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Background. Methods for estimation of the complex modulus generally produce data 

from which discrete results can be obtained for a set of frequencies. As these results are 

normally afflicted by noise, they are not necessarily consistent with the principle of 

causality and requirements of thermodynamics. 

Method of Approach: A method is established for noise-corrected estimation of the 

complex modulus, subject to the constraints of causality, positivity of dissipation rate and 

reality of relaxation function, given a finite set of angular frequencies and corresponding 

complex moduli obtained experimentally. Noise reduction is achieved by requiring that 

two self-adjoint matrices formed from the experimental data should be positive semi-

definite. 

Results: The method provides a rheological model that corresponds to a specific 

configuration of springs and dashpots. The poles of the complex modulus on the positive 

imaginary frequency axis are determined by a subset of parameters obtained as the 

common positive zeros of certain rational functions, while the remaining parameters are 
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obtained from a least squares fit. If the set of experimental data is sufficiently large, the 

level of refinement of the rheological model is in accordance with the material behaviour 

and the quality of the experimental data. The method was applied to an impact test with a 

Nylon bar specimen. In this case, data at the 29 lowest resonance frequencies resulted in 

a rheological model with 14 parameters. 

Conclusions: The method has added improvements to the identification of rheological 

models as follows: (1) Noise reduction is fully integrated. (2) A rheological model is 

provided with a number of elements in accordance with the complexity of the material 

behaviour and the quality of the experimental data. (3) Parameters determining poles of 

the complex modulus are obtained without use of a least squares fit. 

Keywords : Mechanical properties of materials, constitutive modeling of materials, 

impact, wave propagation. 
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1 Introduction 

 

A variety of methods for identification of viscoelastic materials have been proposed 

and used since long. Such methods for estimation of complex-valued frequency-

dependent material parameters such as the complex modulus, generally produce data 

from which values of these parameters can be obtained for a set of discrete frequencies. 

Commercially available machines for dynamic mechanical analysis (DMA) [1] as well as 

specialized and laboratory-specific set-ups are used. Some make use of forced or free 

vibrations of a structure such as a bar, while others involve impact, waves and various 

transient effects.  

Garrett [2] used a method based on acoustic resonance in a study of the temperature 

dependency of the Young’s modulus. A similar method was proposed by Guo and Brown 

[3] for viscoelastic materials. With this method, a 1D theoretical model is fitted to 

experiments on frequency intervals of finite length which provides values of the complex 

modulus at discrete frequencies. Some methods [4] make use of random excitation at one 

end of a beam and measurement of acceleration at the other end. With the assumption of 

1D viscoelastic behaviour, the complex Young’s modulus is derived from the amplitude 

ratio and phase shift between acceleration and excitation. Pintelon et al. [5] proposed a 

method which takes dispersion into account by use of Love’s model [6]. They used a 

resonant frequency method in conjunction with forced vibration. Their method is based 

on measurement of the force applied at one end of a bar and the axial displacement at a 

given section. Noise reduction is provided by repetition of measurements and 

identification of a rheological model. Waves in bars generated by impact have been used 

to determine the viscoelastic properties of materials by, e.g., Blanc [7, 8], Lundberg and 
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Blanc [9], Lundberg and Ödeen [10], Hillström et al. [11], Othman [12], and Mousavi et 

al. [13]. 

It is not always ensured that the real and imaginary parts of the complex modulus 

are consistent with the principle of causality. One way to achieve such consistency is to 

express them in terms of a rheological model constituted by linear springs and dashpots 

[5, 14]. An alternative way consists in making sure that the complex modulus is 

consistent with the Kramers-Kronig relations. Another fundamental constraint on the 

complex modulus comes from the second principle of thermodynamics: the dissipation 

per cycle must be positive for any harmonic load. Furthermore, the relaxation function, 

which is the inverse Fourier transform of the complex modulus, must be real. See, e.g., 

Landau and Lifchitz [15, 16] about these constraints. 

In Section 2 we present a method for noise-corrected estimation of the complex 

modulus of a viscoelastic material, subject to the constraints of causality, positivity of 

dissipation and reality of relaxation function, given an experimental set of frequencies 

and corresponding values of the complex modulus. It provides the structure, the number 

and type of elements, and the parameters of a rheological model and is based on results 

from different areas of mathematics and physics. As far as we know, similar results have 

not been combined previously into a practical method for producing a noise-corrected 

rheological model of suitable complexity that satisfies the above mentioned constraints. 

The estimation method can be used in conjunction with any test method from which a set 

of frequencies and corresponding values of the complex modulus can be obtained. In 

Section 3 the use of the method will be illustrated with such data obtained by impacting a 

Nylon bar specimen and observing its response at its resonance frequencies.  
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2 Estimation Method 

 

2.1  Theory. According to Boltzmann’s model of viscoelastic materials, the 

relation between stress  t  and strain  t  is given by the convolution 

 

     dsst
dt

d
sG=tσ  

0

       (1) 

 

of the stress relaxation function  tG  and the strain rate dtd / , where t  is time (e.g., 

[17]). After Fourier transformation, this relation becomes 

 

     ωωE=ωσ ̂ˆ ,        (2) 

 

where    GωE ˆi  is the complex modulus,  Ĝ  is the Fourier transform of  tG  

and   is the angular frequency.  

The complex modulus must satisfy the three constraints of causality, positivity of 

the dissipation rate and reality of the relaxation function. The problem to be considered is 

that of finding a noise-corrected complex modulus  ωE , subject to these constraints, 

given a finite set of angular frequencies nω,,ω 1  and corresponding complex moduli 

nE,E 1  obtained experimentally.  

The constraint of causality implies the Kramers-Kronig relations that connect the 

real and imaginary parts of the complex modulus. If either the real or the imaginary part 
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can be estimated accurately at a sufficient number of frequencies, these relations can be 

used to estimate the other part. For several experimental methods based on wave 

propagation, e.g. [18, 19], and the one to be presented in this paper, such a procedure 

does not work as the experimental noise is rather uniformly distributed over the real and 

imaginary parts of the complex modulus. Furthermore, results for the complex modulus 

can be obtained only for a relatively small set of frequencies with the experimental 

method of this paper. Here, therefore, we adopt the approach of estimating 

simultaneously the real and imaginary parts of the complex modulus. This will also allow 

us to extend the results to regions without measurements, especially at low frequencies. 

The constraints of causality and of positivity of the dissipation rate [15-17, 20] are 

equivalent to requiring that the function  ωE  be analytic in the lower half plane and that 

its imaginary part be positive on the positive real axis, respectively. The constraint of 

reality of the relaxation function is equivalent to the requirement    ωE=ωE  . Here we 

will use the stronger constraint of complete monotonicity of the relaxation function as 

proposed by Hanyga [17] and Bouleau [21] and derived by Beris and Edwards [22] for 

fluids. This constraint, which essentially means that the relaxation function and its 

derivatives must be monotone, is satisfied by most rheological models [17]. To which 

extent it holds for a particular real material can be verified from experimental data. 

The property of complete monotonicity of the relaxation function implies that this 

function is the Laplace transform of a positive function (the Bernstein-Widder Theorem, 

see [17]). This means that the complex modulus  ωE  is the sum of a linear function and 

a Stieltjes transform. More precisely, there exist two parameters 00  and 00  , and a 

function   0sh , defined on the positive real axis such that 
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   
0

00 i
i ds

ω+s

shω+=ωE  .      (3) 

 

Such functions  ωE  are analytic outside the positive imaginary axis of the complex ω  

plane and they satisfy the three constraints. Thus, they are analytic in the lower half plane 

and therefore satisfy the constraint of causality; their imaginary part is positive on the 

positive real axis and therefore the constraint of positiveness of the dissipation rate holds. 

Finally, the constraint of reality of the relaxation function is satisfied as    ωE=ωE  . It 

should be noted that the function  sh  can have singularities such as delta functions. 

In order to check whether experimental data are of the form of Eq. (3), in particular 

for the purpose of determining the constants 0  and 0 , and the function h, it is 

convenient to apply the transformation 

 

   
z

zE
=zf

i .        (4) 

 

It has the representation 

 

   
ds

zs

sg
+=zf  0 ,        (5) 

 

with 
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       
s

sh
+sįdu

u

uh
=sg 


  

0

0 ,      (6) 

 

where  sį  is a delta function at the origin, and   0=sg  for 0<s . As the static complex 

modulus 

 

   
ds

s

sh
=E 

0

00          (7) 

 

is positive and finite, the function  zf  is analytic except on the positive real axis, and 

positive on the negative real axis. 

The problem of finding a function  zf  with the representation (5) given its values 

for finitely many z was studied in detail by Krein and Nudelman [23]. Some of their 

results, when formulated for the complex modulus  ωE , are as follows. From the values 

1E , 2E , …, nE  of the function  ωE  at n  angular frequencies 1 , 2 , …, n  one can 

form two matrices with elements 

 

 
kj

kj

kj, ω+ω
EE

=M


i1     kj ω+sωs

ds
sh+=

ii0

0  ,    (8) 

 

 
kj

kkjj

kj, ω+ω
EE

=M
 //2        .ii

0

0
  kjkj ω+sωs

ds

s

sh
+

ωω
E

=    (9) 
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It can be verified that the matrix  1
M  is positive semi-definite. In particular, it is self-

adjoint with non-negative eigenvalues (recall that 0  and h  are non-negative). The same 

properties hold for  2
M  since   0.0 >E  If one of the matrices  1

M  or  2
M  has a zero 

eigenvalue, the function  ωE  is completely determined and is a rational fraction (see 

[23] and below). However, the occurrence of a zero eigenvalue is not a necessary 

consequence of general principles, and if none of the matrices  1
M  and  2

M  has a zero 

eigenvalue, the function  ωE  cannot be completely determined from the data. We refer 

to Krein Nudelman (1998) for more details. 

Assume now that a  is an eigenvector corresponding to a zero eigenvalue of  1
M . 

Then, since   ,= 0aM 1 we also have   01 =, aMa , i.e., 

 

  0.
i

2

10

2

1
0 =ds

ω+s

a
sh+a

n

=k k

k
n

=k

k






         (10) 

 

Since both terms in the left member are non-negative, they must vanish. In particular, the 

function  sh  must be a linear combination  l

p

l

l ss  
1

 with coefficients 0l  of delta 

functions  lss   at the positive zeros ps,,s 1   n<p  of the rational function 

 

n
=k k

k

ω+s

a

1 i
.         (11) 
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For the complex modulus given by Eq. (3) this implies the model  

 

   p=l

=l l

l

ω+s

γ
iω+=ωE

1
00 i

 ,      (12) 

 

where 00   and 0 , 1γ , 2γ , …, pγ  are  non-negative. 

The same considerations hold for the matrix  2
M and should lead to the same 

model. If b is an eigenvector corresponding to a zero eigenvalue of  2
M , we deduce as 

above that the function  sh  must also be a linear combination with non-negative 

coefficients of delta functions at the positive zeros of the rational function 

 

n
=k k

k

ω+s

b

1 i
.         (13) 

 

In particular, we only need to consider the common positive zeros of the rational 

functions (11) and (13). Moreover, if there are several linearly independent eigenvectors 

corresponding to a zero eigenvalue, we get a set of positive zeros for each of them and 

should keep only the ones which are common. 

Equation (12) corresponds to the  12 p  parameter rheological model shown in 

Fig. 1 consisting of p  full Maxwell elements (each consisting of a spring and a dashpot 

in series) and two degenerated such elements (a spring, a dashpot) in parallel. The 

complex modulus represented by this model is 
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     p

l ll

ll

p

l

l

p

l ll

lE
1

2

0
1

0
1

00 i/

/
i

i/

i
i 


 . (14) 

The 1p  stiffnesses 0 , 1 , … p  of the springs and the 1p  viscosities 0 , 1 , 

… p  of the dashpots are related to the  12 p  parameters and 0 , 0 , 1s , 2s , …, ps , 

1γ , 2γ , …, pγ  of Eq. (12) by the relations 

 

  p

l l

l

s1
00

 ,     
l

l
l

s

  ,     00   ,     
2
l

l
l

s

  .      l 1, 2,….. p  (15) 

 

The viscoelastic material represented by Eqs. (12) and (14) has asymptotic 

elasticity as   00 E  is finite, but generally it does not possess instant elasticity. If 0  

and 0  vanish, however,   pE   ...10  is finite. Then, the material has also 

instant elasticity and qualifies as a solid [24].  

 

It is noted that the points n,ω,ω 1  are strictly inside the analyticity domain of the 

function  .ωE  This follows from Eq. (3) and makes the following approach robust 

compared to situations with data points on the boundary of the analyticity domain.  

 

2.2  Implementation. From experiments, we obtain a finite set of  angular 

frequencies nω,,ω 1  and corresponding complex moduli nE,E 1 . By use of these 

experimental data we form the two matrices (1)
kj,M  and (2)

kj,M  given by the first equalities 

of Eqs. (8) and (9), respectively. These self-adjoint matrices are positive semi-definite if 
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and only if all their eigenvalues are non-negative. However, experiments commonly 

result in some slightly negative eigenvalues. In the experimental part of this paper, for 

example, the modulus of the smallest negative eigenvalue is typically a few tenths of a 

percent of the largest positive eigenvalue. A likely explanation for such small violations 

of the positive semi-definiteness is experimental noise. As advocated by Gu et al. [25] for 

a similar problem, the effects of such noise can be reduced by searching the smallest 

possible corrections of ,...,1ω  nω  and 1E , …, nE  which restore the non-negativeness of 

all eigenvalues and establishing noise-corrected sets ,...,corr
1ω  corr

nω  and corr
1E , …, corr

nE .  

If at least one of the noise-corrected matrices  corr1
M  and  corr2

M  has a zero 

eigenvector, one forms the associated rational fraction (11) or (13) and finds its positive 

zeros. This is repeated for the set of independent eigenvectors, if any, corresponding to 

zero eigenvalues of both matrices. Then one keeps the common positive zeros ps,,s 1  

of all these rational fractions and obtains the model given by Eq. (12). In this model the 

p  positive parameters ps,,s 1  are known.  

If the frequency range of interest does not extend far above that of the experimental 

data, 00  , 00   and the p  non-negative parameters 1γ , 2γ , …, pγ  are identified by 

a least square fit of the model to the noise-corrected data. If the material is required to 

possess instant elasticity, however, 0  can be taken as zero while the remaining 

parameters are identified by a least square fit. 

In this way, the method provides the structure, the number of elements and the 

parameters of the rheological model. Normally, the number of elements is found to be 

relatively low. We refer to [23] for an alternative method to complete the identification. 
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3 Impact Test Method 

 

As stated in the Introduction, an experimental set of discrete angular frequencies 

and corresponding values of the complex modulus may be obtained with a variety of test 

methods, commercial as well as specialized and laboratory-specific. Here, as an example, 

they will be obtained by analysing the wave propagation in a Nylon bar specimen loaded 

through axial impact. The method is a slightly improved version of that used by Othman 

et al. [26]. 

 

3.1  Theory. Discrete values of the complex modulus       EEE  i  will 

be obtained from the resonances of an impacted uniform bar specimen with density   

and length l  as shown in Fig. 2. At one end, 0x , the bar is impacted axially by a 

striker that separates from the bar after the generation of a compressive primary pulse in 

the bar. The other end of the bar, lx  , is free. The strain    tbtb ,   is recorded at a 

distance a  from the free end and b  from the impacted end ( lba  ). The primary pulse 

should be shorter than a2  so that there is no overlap in the measured strain of this pulse 

and the first pulse reflected from the free end. However, it should be much longer than 

the diameter of the bar so that approximate 1D conditions prevail (wavelengths much 

longer than the diameter of the bar [27]. 

In the frequency domain, the strain in the bar can be expressed as 

 

           xx eBeAx   ii,ˆ   ,      (16) 
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where  

 

   
E

2
2  ,                i k .     (17) 

 

Here,   ,ˆ x  is the Fourier transform of  tx, , and  A  and  B  are complex 

amplitudes of waves travelling in the directions of increasing and decreasing x , 

respectively,  k  is the wave number and    is the damping coefficient.  

In order to determine an expression for the recorded strain     ,ˆˆ1 bb   

associated with the primary pulse alone, the amplitudes A  and B are first determined 

from Eq. (16) and the boundary conditions     0ˆ,0ˆ   and   0B  for a semi-

infinite bar 0x , where   0ˆ  is the strain at the impacted end. With these amplitudes 

and bx   inserted, Eq. (16) gives 

 

     
0

-i1 ˆˆ b

b e .        (18) 

 

The recorded strain     ,ˆˆ bb   associated with the complete train of pulses is 

determined similarly. First, the amplitudes A  and B  are determined from Eq. (16) and 

the boundary conditions     0ˆ,0ˆ   and   0,ˆ  l  for the finite bar lx 0 . With 

these amplitudes, and bx   and abl   inserted, Eq. (16) gives 

 

       
 0ˆ

sin

sin
ˆ

l

a
b  .       (19) 
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 Dividing the members of  Eq. (19) by those of Eq. (18) eliminates the strain 

  0ˆ  at the impacted end which normally cannot be measured. This slightly improves 

the method previously used by Othman et al. [26]. Substituting   from the second of 

Eqs. (17) into the result, one gets the ratio     1ˆ/ˆ
bb

  which gives 

 

           lkl

aka
e b

bb 
 

22

22
2212

sinhsin

sinhsin
ˆˆ 

 .     (20) 

 

Resonance occurs at the angular frequencies m  ,  m 1, 2, … which correspond to 

the wave numbers, wavelengths and phase velocities 

 

 
l

m
kk m

 ,    
m

l

km

m

22   ,    

m

l

k
cc m

m

m
m  ,    m 1, 2, … (21) 

  

respectively.  

It is assumed that within the m:th resonance peak mm  /  can be taken as 

directly proportional to angular frequency and     mckc   /  can be taken as 

constant. By use of the third of Eqs. (21) we then obtain the relation   mmkk  /  

between wave number and angular frequency within the resonance peak. Inserting these 

expressions for    and  k  into Eq. (20) we get 

 

           mmmm

mmmmb

bb
llk

aak
e mm 

 
/sinh/sin

/sinh/sin
ˆˆ

22

22
/2212


 ,  (22) 
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m 1, 2, … 

 

within the m:th resonance peak. In this relation, the spectra   2
ˆ  

b  and   21ˆ b  can be 

determined experimentally.  

For each resonance m 1, 2, …, the resonance frequency m  and damping 

coefficient m  can be estimated by minimizing the difference between the resonance 

peaks represented by the left and right members of Eq. (22). From m  and m , an 

experimental phase velocity mc  can be obtained by use of the third of Eqs. (21). Finally, 

by use of the dispersion relation (17) and the first of Eqs. (21), the complex modulus 

mE at each resonance frequency can be obtained as 

 

 
2





m

m
m =E 

 ,     mm α
l

m
=ξ i

,     m 1, 2, ….    (23) 

 

3.2  Experimental Set-up and Procedure. Impact tests were carried out with a 

Nylon bar specimen of length l 3 045 mm, diameter 10.2 mm, and density 1 149 

kg/m 3 . Two pairs of strain gauges, one axial and one circumferential, were located at a 

distance of a 1 731 mm from the free end and b 1 314 mm from the impacted end. In 

order to minimise the effects of friction, the bar was suspended horizontally by means of 

nine regularly spaced strings with length 300 mm. With this arrangement, the period of 

oscillation of the system was about one second, which is much longer than the test 

duration. The striker had length 174 mm and the same diameter 10.2 mm and material as 
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the bar, and its impact velocity was 3.7 m/s. The strain was recorded with 500 kHz 

sampling frequency, and the signal vanished completely before the end of the recording 

window. 

Results were evaluated up to 8 kHz. With a phase velocity expected to be higher 

than 1 500 m/s at this frequency, the shortest significant wave length was estimated to be 

greater than 0.19 m. This wave length is much larger than the diameter 0.01 m of the bar, 

which means that 3D effects can be neglected as assumed in Section 3.1.   

 

4 Results and Discussion 

 

The estimation method presented provides a model for the complex modulus 

corresponding to that shown in Fig. 1, with 1p  pairs of springs and dashpots. This 

model, represented by Eq. (12) or (14), satisfies the constraints of causality, positivity of 

the dissipation rate and reality of the relaxation function. The quantity p , which 

determines the number  12 p  of parameters of the rheological model, is obtained as the 

number of common positive zeros ps,,s 1  of two or more rational functions established 

from the noise-corrected data. These zeros constitute the p  parameters of Eq. (12) which 

determine the poles 1is , 2is , …, psi  of the complex modulus on the positive imaginary 

frequency axis.   

Consider an ideal material which behaves exactly as the rheological model of Fig. 1 

with  12 q  elements, where q  represents the complexity of the material behaviour, and 

let the number n  of experimental values of the complex modulus be greater than q . 
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Then, in the absence of noise, the method can be shown to provide a model with qp  . If 

noise is added, the number of common positive zeros, and therefore the value of p , 

normally decreases. For a given material, therefore, lower quality of the experimental 

data normally results in a simpler but less accurate rheological model. Thus, for n  

sufficiently large, the level of refinement of the model is determined by the material 

behaviour and the quality of the experimental data. 

The recorded strain is shown in Fig. 3. Figure 3(a) shows a long-time record, and 

Fig. 3(b) shows the primary compressive pulse followed by one tensile and one 

compressive pulse which have undergone one and two free-end reflections, respectively. 

As there is no significant overlap of these pulses, it was possible to compute the spectrum 

21ˆ
b  in the right member of Eq. (30) from the measured primary pulse. The spectrum 


b̂ , computed from the long-time strain record, is shown in Fig. 4. The angular 

frequencies at resonance m  and the corresponding complex moduli mE  were 

determined as described. Figure 5 shows that there was good agreement between the 

resonance peaks determined from the left and right members of Eq. (30). 

 For the material of the Nylon bar specimen tested, a rheological model with p 6 

was obtained for n 29. For this model, the 14 parameters of Eq. (12) are ( l 1, 2, …,6) 

 

 ls 0.0954, 2.64, 5.67, 11.1, 19.4, 49.2 1ks  

 l 98.0, 7.81, 79.7, 315, 1 900, 1 220 -1GPas  

 0 3.26 GPa, 0 0.663 kPas,  
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and those of Eq. (14), representing the springs and dashpots in Fig. 1, are ( l 0, 1, …,6) 

 

 l 2 070, 1 030, 2.96, 14.1, 28.5, 97.6, 24.8 MPa  

 l 0.663, 10 800, 1.12, 2.48, 2.58, 5.02, 0.504 kPas. 

 

 Figures 6 and 7 show three kinds of results for the frequency dependency of the 

phase velocity, the damping coefficient, and the real and imaginary parts of the complex 

modulus, viz., discrete experimental results, discrete noise-corrected results, and 

continuous results for the rheological model given by Eqs. (12) and (14) with the above 

sets of parameters. From the discrete experimental results for the phase velocity and the 

damping coefficient (open circles) shown in Fig. 6, the discrete experimental results for 

the complex modulus (open circles) in Fig. 7 were obtained as described in Section 3. 

The corresponding discrete noise-corrected results (filled circles) and the continuous 

results for the rheological model obtained as described in Section 2.2 are shown in the 

same figure. 

 While the experimental results are scattered due to noise, there is close agreement 

between the noise-corrected results and the smooth curves representing the rheological 

model. This indicates that the noise-correction was effective and that the rheological 14-

parameter model obtained with p 6  provides an adequate representation of the 

complex modulus in the frequency range of the test. Within this range, the real part of the 

complex modulus slowly increases from 3.09 to 3.24 GPa (5 %), while the imaginary part 

has a minimum 0.064 GPa at about 0.5 kHz and a maximum 0.090 GPa between 3 and 4 

kHz.  
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 The rheological model obtained by prescribing 00   closely agreed with the 

noise-corrected results for the real part of the complex modulus but markedly disagreed 

with those for the imaginary part, especially at higher frequencies. Thus, although there is 

no instant elasticity with 00  , a finite positive value of this parameter was found to be 

important in the frequency range of the test. 

  At low frequencies, much below the range of the test, the rheological model cannot 

be expected to give a quantitatively accurate representation of the complex modulus. 

However, it is still interesting to note that at such frequencies the model predicts a rapid 

increase with frequency of the real part and a narrow maximum of the imaginary part of 

the complex modulus. This is explained by the closeness of the pole 1is  to the origin 

which at frequencies   of the order of 1s  makes the first term of the sum in Eq. (12) 

much larger than the other terms of the sum. Qualitatively, the observed low-frequency 

behaviour is consistent with the results shown in Fig. 8 of  servo-hydraulic tests which 

were carried out subsequently. 

 

5 Conclusion 

 

The estimation method of this paper has added some improvements to the 

identification of rheological models of the type shown in Fig. 1. First, the procedure for 

noise reduction is fully integrated in the method. Secondly, the method provides a 

rheological model with a number of elements that is in accordance with the complexity of 

the material behaviour and the quality of the experimental data. Thirdly, the parameters 

which determine the poles of the complex modulus on the positive imaginary frequency 
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axis are obtained as the common positive zeros of certain rational functions. Only the 

remaining parameters, on which the complex modulus has linear dependence, need to be 

identified by a least square fit.  

 

Nomenclature 

 

Latin 

A  complex amplitude of wave travelling in direction of increasing x   

a  distance from free end of bar specimen 

ka  element of eigenvector a  ( k 1, …, n ) 

a  zero eigenvector of matrix )1(
M  

B  complex amplitude of wave travelling in direction of decreasing x  

b  distance from impacted end of bar specimen 

kb  element of eigenvector b  ( k 1, …, n ) 

b  zero eigenvector of matrix )2(
M  

c  phase velocity 

E  complex modulus 

f  function defined by Eq. (4), frequency 

G  stress relaxation function 

g  function defined by Eq. (6) 

h  non-negative function defined on the positive real axis 

k  wavenumber 

l  length of bar specimen 
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M  matrix 

kjM ,   element of matrix M ( ji, 1, …, n ) 

n  number of pairs of angular frequency and complex modulus 

p  number of positive zeros 

ls  model parameter ( l 1, …, p ) 

t  time 

x  axial co-ordinate  

 

Greek 

  damping coefficient 

0  model parameter 

0  model parameter 

l  model parameter ( l 1, …, p ) 

  delta function 

  strain 

l  viscosity model parameter ( l 0, …, p ) 

l  stiffness model parameter ( l 0, …, p ) 

  wavelength 

  wave propagation coefficient defined by Eq. (17) 

   density of bar specimen 

  stress 

  angular frequency 
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Superscript 

corr corrected with respect to noise 
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Captions 

 

Fig. 1. Rheological model with  12 p  parameters. 

 

Fig. 2. Impact test with a uniform viscoelastic bar specimen. 

 

Fig. 3. Recorded strain in the Nylon bar specimen. (a) Long-time record of strain pulses 

 tİb

 . (b) Primary strain pulse  tİb

1  followed by strain pulses which have undergone one 

and two free-end reflections. 

 

Fig. 4. Spectrum  bİ̂ of the recorded strain in the Nylon bar specimen.  

 

Fig. 5. Details of the spectrum  2ˆ
bİ . The thin and thick curves are based on the left and 

the right member of Eq. (30), respectively. (a) 1st resonance peak, 1=n . (b) 25th 

resonance peak, 25=n . 
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Fig. 6. (a) Phase velocity c  and (b) damping coefficient   versus frequency. Open 

circles: discrete experimental results. Continuous curves: results based on the rheological 

model given by Eqs. (12) and (14). 

Fig. 7. (a) Real part E  and (b) imaginary part E   of the complex modulus E  versus 

frequency. Open circles: discrete experimental results. Filled circles: discrete noise-

corrected results. Continuous curves: results obtained from the rheological model given 

by Eqs. (12) and (14). 

 

Fig. 8. Real part E  and imaginary part E  of the complex modulus E  at low frequencies 

determined from servo-hydraulic tests. 
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Fig. 1. Rheological model with  12 p  parameters.  
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Fig. 2. Impact test with a uniform viscoelastic bar specimen. 
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Fig. 3. Recorded strain in the Nylon bar specimen. (a) Long-time record of strain pulses 

 tİb

 . (b) Primary strain pulse  tİb

1  followed by strain pulses which have undergone one 

and two free-end reflections. 
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Fig. 4. Spectrum  
bİ̂ of the recorded strain in the Nylon bar specimen.  
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Fig. 5. Details of the spectrum  2ˆ
bİ . The thin and thick curves are based on the left and 

the right member of Eq. (30), respectively. (a) 1st resonance peak, 1=n . (b) 25th 

resonance peak, 25=n . 
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Fig. 6. (a) Phase velocity c  and (b) damping coefficient   versus frequency. Open 

circles: discrete initial results. Continuous curves: results based on the rheological model 

given by Eqs. (12) and (14). 
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Fig. 7. (a) Real part E  and (b) imaginary part E   of the complex modulus E  versus 

frequency. Open circles: discrete initial results. Filled circles: discrete noise-corrected 

results. Continuous curves: results obtained from the rheological model given by Eqs. 

(12) and (14). 



 3535 

 
 

 

Fig. 8. Real part E  and imaginary part E  of the complex modulus E  at low frequencies 

determined from servo-hydraulic tests. 

 


