get up to a modification of the previous C:

‖K̂ǫ
ijf

x

‖2L2([0,T ]×Rnd) ≤ C

∫ T

0

ds

∫

Rnd

dξ̄|(R(t, s)∗ξ̄)1|
2

∫ T

s

dt|f̂(t, ξ̄)|2

× exp
(

−C−1(t− s)−1|Tt−sξ̄|
2
)

≤ CC̄

∫ T

0

ds

∫

Rnd

dξ̄

n
∑

j=1

(t− s)2(j−1)|ξ̄j |
2

∫ T

s

dt|f̂(t, ξ̄)|2

× exp
(

−C−1(t− s)−1|Tt−sξ̄|
2
)

≤ CC̄

∫ T

0

dt

∫

Rnd

dξ̄|f̂(t, ξ̄)|2
∫ t

0

ds

n
∑

j=1

(t− s)2(j−1)|ξ̄j |
2 exp(−C−1

n
∑

j=1

(t− s)2j−1|ξ̄j |
2)

≤ C̃

∫ T

0

dt

∫

Rnd

dξ̄|f̂(t, ξ̄)|2, C̃ := C̃(T, (A)).

The statement follows from Parseval’s identity.

6.2.2. Proof of Lemma 4.2. We have:
∫

ρ(t−s,y−θt,s(x))≥c∞ρ(|σ−s|,ξ−θσ,s(x))

|kǫij(s, t,x,y) − kǫij(σ, t, ξ,y)|dtdy

≤

∫

ρ(t−s,y−θt,s(x))≥c∞ρ(|σ−s|,ξ−θσ,s(x))

|kij(s, t,x,y)− kij(σ, t, ξ,y)|dtdy

+

∫

ρ(t−s,y−θt,s(x))≥c∞ρ(|σ−s|,ξ−θσ,s(x))

|It∈[s+ǫ,T ] − It∈[σ+ǫ,T ]||kij(s, t,x,y)|dtdy

:= T1 + T ǫ
2 ,(6.8)

with kij(s, t,x,y) = I0≤s<t≤TD
2
xi
1x

j
1

q̃(s, t,x,y), ∀(s, t)× (x,y) ∈ R2 × (Rnd)2.

Set α := ρ(|σ−s|, ξ−θσ,s(x)). Similarly to (4.5), we derive that |kij(s, t,x,y)| ≤
C4.5I0≤s<t≤T (t− s)−1qc4.5(s, t,x,y), ∀(s, t)× (x,y) ∈ R2 × (Rnd)2. Hence:

T ǫ
2 ≤ C4.5

∫

ρ(t−s,y−θt,s(x))≥c∞α

|It∈[s+ǫ,T ] − It∈[σ+ǫ,T ]|
1

t− s
qc4.5(s, t,x,y)dtdy

≤ C

∫

ρ(t,y−θt+s,s(x))≥c∞α

|It∈[ǫ,T−s] − It−(σ−s)∈[ǫ,T−σ]|
It>0

tn2d/2+1

exp
(

−c4.5t|T
−1
t (θ̃

t+s,y

t+s,s (x) − y)|2
)

dtdy, C := C(T, (A)).

Now from (3.9) and the bi-Lipschitz property of the flow we have:

T ǫ
2 ≤ C

∫

ρ(t,y−θt+s,s(x))≥c∞α

|It∈[ǫ,T−s] − It−(σ−s)∈[ǫ,T−σ]|
It>0

tn2d/2+1

exp
(

−ct|T−1
t (θt+s,s(x)− y)|2

)

dtdy, c := c(T, (A)).

Setting Y := t1/2T−1
t (θt+s,s(x)− y) we get

T ǫ
2 ≤ C

∫

ρ(t,t−1/2TtY)≥c∞α,t>0

|It∈[ǫ,T−s] − It−(σ−s)∈[ǫ,T−σ]|
exp(−c|Y|2)

t
dtdY.
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From the homogeneity properties of the metric ρ defined in (4.1) (see Remark 4.1)
we derive:

T ǫ
2 ≤ C

∫

ρ(1,Y)≥c∞αt−1/2,t>0

|It∈[ǫ,T−s] − It−(σ−s)∈[ǫ,T−σ]|
exp(−c|Y|2)

t
dtdY.

Recalling that |σ − s| ≤ α2 we obtain:

T ǫ
2 ≤ C sup

S≥0

∫ S+α2

S

dt

t

∫

ρ(1,Y)≥c∞αt−1/2

exp(−c|Y|2)dY

≤ C sup
S≥0

∫ S/α2+1

S/α2

dt

t

∫

ρ(1,Y)≥c∞t−1/2

exp(−c|Y|2)dY

≤ C sup
S≥0

∫ S+1

S

dt

t

∫

ρ(1,Y)≥c∞t−1/2

exp(−c|Y|2)dY.

We now perform a dichotomy on the values of t considering the cases:

- t >
(

c4n−2
∞

2

)
1

2n−1

. There is then no time singularity in the above integral.

- t ≤
(

c4n−2
∞

2

)
1

2n−1

. In this case

{Y ∈ Rnd : ρ(1,Y) := (1 +

n
∑

j=1

|Yj |
2(2n−1)
2j−1 )

1
2(2n−1) ≥ c∞t−1/2}

⊂ {Y ∈ Rnd : ρ(1,Y) := (1 +
n
∑

j=1

|Yj |
2(2n−1)
2j−1 ) ≥

c
2(2n−1)
∞

2t2n−1
+ 1}

⊂ ∪n
j=1{Yj ∈ Rd : |Yj |

2 ≥ t−(2j−1)c(n, j), c(n, j) :=

(

c2∞
(2n)1/(2n−1)

)2j−1

}.

Thus,
∫

ρ(1,Y)≥c∞t−1/2

exp(−c|Y|2)dY ≤ C

n
∑

j=1

exp

(

−
c× c(n, j)

2t2j−1

)∫

exp(−
c

2
|Yj |

2)dYj

≤ C

n
∑

j=1

exp

(

−
c× c(n, j)

2t2j−1

)

.

These controls yield

(6.9) T ǫ
2 ≤ C sup

S≥0

∫ S+1

S

dt

{

(

2

c4n−2
∞

)
1

2n−1

+ t−1
n
∑

i=1

exp

(

−
c× c(n, j)

2t2j−1

)

}

≤ C.

Let us now turn to the control of T1 in (6.8). The integrand writes:

|kij(s, t,x,y) − kij(σ, t, ξ,y)| ≤ |kij(s, t,x,y) − kij(σ, t, θ̃
t,y

σ,s(x),y)|

+|kij(σ, t, θ̃
t,y

σ,s(x),y) − kij(σ, t, ξ,y)|

:= I1(s, σ, t,x,y) + I2(σ, t,x, ξ,y).(6.10)

Remark 6.3. The previous splitting of |kij(s, t,x,y)− kij(σ, t, ξ,y)| has been done
to separate the time and space sensitivities. In I1 the space variable is frozen and

from (4.4) and the flow property of θ̃
t,y

its value is equal to θ̃
t,y

t,s (x) − y. In I2
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the time variables are equal to t− σ. Also, the intermediate spatial point θ̃
t,y

σ,s(x)

yields from I2 a difference of the form |θ̃
t,y

σ,s(x)−ξ| which up to a linearization error
has the same order as |θσ,s(x) − y|, norm of the spatial point appearing in the
integration set in (4.7).

Setting for all 0 ≤ s < t ≤ T, (z,y) ∈ (Rnd)2:

k̄ij(s, t, z,y) := I0≤s<t≤T

(

−[R̃t,y(t, s)∗K̃y(s, t)−1R̃t,y(t, s)]11

+[R̃t,y(t, s)∗K̃y(s, t)−1(z− y)]⊗2
1

)

×

(

1

(2π)nddet(K̃y(s, t))1/2

× exp(−
1

2
〈K̃y(s, t)−1(z− y), z − y〉)

)

,

we can rewrite I1(s, σ, t,x,y) = |k̄ij(s, t, θ̃
t,y

t,s (x),y) − k̄ij(σ, t, θ̃
t,y

t,s (x),y)|. Thus,
from (4.4), we derive similarly to (4.5) (see also the proof of Proposition 3.7 in
[DM10] for a thorough discussion on the time sensitivities of the covariance matrix)
that ∃(c, C) := (c, C)(T, (A)) > 0 s.t.

I1(s, σ, t,x,y) ≤ |s− σ| sup
τ∈[s∧σ,(s∨σ)∨t]

|∂τ k̄ij(τ, t, z,y)|z=θ̃
t,y
t,s (x)

≤ C|s− σ| × sup
τ∈[s∧σ,(s∨σ)∨t]

q̄c(τ, t, z,y)

(t− τ)2
|
z=θ̃

t,y
t,s (x)

,(6.11)

where q̄c(τ, t, z,y) :=
cnd/2

(2π)nd/2(t−τ)n2d/2
exp(− c

2 (t− τ)|T−1
t−τ (z− y)|2).

Introduce now Σ1 := {(u, z) ∈ [0, T ]×Rnd : ρ(u, z) = 1} with ρ defined in (4.1),
i.e. Σ1 is the level curve at 1 of the parabolic metric. Observe also that with the
definition of ρ, Σ1 is a C1 hypersurface. With this definition we can introduce the
mappings:

J1 : (t,y) ∈ [0, T ]× Rnd 7→
(

s+ ρ2s̃, θt,s(x) + ρ−1Tρ2 x̃
)

, ρ := ρ(t− s,y − θt,s(x))

(s̃, x̃) :=
(

(t− s)ρ−2, ρTρ−2 (y − θt,s(x))
)

∈ Σ1.(6.12)

J2 : (σ, ξ) ∈ [0, T ]× Rnd 7→
(

s+ α2s̄, θσ,s(x) + α−1Tα2 x̄
)

, α := ρ(σ − s, ξ − θσ,s(x))

(s̄, x̄) :=
(

(σ − s)α−2, αTα−2 (ξ − θσ,s(x))
)

∈ Σ1.(6.13)

From the definition of T1 in (6.8), we have to integrate the terms I1, I2 on the set
{(t,y) ∈ [0, T ]×Rnd : t ≥ s∨ σ, ρ := ρ(t− s,y− θt,s(x)) ≥ c∞α := c∞ρ(σ− s, ξ−
θσ,s(x))}.

From (6.12) we get that for all τ ∈ [s ∧ σ, (s ∨ σ) ∨ t]:

q̄c(τ, t, θ̃
t,y

t,s (x),y)

(t− τ)2
≤

C

ρ4+n2d

1
(

s̃− τ−s
ρ2

)2+n2d/2

× exp
(

−c(t− τ)|T−1
t−τ (ρ

−1Tρ2{x̃+Rρ
t,s(x,y)})|

2
)

,(6.14)

where Rρ
t,s(x,y) := ρTρ−2(θt,s(x) − θ̃

t,y

t,s (x)) is a term that takes into account the
approximation of the non-linear flow by the linear one.

Now, if |s̃ − τ−s
ρ2 |2n−1 ≥ 22n−1

c2
∞

:= c̃, for c∞ ≥ 1 to be specified later on, we

have from the above expression and (6.11) that I1(s, σ, t,x,y) ≤ C|s−σ|

ρ4+n2d
≤ Cα2

ρ4+n2d
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using (6.13) for the last inequality. On the other hand, recalling from (6.8) that on

the integration set in (6.8) ρ ≥ c∞α, we get |τ − s| ≤ |σ − s| ≤ α2 ≤ ρ2

c2
∞

. Since

(s̃, x̃) ∈ Σ1, we thus derive:

n
∑

j=1

|x̃j |
2(2n−1)

2j−1 +

(

s̃−
τ − s

ρ2

)2n−1

= 1 +

2n−2
∑

i=0

Ci
2n−1(s̃)

i

(

−
(τ − s)

ρ2

)2n−1−i

≥ 1−

∑2n−1
i=0 Ci

2n−1

c2∞
:= 1− c̃.

Hence, for |s̃− τ−s
ρ2 |2n−1 ≤ c̃, we obtain

n
∑

j=1

|x̃j |
2(2n−1)
2j−1 ≥ 1− 2c̃ and ∃j0 ∈ [[1, n]], |x̃j0 |

2(2n−1)
2j0−1 ≥

1− 2c̃

n
> 0, for c∞ > 2n.

(6.15)

Write now:

(t− τ)|T−1
t−τ (ρ

−1Tρ2{x̃+Rρ
t,s(x,y)})|

2

:=

n
∑

j=1

(

s̃−
τ − s

ρ2

)−(2j−1)

|{x̃+Rρ
t,s(x,y)}j |

2.

From a stability analysis similar to the one of equations (A-8), (A-10) in [Men11],
we derive the following lemma whose proof is for the sake of completeness proposed
in Appendix A.

Lemma 6.1. Assume that (ASD) holds or that 0 < ρ ≤ Λ. Then, under the local
condition (3.1), there exists C6.1 := C6.1((A),Λ) s.t.:

|Rρ
t,s(x,y)| ≤ C6.1(εF + (t− s))|x̃|.

Also, if ρ := ρ(t− s, θt,s(x)− y) ≥ c∞α := ρ(|σ − s|, ξ − θσ,s(x)), then

|Rρ
t,σ(θσ,s(x),y)| ≤ C6.1(εF + t− σ)|x̃|.

This implies that taking j0 ∈ [[1, n]] s.t. |x̃j0 | := supi∈[[1,n]] |x̃i| one has for all

j ∈ [[1, n]]:

|{Rρ
t,s(x,y)}j | ≤ C6.1n(εF + (t− s))|x̃j0 |,

|{Rρ
t,σ(θσ,s(x),y)}j | ≤ C6.1n(εF + (t− σ))|x̃j0 |.(6.16)

Remark 6.4. The structure or boundedness is here really required to control the
remainders, see Remark A.1 in the proof of Lemma 6.1 for details. Anyhow, under
the general assumption (AG) a truncation similar to the one mentioned in Lemma
4.3 can be performed in order to consider bounded arguments ρ. We thus consider
for simplicity until the end of the proof that (ASD) holds. All the computations
below would anyhow remain valid up to the previous truncation on ρ.
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Thus, for T and εF s.t. C6.1n(εF + (t− s)) ≤ 1/2:

(t− τ)|T−1
t−τ (ρ

−1Tρ2{x̃+Rρ
t,s(x,y)})|

2

≥

(

s̃−
τ − s

ρ2

)−(2j0−1)

|x̃j0 |
2

(

1

2
− (C6.1n(εF + (t− s)))2

)

≥
1

4

(

s̃−
τ − s

ρ2

)−(2j0−1)(
1− 2c̃

n

)

2j0−1
2n−1

,

using (6.15) for the last inequality. Plugging the above control into (6.14) yields:

q̄c(τ, t, θ̃
t,y

t,s (x),y)

(t− τ)2
≤

C

ρ4+n2d

1
(

s̃− τ−s
ρ2

)2+n2d/2

× exp

(

−
c

4

(

s̃−
τ − s

ρ2

)−(2j0−1)(
1− 2c̃

n

)

2j0−1
2n−1

)

.

From the above computations, we finally get the global bound:

(6.17) ∃C1 := C1(T, (A)) > 0, I1(s, σ, t,x,y) ≤
C1α

2

ρ4+n2d
.

Let us now turn to I2(σ, t,x, ξ,y). From Proposition B.1 and (4.4), we get
similarly to (6.11) that ∃(c, C) := (c, C)(T, (A)) > 0 s.t.:

I2(σ, t,x, ξ,y) ≤ C(t− σ)1/2|T−1
t−σ(θ̃

t,y

t,s (x)− θ̃
t,y

t,σ(ξ))|

×
1

(t− σ)
sup

γ∈[0,1]

q̄c(σ, t, γθ̃
t,y

t,s (x) + (1− γ)θ̃
t,y

t,σ(ξ),y)

≤ C(t− σ)1/2|T−1
t−σ(θσ,s(x)− ξ)|

×
1

(t− σ)
sup

γ∈[0,1]

q̄c(σ, t, γθ̃
t,y

σ,s(x) + (1− γ)θ̃
t,y

t,σ(ξ),y),

using the bi-Lipschitz property of the flows θ̃
t,y

, θ and (3.9) for the last inequality.
Hence:

I2(σ, t,x, ξ,y) ≤ C

{ n
∑

k=1

|(θσ,s(x)− ξ)k|

ρ2+(2k−1)+n2d

1
(

s̃− σ−s
ρ2

)

2+(2k−1)+n2d
2

}

× sup
γ∈[0,1]

exp

(

−c(t− σ)

∣

∣

∣

∣

T−1
t−σ

(

γθ̃
t,y

t,s (x) + (1− γ)θ̃
t,y

t,σ(ξ)− y

)∣

∣

∣

∣

2
)

.

Thus, if |s̃− σ−s
ρ2 |2n−1 ≥ c̃ , we get

I2(σ, t,x, ξ,y) ≤ C

n
∑

k=1

|(θσ,s(x) − ξ)k|

ρ2+(2k−1)+n2d
≤ C

n
∑

k=1

α2k−1

ρ2+(2k−1)+n2d
,
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using (6.13) for the last inequality. Recall now from (6.12), (6.13) that

(

γθ̃
t,y

t,s (x) + (1− γ)θ̃
t,y

t,σ(ξ)
)

− y

= γθ̃
t,y

t,s (x) + (1− γ)θ̃
t,y

t,σ(θσ,s(x) + α−1Tα2 x̄)− y

(3.4)
= γθ̃

t,y

t,s (x) + (1 − γ)

{

θ̃
t,y

t,σ(θσ,s(x)) + R̃t,y(t, σ)α−1Tα2 x̄

}

− y

= θt,s(x)− y + γ(θ̃
t,y

t,s (x) − θt,s(x)) + (1− γ)(θ̃
t,y

t,σ(θσ,s(x)) − θt,s(x))

+(1− γ)R̃t,y(t, σ)α−1Tα2 x̄

:= −ρ−1Tρ2{x̃+ γRρ
t,s(x,y) + (1− γ)Rρ

t,σ(θσ,s(x),y)} + (1− γ)R̃t,y(t, σ)α−1Tα2 x̄,

(6.18)

where (s̄, x̄) ∈ Σ1. Observe that, from (6.16) we have for all j ∈ [[1, n]],

|(Rρ
t,s(x,y))j |+ |(Rρ

t,σ(θσ,s(x),y))j | ≤ C6.1n(2εF + (t− σ) + (t− s))|x̃j0 |.

(6.19)

On the other hand, from the scaling Lemma B.1 we obtain that

(t− σ)1/2T−1
t−σR̃

t,y(t, σ)α−1Tα2 x̄ = ˆ̃R
t,y,t−σ

(1, 0)(t− σ)1/2T−1
t−σα

−1Tα2 x̄

with | ˆ̃R
t,y,t−σ

(1, 0)| ≤ Ĉ := Ĉ(T, (A)). Thus, recalling that from the structure of
the linearized system the resolvent is subdiagonal (see (3.3), (3.4)), we derive for
all j ∈ [[1, n]]:

(t− σ)1/2|(T−1
t−σR̃

t,y(t, σ)α−1Tα2 x̄)j | = (t− σ)1/2|( ˆ̃R
t,y,t−σ

(1, 0)T−1
t−σα

−1Tα2 x̄)j |

≤ Ĉ

j
∑

i=1

(

α2

t− σ

)i−1/2

|x̄i| ≤ Ĉ

j
∑

i=1

(

α2

ρ2{s̃− σ−s
ρ2 }

)i−1/2

|x̄|

≤ Ĉ

(

s̃−
σ − s

ρ2

)−(j−1/2) j
∑

i=1

(

α2

ρ2

)i−1/2

|x̄|(6.20)

as soon as c̃ ≤ 1 and |s̃ − σ−s
ρ2 |2n−1 ≤ c̃. In that case, using (6.15), (6.18), (6.19),

(6.20) we then derive that:

(t− σ)|T−1
t−σ(γθ̃

t,y

t,s (x) + (1− γ)θ̃
t,y

t,σ(ξ)− y)|2

≥

(

s̃−
σ − s

ρ2

)−(2j0−1)(
1

2
|x̃j0 |

2 − 2

{

(|(Rρ
t,s(x,y))j0 |+ |(Rρ

t,σ(θσ,s(x),y))j0 |)
2

+Ĉ2

{

j0
∑

i=1

(

α2

ρ2

)i−1/2
}2

|x̄|2
})

≥

(

s̃−
σ − s

ρ2

)−(2j0−1)(
1

2
|x̃j0 |

2 − 2n2[C2
6.1(2εF + 2(t− σ ∧ s))2 + Ĉ2c−2

∞ ]

)

≥

(

s̃−
σ − s

ρ2

)−(2j0−1)

c̄,
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where c̄ > 0 for T, εF small enough and a sufficiently large c∞. We thus obtain the
global bound:

(6.21) ∃C2 := C2(T, (A)) > 0, I2(σ, t,x, ξ,y) ≤ C2

(

n
∑

k=1

α2k−1

ρ2+(2k−1)+n2d

)

.

Plugging (6.17), (6.21) into (6.10), (6.8) we get:

T1 ≤ C

∫

ρ≥c∞α

dtdy

ρn2d+1

(

α2

ρ3
+

n
∑

k=1

α2k−1

ρ(2k−1)+1

)

, C := C(T, (A)).

The idea is now to use the “polar” coordinates parametrized by (6.12), i.e. we
consider the surface integral on the smooth hypersurface Σ1 which is the boundary
of the convex set {(u, z) ∈ [0, T ] × Rnd : ρ(u, z) ≤ 1}. Changing coordinates

according to (6.12) we have that Jac(J1) = ρn
2d+1Jn,d(s̃, x̃), where Jn,d is a smooth

function on Σ1 s.t. ∃Cn,d ∈ [1,∞), ∀η ∈ Σ1, Jn,d(η) ∈ [C−1
n,d, Cn,d]. We therefore

derive:

T1 ≤ C

∫

ρ≥c∞α

dρ

(

α2

ρ3
+

n
∑

k=1

α2k−1

ρ(2k−1)+1

)

∫

Σ1

Jn,d(η)dη ≤ C

(

1

c2∞
+

n
∑

k=1

1

c2k−1
∞

)

≤ C,

up to modifications of C, which plugged into (6.8) together with (6.9) concludes
the proof. �

6.3. Proof of the auxiliary propositions in the general case (AG). This
section is devoted to the proof of Propositions 4.2 and 4.3 which provide the key
estimates to derive Theorem 3.1 under the general assumption (AG).

6.3.1. Proof of Proposition 4.2. Point i) can be derived for both kernels kǫ,dij , kǫ,d,∗ij

recalling from (4.5) and (3.9) that there exists C := C((A), T ) ≥ 1 s.t. ∀((s,x), (t,y)) ∈
S2,

|kǫ,di,j (s, t,x,y)| + |kǫ,d,∗i,j (s, t,x,y)|

≤
C

(t− s)1+n2d/2
exp

(

−C−1(t− s)|T−1
t−s(θt,s(x)− y)2|

)

.(6.22)

Now for a given c1 > 2, if c1|t− s|1/2 ≥ d((s,x), (t,y)) then the r.h.s of (6.22) can

directly be upper bounded by Cc2+n2d
1 /d((s,x), (t,y))2+n2d. On the other hand,

if c1|t − s|1/2 ≤ d((s,x), (t,y)) then, by definition of d in (4.2) we derive that
∃i ∈ [[1, n]] s.t.

|(θt,s(x)− y)i|
1/(2i−1) ≥

1

n1/(2(2n−1))
(1−

1

c1
)d((s,x), (t,y)).

This property yields:

|kǫ,di,j (s, t,x,y)|+ |kǫ,d,∗i,j (s, t,x,y)| ≤
C

|(θt,s(x)− y)i|
n2d+2
2i−1

(

|(θt,s(x)− y)i|

|t− s|1/2(2i−1)

)
n2d+2
2i−1

× exp
(

−C−1(t− s)|T−1
t−s(θt,s(x)− y)2|

)

≤
C̃

d((s,x), (t,y))n2d+2
exp

(

−C̄−1(t− s)|T−1
t−s(θt,s(x)− y)2|

)

,

where C̃ := C̃((A), T, c1), C̄ := C̄((A), T ). This gives the first claim.
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Now, point ii) can be derived for the kernel kǫ,di,j similarly to (6.17) and (6.21).

For the kernel kd,ǫ,∗i,j , when investigating the difference

Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y)) := kd,ǫ,∗i,j (s, t,x,y) − kd,ǫ,∗i,j (σ, t, ξ,y)

= kd,ǫi,j (t, s,y,x) − kd,ǫi,j (t, σ,y, ξ),

we are led to consider the linearized systems θ̃
s,x

s,t (y), θ̃
σ,ξ

σ,t (y). Recall now from
definitions (3.5) and (6.6) that the exponential bounds write:

〈K̃x(t, s)−1(θ̃
s,x

s,t (y)− x), θ̃
s,x

s,t (y) − x〉

= 〈R̃s,x(s, t)∗K̃x(t, s)−1R̃s,x(s, t)(y − θt,s(x)),y − θt,s(x)〉

= 〈H̃s,x(t, s)−1(y − θt,s(x)),y − θt,s(x)〉,

〈K̃ξ(t, σ)−1(θ̃
σ,ξ

σ,t (y) − ξ), θ̃
σ,ξ

σ,t (y) − ξ〉 = 〈H̃σ,ξ(t, σ)−1(y − θt,σ(ξ)),y − θt,σ(ξ)〉.

Introducing, for all (s, t, u,x) ∈ [0, T ]3 × Rnd, z ∈ Rnd,

ǩs,x,u,t,ǫ(z) := I|s−t|≥ǫ

{

−[H̃s,x(u, t)−1]1,1 + [H̃s,x(u, t)−1z]⊗2
1

}

1

(2π)nd/2det(K̃s,x(u, t))1/2
× exp

(

−
1

2
〈H̃s,x(u, t)−1z, z〉

)

,(6.23)

we can rewrite:

|Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))| = |ǩs,x,s,ti,j (y − θt,s(x)) − ǩσ,ξ,σ,ti,j (y − θt,σ(ξ))|

≤ |ǩs,x,s,ti,j (y − θt,s(x)) − ǩs,x,σ,ti,j (y − θt,s(x))|

+|ǩs,x,σ,ti,j (y − θt,s(x))− ǩσ,ξ,σ,ti,j (y − θt,s(x))|

+|ǩσ,ξ,σ,ti,j (y − θt,s(x)) − ǩσ,ξ,σ,ti,j (y − θt,σ(ξ))| :=

3
∑

l=1

|{Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))}l|.

Now the terms |{Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))}1| and |{Dd,ǫ

i,j ((s,x), (σ, ξ), (t,y))}3| re-
spectively involve time and space sensitivities when the freezing parameters in the
covariance matrix are fixed. Those contributions can therefore be investigated as

terms I1 and I2 in (6.17), (6.21). The term |{Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))}2| involves

two different covariance matrices observed at the same time but that are respec-
tively associated to the freezing points (s,x) and (σ, ξ) in the linearization of (3.2).
To analyze this difference we proceed as in the proof of Lemma 2.4 in [Men11].
Namely, using the scaling lemma B.1, we rewrite:

H̃s,x(σ, t) = |t− σ|−1T|t−σ|
ˇ̃Hs,x,σ,t

1 T|t−σ|, H̃σ,ξ(σ, t) = |t− σ|−1T|t−σ|
ˇ̃Hσ,ξ,σ,t
1 T|t−σ|,

where ˇ̃Hs,x,σ,t
1 , ˇ̃Hσ,ξ,σ,t

1 are uniformly elliptic bounded matrices on Rnd⊗Rnd. Thus,

〈(H̃s,x(σ, t) − H̃σ,ξ(σ, t))(y − θt,s(x)),y − θt,s(x)〉

= 〈( ˇ̃Hs,x,σ,t
1 − ˇ̃Hσ,ξ,σ,t

1 )(|t− σ|−1/2T|t−σ|(y − θt,s(x))), |t − σ|−1/2T|t−σ|(y − θt,s(x))〉.

(6.24)
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We now want to control the difference 〈( ˇ̃Hs,x,σ,t
1 − ˇ̃Hσ,ξ,σ,t

1 ) in (6.24). Let us first
write:

|R̃s,x(σ, t) − R̃σ,ξ(σ, t)| =
∣

∣

∣

∣

∫ σ

t

{

DF(u, θu,s(x))R̃
s,x(u, t)−DF(u, θu,σ(ξ))R̃

σ,ξ(u, t)

}

du

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ σ

t

{

DF(u, θu,s(x))(R̃
s,x(u, t)− R̃σ,ξ(u, t))

+(DF(u, θu,s(x)) −DF(u, θu,σ(ξ)))R̃
σ,ξ(u, t)

}

du

∣

∣

∣

∣

≤ C|t− σ||θσ,s(ξ)− ξ|,

where C := C((A)), using the smoothness conditions assumed in (SG), the bi-
Lipschitz property of the flow and Gronwall’s Lemma for the last inequality. The

scaling Lemma B.1 then transfers this control to | ˇ̃Hs,x,σ,t
1 − ˇ̃Hσ,ξ,σ,t

1 | to give:

〈(H̃s,x(σ, t) − H̃σ,ξ(σ, t))(y − θt,s(x)),y − θt,s(x)〉

≤ C|θσ,s(x) − ξ|||t− σ|−1/2T|t−σ|(y − θt,s(x))|
2, C := C((A)).

(6.25)

Because of the non-degeneracy of a, the inverse matrices (H̃s,x(σ, t))−1, (H̃σ,ξ(σ, t))−1

have the same Hölder regularity. Indeed, up to a change of coordinates on can as-
sume that one of the two matrices is diagonal at the considered point and that
the other has dominant diagonal if |θσ,s(x) − ξ| is small enough (depending on
the ellipticity bounds in (A) and the dimension). This reduces to the scalar case.
Hence,

〈((H̃s,x(σ, t))−1 − (H̃σ,ξ(σ, t))−1)(y − θt,s(x)),y − θt,s(x)〉

= 〈(( ˇ̃Hs,x,σ,t
1 )−1 − ( ˇ̃Hσ,ξ,σ,t

1 )−1)(|t− σ|1/2T−1
|t−σ|(y − θt,s(x))), |t − σ|1/2T−1

|t−σ|(y − θt,s(x))〉

≤ C|θσ,s(x) − ξ|||t− σ|1/2T−1
|t−σ|(y − θt,s(x))|

2.

We therefore derive:

|{Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))}2| ≤ C

d((s,x), (σ, ξ))

|t− σ|
q̄c(σ, t, θt,s(x)− y),

which can be analyzed similarly to I2 (see equation (6.10) and page 31) in the
previous proof and yields:
(6.26)

|{Dd,ǫ
i,j ((s,x), (σ, ξ), (t,y))}2| ≤ C

d((s,x), (σ, ξ))

d((s,x), (t,y))2+n2d
≤ C

d((s,x), (σ, ξ))

d((s,x), (t,y))3+n2d
,

recalling that d((s,x), (t,y) ≤ 1. This gives points ii) and iii).
The cancellation property iv) is the more subtle to derive. From the definitions

of the kernels it suffices to prove:

sup
ǫ>0

|

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dtdy| + sup
ǫ>0

|

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dsdx| < +∞.

Let us begin with the second statement which is easier. From the definitions in
(6.23), (6.6) and recalling that det(R̃t,y(s, t)) = 1 (Since DF is subdiagonal, see
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(3.3)), we have to investigate:

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dsdx =

∫

ρ(|t−s|,x−θs,t(y))≥ǫ

ǩt,y,s,t,ǫ(x− θs,t(y))dsdx

=

∫

ρ(|t−s|,z)≥ǫ

∂
zi1,z

j
1

(

1

(2π)nd/2det(H̃t,y(s, t))1/2
exp

(

−
1

2
〈H̃t,y(s, t)z, z〉

))

dsdz.

(6.27)

By the divergence theorem:

|

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dsdx| ≤

∣

∣

∣

∣

∫

ρ(|t−s|,z)=ǫ

∂zi1

(

1

(2π)nd/2det(H̃t,y(s, t))1/2

× exp

(

−
1

2
〈(H̃t,y(s, t))−1z, z〉

))

dνǫ((t− s), z)

∣

∣

∣

∣

,

where νǫ stands for the surface element of ρ(|t − s|, z) = ǫ. Now, from the metric

homogeneity (see Remark 4.1), the good scaling property (3.7) that is valid for H̃t,y,
it can be shown, changing variables similarly to (6.12), that for ǫ small enough:
(6.28)

|

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dsdx| ≤ C

∫

ρ(|s̃|,z̄)=1

dν1(s̃, z̄)

s̃n2d/2+1/2
exp

(

−C|s̃||T−1
|s̃| z̄|

2
)

< +∞,

and that
∫

d((t,y),(s,x))>ǫ
kǫ,di,j (s, t,x,y)dsdx admits a limit when ǫ → 0. From (6.28),

and (6.27) we thus get point iii) for the kernel kǫ,d,∗i,j . To derive the same property

for kǫ,di,j there is an additional step. We first write as before:

∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dtdy =

∫

ρ(|t−s|,x−θs,t(y))≥ǫ

ǩt,y,s,t,ǫ(x− θs,t(y))dtdy.

We still set z := x − θs,t(y) that yields dz = det(Jacθs,t(y))dy where for T small

enough det(Jacθs,t(y)) = 1 + O(t − s). Denote now for (A, z) ∈ Rnd ⊗ Rnd ×

Rnd, Pi,j(A, z) :=
{

[A]1,1 + [Az]⊗2
1

}

ij
. Since

∫

ρ(|t−s|,z)≥ǫ

|t− s| exp(−
1

2
〈(H̃t,θt,s(x−z)(s, t))−1z, z〉)

| × Pi,j(H̃
t,θt,s(x−z)(s, t))−1, z)|

1

(2π)nddet(H̃t,θt,s(x−z)(s, t))1/2
dtdz

≤ C

∫

ρ(|t−s|,z)≥ǫ

exp(−C−1|t− s||T−1
|t−s|z|

2)
1

|t− s|n2d/2
dtdz = O(1),

we derive:
∫

d((t,y),(s,x))>ǫ

kǫ,di,j (s, t,x,y)dtdy =

∫

ρ(|t−s|,z)≥ǫ

exp(−
1

2
〈(H̃t,θt,s(x−z)(s, t))−1z, z〉)

×Pi,j(H̃
t,θt,s(x−z)(s, t))−1, z)

1

(2π)nddet(H̃t,θt,s(x−z)(s, t))1/2
dtdz+O(1),
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Now:

exp(−
1

2
〈(H̃t,θt,s(x−z)(s, t))−1z, z〉)

×Pi,j(H̃
t,θt,s(x−z)(s, t))−1, z)

1

(2π)nddet(H̃t,θt,s(x−z)(s, t))1/2

= ∂zizj

{

exp(−
1

2
〈(H̃t,θt,s(x−z)(s, t))−1z, z〉)

1

(2π)nddet(H̃t,θt,s(x−z)(s, t))1/2

}

+Ri,j(s, t,x, z).

Reproducing the arguments that lead to (6.25) from (6.24), we observe that the
sensitivities of the covariance matrices w.r.t. the freezing parameters do not induce
additional singularities. Hence, it can be checked that:

|Ri,j(s, t,x, z)| ≤
C

|t− s|n2d/2+1/2
exp(−|t− s||T−1

|t−s|z|
2), C := C((A), T ).

The smoothness on the coefficient F, which is assumed under (AG) to be C2 in
space and s.t. the Dxi−1Fi is C

2 in space as well, is actually just required here to
differentiate twice the dynamics of the resolvent which already corresponds to a first
order linearization of the initial system. Such terms appear in Ri,j and derive from

the sensitivities of Ht,θt,s(x−z)(s, t))−1 w.r.t. zi1, z
j
1. The proof of the cancellation

property can then be obtained as previously. �

Appendix A. Proof of Lemma 6.1

Let us prove the first claim of the Lemma. Recalling equations (3.2), (3.3) and
(3.13), (3.14), we write:

Rρ
t,s(x,y) := ρTρ−2

{

θt,s(x)− θ̃
t,y

t,s (x)
}

=

ρTρ−2

{∫ t

s

du

[(

F(u, θu,s(x)) − Ft,y(u, θu,s(x))

)

+

(

DF(u, θu,t(y))(θu,s(x)− θ̃
t,y

u,s(x))

)

+

(∫ 1

0

dδ
(

DFt,y(u, θu,t(y) + δ(θu,s(x)− θu,t(y)))

− DFt,y(u, θu,t(y))
)

(θu,s(x)− θu,t(y))

)]}

:= (Rρ,1
t,s +Rρ,2

t,s +Rρ,3
t,s )(x,y),(A.1)

where for (u, z) ∈ [s, t]×Rnd, DFt,y(u, z) is the (nd)×(nd) matrix with only non zero
d × d matrix entries (DFt,y(u, z))j,j−1 := Dxj−1Fj(u, zj−1, θu,t(y)

j,n), j ∈ [[2, n]],
so that in particular DFt,y(u, θu,t(y)) = DF(u, θu,t(y)).
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The structure of the “partial gradient” DFt,y and the small variation condition
(3.1) yield that there exists C3 := C3(T, (A)) s.t. for all j ∈ [[2, d]]:

|(Rρ,3
t,s (x,y))j | ≤ C3εFρ

1−2j

∫ t

s

du|(θu,s(x) − θu,t(y))j−1 |

≤ C3εFρ
−2

∫ t

s

du(

n
∑

k=2

ρ1−2(k−1)|(θu,s(x)− θu,t(y))k−1|)

≤ C3εFρ
−2

∫ t

s

du(ρ|Tρ−2 (θu,s(x)− θu,t(y))|)

≤ C3εFρ
−2

∫ t

s

du(ρ|Tρ−2 (θt,s(x)− y)|)

≤ C3εFρ|Tρ−2 (θt,s(x)− y)|,(A.2)

up to a modification of C3, using the bi-Lipschitz property of the flow θ for the
last but one inequality (see the end of the proof of Proposition 5.1 in [DM10] for
details) and recalling from (6.12) that |t− s|/ρ2 ≤ 1 for the last one.

On the other hand, the term Rρ,1
t,s (x,y) can be seen as a remainder w.r.t. the

characteristic time scales. Precisely, there exists C1 := C1(T, (A)) (possibly chang-
ing from line to line) s.t. for all j ∈ [[1, n]]:

|(Rρ,1
t,s (x,y))j | ≤ C1ρ

1−2j

∫ t

s

du

n
∑

k=j

|(θu,s(x)− θu,t(y))k|

≤ C1

∫ t

s

duρ|Tρ−2(θu,s(x) − θu,t(y))|

≤ C1(t− s)ρ|Tρ−2(θt,s(x) − y)|(A.3)

using once again the bi-Lipschitz property of the flow θ for the last inequality.

Remark A.1. Let us observe carefully that the second inequality is valid in whole
generality when ρ is bounded. On the other hand, under (ASD) there is only one
entry corresponding to k = j in the first inequality and the second one is always
true. These are exactly the assumptions required in the statement of the Lemma.

Recall now that Rρ,2
t,s (x,y) is the linear part of equation (A.1), i.e. it can be

rewritten

Rρ,2
t,s (x,y) =

∫ t

s

du
{

ρTρ−2DF(u, θu,t(y))ρ
−1Tρ2

}

×
(

ρTρ−2(θu,s(x)− θ̃
t,y

u,s(x))
)

:=

∫ t

s

duαρ
t,u(y)

(

ρTρ−2 (θu,s(x)− θ̃
t,y

u,s(x))
)

=

∫ t

s

duαρ
t,u(y)R

ρ
u,s(x,y),

where there exists a constant C2 := C2(T, (A)) s.t.
∫ t

s du|α
ρ
t,u(y)| ≤ C2. From

(A.3), (A.2), (A.1) and Gronwall’s Lemma we derive

∃C4 := C4(T, (A)), |Rρ
t,s(y)| ≤ C4(εF + (t− s))ρ|Tρ−2 (θt,s(x)− y)|

≤ C4(εF + (t− s))|x̃|

recalling (6.12) for the last inequality. This gives the first part of the Lemma.
For the second one, the previous proof can be adapted with obvious modifications
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using thoroughly that θu,σ(θσ,s(x)) := θu,s(x)) and the bi-Lipschitz property of
the flow. The main differences are that the time integrals are taken between σ and
t. Following the computations leading to (A.2), the contribution Rρ,3

t,σ(θσ,s(x),y)

would be bounded by C3εFρ
−2|t − σ|{ρ|Tρ−2 (θt,s(x) − y)|} ≤ C3εFρ

−2(|t − s| +
|s − σ|){ρ|Tρ−2(θt,s(x) − y)|}. Recalling also that |t − s| + |σ − s| ≤ ρ2 + α2 ≤
(1 + c∞)ρ2 on the considered set, we get that (A.2) still holds in that case. We

would similarly have |Rρ,1
t,σ(θσ,s(x),y)| ≤ C1(t−σ)ρ|Tρ−2 (θt,s(x)−y)| giving (A.3)

in that case. Eventually, the same previous triangle inequality would give that, on

the considered set
∫ t

σ
du|αρ

t,y(y)| ≤ C, so that Rρ,2
t,σ(θσ,s(x),y) can still be viewed

as the well controlled linear part of the inequality. The proof then again follows
from Gronwall’s lemma. �

Appendix B. Auxiliary Technical estimates

For the analysis we need the following lemma whose proof can be found in
[DM10]. Let us introduce for x = (x1, . . . , xn) ∈ (Rd)n, Ltx = (0, α1

tx1, . . . , α
n−1
t xn−1)

∗+
Utx, where Ut ∈ Rnd ⊗ Rnd is an “upper triangular” block matrix, i.e. the subdi-
agonal blocks of Ut are zero. Let us now consider a linear equation of the form

dGt = LtGtdt+BΣtdWt,(B.1)

where Σt is a bounded uniformly elliptic matrix of Rd ⊗ Rd.

Lemma B.1 (Scaling Lemma). Let T > 0 and Assumption (A) hold for the system

(B.1). Fix t ∈ (0, T ] and set Ĝt
s = t1/2T−1

t Gst, 0 ≤ s ≤ 1. Then, (Ĝt
s)0≤s≤1

satisfies (B.1) with respect to (L̂t
s = tT−1

t LstTt)0≤s≤1, (Σ̂
t
s = Σts)0≤s≤1 and (Ŵ t

s =

t−1/2Wst)0≤s≤1. The resolvent [R̂t(s1, s0)]0≤s0,s1≤1 associated with (L̂t
s)0≤s≤1 has

the form R̂t(s1, s0) = T−1
t R(s1t, s0t)Tt, s0, s1 ∈ [0, 1] and the covariance matrix of

Ĝt
s, 0 ≤ s ≤ 1, is given by K̂t

s := Cov(Ĝt
s) = tT−1

t KstT
−1
t . The matrices (L̂t

s)0≤s≤1

and (Σ̂t
s)0≤s≤1 satisfy for all 0 ≤ s ≤ 1:

|L̂t
s| ≤ (1 ∨ T n)κ, [L̂t

s]i,i−1 ∈ Ei−1, 2 ≤ i ≤ n, ; [L̂t
s]i,j = 0, 1 ≤ j ≤ j + 2 ≤ i ≤ n,

Spectrum(Σ̂t
s(Σ̂

t
s)

∗) ⊂ [Λ−1,Λ].

Also, there exists C := C(T, (A)) s.t. for all (s1, s0) ∈ [0, T ]2, |R̂t(s1, s0)| ≤ C.

We will also need some controls on the various derivatives of the density (3.5).

Proposition B.1. There exist constants CB.1 := CB.1(T, (A)), cB.1 := cB.1(T, (A))
s.t. for all multi index α = (α1, · · · , αn) ∈ Nn, |α| :=

∑n
i=1 αi ≤ 3 we have

∀0 ≤ s < t ≤ T, ∀(x,y) ∈ (Rnd)2,

|∂α
x q̃(s, t,x,y)| ≤

CB.1

(t− s)
∑

n
i=1

(2i−1)αi
2

qcB.1(s, t,x,y),

∀c > 0, qc(s, t,x,y) :=
cnd/2

(t− s)n2d/2
exp

(

−c(t− s)|T−1
t−s(θ̃

t,y

t,s (x) − y)|2
)

.

This proposition can be proved using the explicit expression for the density and
the previous scaling Lemma (see also the arguments in Section 5 of [DM10]).
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