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Effectivized Hölder-logarithmic stability estimates for the Gel'fand inverse problem

We give effectivized Hölder-logarithmic energy and regularity dependent stability estimates for the Gel'fand inverse boundary value problem in dimension d = 3. This effectivization includes explicit dependance of the estimates on coefficient norms and related parameters. Our new estimates are given in L 2 and L ∞ norms for the coefficient difference and related stability efficiently increases with increasing energy and/or coefficient difference regularity. Comparisons with preceeding results are given.

Introduction and main results

We consider the equation

-∆ψ + v(x)ψ = Eψ, x ∈ D ⊂ R 3 , (1.1) 
where

D is an open bounded domain in R 3 , ∂D ∈ C 2 , (1.2) 
v ∈ L ∞ (D).

(1.3) Equation (1.1) can be regarded as the stationary Schrödinger equation of quantum mechanics at fixed energy E. Equation (1.1) at fixed E arises also in acoustics and electrodynamics.

As in Section 5 of Gel'fand's work [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF] we consider an operator establishing a relationship between ψ and ∂ψ/∂ν on ∂D for all sufficiently regular solutions ψ of equation (1.1) in D = D ∪ ∂D at fixed E, where ν is the outward normal to ∂D. As in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF], [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] (for example) we represent such an operator as the Dirichlet-to-Neumann map Φ(E) defined by the relation

Φ(E)(ψ| ∂D ) = ∂ψ ∂ν | ∂D , (1.4) 
where we assume also that E is not a Dirichlet eigenvalue for operator -∆ + v in D.

(1.5)

The map Φ = Φ(E) can be regarded as all possible boundary measurements for the physical model described by equation (1.1) at fixed energy E under assumption (1.5).

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ for some fixed E, find v.

This problem is known as the Gel'fand inverse boundary value problem for the Schrödinger equation at fixed energy E in three dimensions (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). For E = 0 this problem can be regarded also as a generalization of the Calderón problem of the electrical impedance tomography in three dimensions (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). Problem 1.1 can be also considered as an example of ill-posed problem; see [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF], [START_REF] Lavrentev | Ill-posed problems of mathematical physics and analysis[END_REF] for an introduction to this theory.

Let, for real m ≥ 0,

H m (R 3 ) = w ∈ L 2 (R 3 ) : F -1 (1 + |ξ| 2 ) m 2 F w ∈ L 2 (R 3 ) , ||w|| H m (R 3 ) = F -1 (1 + |ξ| 2 ) m 2 F w L 2 (R 3 ) , (1.6) 
where F denote the Fourier transform

F w(ξ) = 1 (2π) 3 R 3 e iξx w(x)dx, ξ ∈ R 3 .
In addition, for real m ≥ 0, we consider the spaces W m (R 3 ) defined by

W m (R 3 ) = w ∈ L 1 (R 3 ) : (1 + |ξ| 2 ) m 2 F w ∈ L ∞ (R 3 ) , ||w|| W m (R 3 ) = (1 + |ξ| 2 ) m 2 F w L ∞ (R 3 ) . (1.7) 
We note that for integer m the space W m (R 3 ) contains the standard Sobolev space W m,1 (R 3 ) of m-times smooth functions in L 1 on R 3 .

In the present work we obtain, in particular, the following theorems:

Theorem 1.1. Suppose that D satisfies (1.2) and v 1 , v 2 satisfy (1.3), (1.5) for some real E. Suppose also that:

||v j || L ∞ (D) ≤ N for some N > 0, j = 1, 2; supp(v 2 -v 1 ) ⊂ D, v 2 -v 1 ∈ H m (R 3 ), v 2 -v 1 H m (R 3 ) ≤ N H m for some m > 0 and N H m > 0. Let δ = || Φ2 (E) -Φ1 (E)|| L ∞ (∂D)→L ∞ (∂D) , (1.8) 
where Φ1 (E), Φ2 (E) denote the Dirichlet-to-Neumann maps for v 1 , v 2 , respectively. Then, there exist some positive constants A, B, α, β depending on D only such that

||v 2 -v 1 || L 2 (D) ≤ A αE + β(1 -τ ) 2 ln 3 + δ -1 2 1 2 δ τ + +B (1 + N ) 4m 3 N H m αE + β(1 -τ ) 2 ln 3 + δ -1 2 -m 3 (1.9)
for any τ ∈ (0, 1] and E ≥ 0. Besides, estimate (1.9) is also fulfilled for any τ ∈ (0, 1) and E < 0 under the following additional condition:

αE + β(1 -τ ) 2 ln 3 + δ -1 2 > 0.
(1.10) Theorem 1.2. Suppose that D satisfies (1.2) and v 1 , v 2 satisfy (1.3), (1.5) for some real E. Suppose also that:

||v j || L ∞ (D) ≤ N for some N > 0, j = 1, 2; supp(v 2 -v 1 ) ⊂ D, v 2 -v 1 ∈ W m (R 3 ), v 2 -v 1 W m (R 3 ) ≤ N W m for some m > 3 and N W m > 0.
Let δ be defined by (1.8). Then, there exist some positive constants Ã, B, α, β depending on D only such that

||v 2 -v 1 || L ∞ (D) ≤ Ã αE + β(1 -τ ) 2 ln 3 + δ -1 2 1 2 δ τ + + B (1 + N ) 2(m-3) 3 N W m m -3 αE + β(1 -τ ) 2 ln 3 + δ -1 2 -m-3 6 (1.11)
for any τ ∈ (0, 1] and E ≥ 0.

Besides, estimate (1.11) is also fulfilled for any τ ∈ (0, 1) and E < 0 under the following additional condition

αE + β(1 -τ ) 2 ln 3 + δ -1 2 > 0.
(1.12) Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively. These proofs are based on Lemmas 2.1, 2.2 and 2.3 given in Section 2. Then these proofs are based on the intermediate estimates (3.7), (4.8) which may be of independent interest. Remark 1.1. The estimates of Theorem 1.2 can be regarded as a significant effectivization of the following estimates of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] for the three-dimensional case:

||v 2 -v 1 || L ∞ (D) ≤ C 1 (N m , D, m, E) ln 3 + δ -1 -s1 (1.13) for E ∈ R; ||v 2 -v 1 || L ∞ (D) ≤ C 2 (N m , D, m, τ )(1 + √ E)δ τ + + C 3 (N m , D, m, τ )(1 + √ E) s-s1 ln 3 + δ -1 -s (1.14)
for E ≥ 0, τ ∈ (0, 1) and any s ∈ [0, s 1 ]. Here δ is defined by (1.8) and s 1 = (m -3)/3. In addition, estimates (1.13) and (1.14) were obtained in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] under the assumptions that: D satisfies (1.2), v j satisfies (1.3), (1.5)

, supp v j ⊂ D, v j ∈ W m,1 (R 3 ), v j W m,1 (R 3 ) ≤ N m , j = 1, 2,
for some integer m > 3 and N m > 0.

Actually, Theorem 1.2 was obtained in the framework of finding the dependance of C 1 , C 2 , C 3 of (1.13), (1.14) on N m , m and τ . One can see that the estimates of Theorem 1.2 depend explicitely on coefficient norms N , N W m and parameteres m, τ and imply (1.13), (1.14) with some C 1 , C 2 , C 3 explicitely dependent on N m , m, τ as a corollary. Besides, in Theorem 1.2 we do not assume that each of potentials v 1 , v 2 is m-times differentiable and is supported in D (in a similar way with Theorem 2.1 of [START_REF] Novikov | Approximate Lipschitz stability for non-overdetermined inverse scattering at fixed energy[END_REF]).

By the way we would like to note also that even for E = 0 the reduction of Hölder-logarithmic stability estimates like (1.9), (1.11) to pure logarithmic estimates like (1.13) is not optimal for large m because of the following asymptotic formula:

sup δ∈(0,1] δ τ (ln(3 + δ -1 )) -µ = O µ τ µ e -µ τ as µ → +∞.
In particular, even for E = 0 the Hölder-logarithmic estimates (1.9), (1.11) are much more informative than their possible pure logarithmic reductions.

Remark 1.2. Theorem 1.1 was obtained as an extention of Theorem 1.2 to the L 2 -norm case. In addition, it is important to note that the second ("logarithmic") term of the right-hand side of (1.9) is considerably better than the analogous term of (1.11). In particular,

R = O ln 3 + δ -1 -2m 3 for δ → 0, R = O E -m 3 for E → +∞, whereas R = O ln 3 + δ -1 -m-3 3 for δ → 0, R = O E -m-3 6 for E → +∞,
where R and R denote the second ("logarithmic") terms of the right-hand sides of (1.9) and (1.11), respectively.

Remark 1.3. The estimates of Theorem 1.1 should be compared also with the following estimate of [START_REF] Isakov | Increasing stability of the inverse boundary value problem for the Schrödinger equation[END_REF] for the three-dimensional case:

v 2 -v 1 H -m (R 3 ) ≤ C E 2 δ + √ E + ln δ -1 -(2m-3) , (1.15) 
where

C = C (N m , D, supp(v 2 -v 1 ), m) > 0, v j H m (D) ≤ N m (j = 1, 2), supp (v 2 -v 1 ) ⊂ D, m > 3/2,
δ is the distance between the boundary measurements (Cauchy data) for v 1 , v 2 and is, roughly speaking, similar to δ of (1.8) and where δ ≤ 1/e. A principal advantage of (1.9) in comparison with (1.15) consists in estimation v 2 -v 1 in the L 2 -norm instead of the H -m -norm. Besides, estimate (1.9) depends explicitely on coefficient norms N , N W m and parameteres m, τ in contrast with (1.15). In addition, in (1.9) we do not assume that each of v 1 , v 2 belongs to H m . Remark 1.4. In the literature on Problem 1.1 estimates of the form (1.13) are known as global logarithmic stability estimates. The history of these estimates goes back to [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for the case when s 1 ≤ 1 and to [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] for the case when s 1 > 1.

In addition, estimates of the form (1.9), (1.11), (1.14), (1.15) are known in the literature as Hölder-logarithmic energy and regularity dependent stability estimates. For the case when τ = 1 in (1.9), (1.11) or when s = 0 in (1.14) the history of such estimates in dimension d = 3 goes back to [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], where such energy and regularity dependent rapidly convergent approximate stability estimates were given for the inverse scattering problem.

Then for Problem 1.1 energy dependent stability estimates changing from logarithmic type to Hölder type for high energies were given in [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF]. However, this high energy stability increasing of [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF] is slow. The studies of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF] were continued, in particular, in [START_REF] Nagayasu | Increasing stability in an inverse problem for the acoustic equation[END_REF], [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF], [START_REF] Isakov | Increasing stability of the inverse boundary value problem for the Schrödinger equation[END_REF] and in the present work.

Remark 1.5. In Theorems 1.1, 1.2 we consider the three-dimensional case for simplicity only. Similar results hold in dimension d > 3.

As regards to logarithmic and Hölder-logarithmic stability estimates for Problem 1.1 in dimension d = 2, we refer to [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions[END_REF], [START_REF] Santacesaria | A Holder-logarithmic stability estimate for an inverse problem in two dimensions[END_REF]. In addition, for problems like Problem 1.1 the history of energy and regularity dependent rapidly convergent approximate stability estimates in dimension d = 2 goes back to [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF].

Remark 1.6. In a similar way with results of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], [START_REF] Isaev | Reconstruction of a potential from the impedance boundary map[END_REF] and subsequent studies of [START_REF] Päivärinta | The inverse Robin boundary value problem in a half-space[END_REF], estimates (1.9), (1.11) can be extended to the case when we do not assume that condition (1.5) is fulfiled and consider an appropriate impedance boundary map (Robin-to-Robin map) instead of the Dirichlet-to-Neumann map.

Remark 1.7. Apparently, estimates analogous to estimates of Theorems 1.1 and 1.2 hold if we replace the difference of DtN maps by the difference of corresponding near field scattering data in a similar way with results of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF], [START_REF] Isaev | Energy and regularity dependent stability estimates for near-field inverse scattering in multidimensions[END_REF], [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF].

Remark 1.8. The optimality (in different senses) of estimates like (1.13), (1.14) was proved in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF], [START_REF] Isaev | Instability in the Gel'fand inverse problem at high energies[END_REF]. See also [START_REF] Di Cristo | Rondi Examples of exponential instability for inverse inclusion and scattering problems[END_REF], [START_REF] Isaev | Exponential instability in the inverse scattering problem on the energy interval[END_REF] and references therein for the case of inverse scattering problems.

Remark 1.9. Estimates (1.9), (1.11) for τ = 1 are roughly speaking coherent with stability properties of the approximate monochromatic inverse scattering reconstruction of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], implemented numerically in [START_REF] Alexeenko | Solution of threedimensional acoustical inverse scattering problem,II: modified Novikov algorithm[END_REF]. Estimates (1.9), (1.11) for E = 0 are roughly speaking coherent with stability properties of the reconstruction of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF].

In addition, estimates (1.9), (1.11) can be used for the convergence rate analysis for iterative regularized reconstructions for Problem 1.1 in the framework of an effectivization of the approach of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF] for monochromatic inverse scattering problems.

Lemmas

Let v denote the Fourier transform of v:

v(ξ) = F v(ξ) = 1 (2π) 3 R 3 e iξx v(x)dx, ξ ∈ R 3 .
(2.1)

Lemma 2.1. Suppose that D satisfies (1.2) and v 1 , v 2 satisfy (1.3), (1.5) for some real E. Suppose also that ||v j || L ∞ (D) ≤ N, j = 1, 2, for some N > 0. Let δ be defined by (1.8). Then

|v 2 (ξ) -v1 (ξ)| ≤ c 1 (1 + N ) 2 e 2ρL δ + v 1 -v 2 L 2 (D) E + ρ 2 (2.2)
for any ρ > 0 such that

|ξ| ≤ 2 E + ρ 2 , E + ρ 2 ≥ (1 + N ) 2 r 2 1 , where L = max x∈∂D |x| and constants c 1 , r 1 > 0 depend on D only.
Some version of estimate (2.2) was given in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] (see formula (4.13) of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]). Lemma 2.1 is proved in Section 6. This proof is based on results presented in Section 5.

Lemma 2.2. Let w ∈ H m (R 3 ), w H m (R 3 ) ≤ N H m
for some real m > 0 and N H m > 0, where the space H m (R 3 ) is defined in (1.6). Then, for any r > 0,

   |ξ|≥r |F w(ξ)| 2 dξ    1/2 ≤ c 2 N H m r -m , (2.3) 
where F w is defined according to (2.1) and c 2 = (2π) -3/2 .

Proof of Lemma 2.2. Note that

|ξ|≥r |F w(ξ)| 2 dξ ≤ (1 + |ξ| 2 ) m 2 F w r m 2 L 2 (R 3 )
.

(2.4)

Using (1.6), (2.4) and the Parseval theorem

F w L 2 (R 3 ) = (2π) -3/2 w L 2 (R 3 ) (2.5) for w ≡ F -1 (1 + |ξ| 2 ) m 2 F w, we get estimate (2.3). Lemma 2.3. Let w ∈ W m (R 3 ), w W m (R 3 ) ≤ N W m
for some real m > 3 and N W m > 0, where the space W m (R 3 ) is defined in (1.7). Then, for any r > 0,

|ξ|≥r |F w(ξ)|dξ ≤ c2 N W m m -3 r 3-m , (2.6) 
where F w is defined according to (2.1) and c2 = 4π.

Proof of Lemma 2.3. Note that

r m |F w(ξ)| ≤ (1 + |ξ| 2 ) m/2 |F w(ξ)| ≤ N W m for |ξ| ≥ r. (2.7) 
Using (2.7), we obtain that

|ξ|≥r |F w(ξ)|dξ ≤ +∞ r N W m t m 4πt 2 dt ≤ 4πN W m m -3 r 3-m . (2.8) 3 
Proof of Theorem 1.1

Using the Parseval formula (2.5), we get that

v 2 -v 1 L 2 (D) = (2π) 3/2 v2 -v1 L 2 (R 3 ) ≤ (2π) 3/2 (I 1 (r) + I 2 (r)), (3.1) 
for r > 0, where vj is defined according to (2.1) with v j ≡ 0 on R 3 \ D, j = 1, 2,

I 1 (r) =    |ξ|≤r |v 2 (ξ) -v1 (ξ)| 2 dξ    1/2 , I 2 (r) =    |ξ|≥r |v 2 (ξ) -v1 (ξ)| 2 dξ    1/2 . Let r = q(1 + N ) -4/3 (E + ρ 2 ) 1/3 , q = 1 2π 16πc 2 1 3 -1/3 , (3.2) 
where c 1 is the constant of Lemma 2.1. Then, using Lemma 2.1 for |ξ| ≤ r, we get that

I 1 (r) ≤   4πr 3 3 c 2 1 (1 + N ) 4 e 2ρL δ + v 1 -v 2 L 2 (D) E + ρ 2 2   1/2 ≤ ≤ (2π) -3/2 E + ρ 2 e 2ρL δ 2 + v 1 -v 2 L 2 (D) 2 (3.3) for q(1 + N ) -4/3 (E + ρ 2 ) 1/3 ≤ 2 E + ρ 2 and E + ρ 2 ≥ (1 + N ) 2 r 2 1 .
In addition, using (2.3), we have that

I 2 (r) ≤ c 2 N H m r -m . (3.4) Let r 2 = r 2 (D) ≥ r 1 be such that E + ρ 2 ≥ r 2 2 =⇒ q(E + ρ 2 ) 1/3 ≤ 2 E + ρ 2 . (3.5) Using (3.1), (3.3) 
-(3.5) with r defined in (3.2), we obtain that

v 2 -v 1 L 2 (D) ≤ E + ρ 2 e 2ρL δ 2 + v 1 -v 2 L 2 (D) 2 + +(2π) 3/2 c 2 (1 + N ) 4m 3 q m N H m (E + ρ 2 ) -m 3 , (3.6) 
1 2 v 2 -v 1 L 2 (D) ≤ E + ρ 2 e 2ρL δ 2 + + (1 + N ) 4m 3 q m N H m (E + ρ 2 ) -m 3 , (3.7 
)

for E + ρ 2 ≥ (1 + N ) 2 r 2 2
, where L, c 2 are the constants of Lemmas 2.1, 2.2 and q, r 2 are the constants of formulas (3.2), (3.5).

Let τ ∈ (0, 1) and

γ = 1 -τ 2L , ρ = γ ln 3 + δ -1 . (3.8)
Due to (3.7), for δ such that

E + γ ln(3 + δ -1 ) 2 ≥ (1 + N ) 2 r 2 2 , (3.9) 
the following estimate holds:

1 2 v 1 -v 2 L 2 (D) ≤ ≤ 1 2 E + γ ln 3 + δ -1 2 1/2 3 + δ -1 2γL δ+ + (1 + N ) 4m 3 q m N H m E + γ ln 3 + δ -1 2 -m 3 , (3.10) 
where γ is defined in (3.8). Note that

3 + δ -1 2γL δ = (1 + 3δ) 1-τ δ τ ≤ 4δ τ for δ ≤ 1. (3.11)
Combining (3.10), (3.11), we get that

||v 2 -v 1 || L 2 (D) ≤ A 1 λ E + γ 2 ln 3 + δ -1 2 1 2 δ τ + +B 1 (1 + N ) 4m 3 N H m λ E + γ 2 ln 3 + δ -1 2 -m 3 (3.12)
for δ ≤ 1 satisfying (3.9) and some positive constants A 1 , B 1 , λ depending on D only.

In view of definition (1.6), we have that

||v 2 -v 1 || L 2 (D) ≤ ||v 2 -v 1 || H m (R 3 ) ≤ N H m .
Hence, we get that, for 0

< E + γ ln(3 + δ -1 ) 2 ≤ (1 + N ) 2 r 2 2 , ||v 2 -v 1 || L 2 (D) ≤ (1 + N ) 4m 3 N H m E + γ 2 ln 3 + δ -1 2 r 2 2 -m 3 . (3.13) 
On other hand, in the case when

E + γ ln(3 + δ -1 ) 2 ≥ (1 + N ) 2 r 2 2 and δ > 1 we have that ||v 2 -v 1 || L 2 (D) ≤ c 3 ||v 2 -v 1 || L ∞ (D) ≤ c 3 2N ≤ ≤ 2c 3 E + γ 2 ln 3 + δ -1 2 r 2 2 1 2 δ τ , (3.14) 
where

c 3 =   D 1 dx   1/2 . (3.15)
Combining (3.8), (3.12)-(3.14), we obtain estimate (1.9). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2

Due to the inverse Fourier transform formula

v(x) = R 3 e -iξx v(ξ)dξ, x ∈ R 3 , (4.1)
we have that

v 1 -v 2 L ∞ (D) ≤ sup x∈D R 3 e -iξx (v 2 (ξ) -v1 (ξ)) dξ ≤ Ĩ1 (r) + Ĩ2 (r) (4.2)
for r > 0, where

Ĩ1 (r) = |ξ|≤r |v 2 (ξ) -v1 (ξ)|dξ, Ĩ2 (r) = |ξ|≥r |v 2 (ξ) -v1 (ξ)|dξ. Let r = q(1 + N ) -2/3 (E + ρ 2 ) 1/6 , q = 8πc 1 c 3 3 -1/3 , (4.3)
where c 1 is the constant of Lemma 2.1 and c 3 is defined by (3.15). Then, combining the definition of Ĩ1 , Lemma 2.1 for |ξ| ≤ r and the inequality

||v 2 -v 1 || L 2 (D) ≤ c 3 ||v 2 -v 1 || L ∞ (D) ,
we get that

Ĩ1 (r) ≤ 4πr 3 3 c 1 (1 + N ) 2 e 2ρL δ + c 3 v 1 -v 2 L ∞ (D) E + ρ 2 ≤ ≤ 1 2c 3 E + ρ 2 e 2ρL δ + v 1 -v 2 L ∞ (D) 2 (4.4) for q(1 + N ) -2/3 (E + ρ 2 ) 1/6 ≤ 2 E + ρ 2 and E + ρ 2 ≥ (1 + N ) 2 r 2 1 .
In addition, using (2.6), we get that

Ĩ2 (r) ≤ c2 N W m m -3 r 3-m . (4.5)
Let r2 = r2 (D) ≥ r 1 be such that

E + ρ 2 ≥ r2 2 =⇒ q(E + ρ 2 ) 1/6 ≤ 2 E + ρ 2 . (4.6)
Using (4.2), (4.4)-(4.6) with r defined in (4.3), we obtain that

v 2 -v 1 L ∞ (D) ≤ 1 2c 3 E + ρ 2 e 2ρL δ + v 1 -v 2 L ∞ (D) 2 + +c 2 (1 + N ) 2(m-3) 3 (m -3)q m-3 N W m (E + ρ 2 ) -m-3 6 , (4.7) 1 2 v 2 -v 1 L ∞ (D) ≤ 1 2c 3 E + ρ 2 e 2ρL δ+ + 4π (1 + N ) 2(m-3) 3 (m -3)q m-3 N W m (E + ρ 2 ) -m-3 6 (4.8) for E + ρ 2 ≥ (1 + N ) 2 r2
2 , where L, c2 are the constants of Lemmas 2.1, 2.3 and c 3 , q, r2 are the constants of formulas (3.15), (4.3), (4.6).

Let τ ∈ (0, 1) and

γ = 1 -τ 2L , ρ = γ ln 3 + δ -1 . (4.9)
Due to (4.8), for δ such that

E + γ ln(3 + δ -1 ) 2 ≥ (1 + N ) 2 r2 2 , (4.10) 
the following estimate holds:

1 2 v 1 -v 2 L ∞ (D) ≤ ≤ 1 2c 3 E + γ ln 3 + δ -1 2 1/2 3 + δ -1 2γL δ+ +4π (1 + N ) 2(m-3) 3 (m -3)q m N W m E + γ ln 3 + δ -1 2 -m-3 6 
, (4.11) where γ is defined in (4.9). Note that

3 + δ -1 2γL δ = (1 + 3δ) 1-τ δ τ ≤ 4δ τ for δ ≤ 1.
(4.12)

Combining (4.11), (4.12), we get that

||v 2 -v 1 || L ∞ (D) ≤ Ã1 λ E + γ 2 ln 3 + δ -1 2 1 2 δ τ + + B1 (1 + N ) 2(m-3) 3 N W m m -3 λ E + γ 2 ln 3 + δ -1 2 -m- 3 6 (4.13) 
for δ ≤ 1 satisfying (4.10) and some positive constants Ã1 , B1 , λ depending on D only. Using (1.7) and (4.2), we get that

||v 2 -v 1 || L ∞ (D) ≤ R 3 (1 + |ξ| 2 ) -m/2 ||v 2 -v 1 || W m (R 3 ) dξ ≤ ≤ N W m +∞ 0 4πt 2 (1 + t 2 ) m/2 dt ≤ c 4 e m-3 m -3 N W m (4.14) 
for some c 4 > 0. Here we used also that

+∞ 0 4πt 2 (1 + t 2 ) m/2 dt ≤ 1 0 4πt 2 dt + +∞ 1 4πt 2 t m dt ≤ c 4 1 + 1 m -3 ≤ c 4 e m-3 m -3 .
Using (4.14), we get that, for 0

< E + γ ln(3 + δ -1 ) 2 ≤ (1 + N ) 2 r2 2 , ||v 2 -v 1 || L ∞ (D) ≤ ≤ c 4 (1 + N ) 2(m-3) 3 N W m m -3 E + γ 2 ln 3 + δ -1 2 e 6 r2 2 -m-3 6 . (4.15) 
On other hand, in the case when E + γ ln δ -1 2 ≥ (1 + N ) 2 r2 2 and δ > 1 we have that

||v 2 -v 1 || L ∞ (D) ≤ 2N ≤ 2 E + γ 2 ln 3 + δ -1 2 r2 2 1 2 δ τ . (4.16) 
Combining (4.9), (4.13), (4.15) and (4.16), we obtain estimate (1.11). This completes the proof of Theorem 1.2.

Faddeev functions

Suppose

that v ∈ L ∞ (D), v ≡ 0 on R 3 \ D, (5.1) 
where D satisfies (1.2). More generally, one can assume that v is a sufficiently regular function on R 3

with sufficient decay at infinity. (

Under assumptions (5.2), we consider the functions ψ, µ, h:

ψ(x, k) = e ikx µ(x, k), (5.3) 
µ(x, k) = 1 + R 3 g(x -y, k)v(y)µ(y, k)dy, g(x, k) = -(2π) -3 R 3 e iξx dξ ξ 2 + 2kξ , (5.4) 
where

x ∈ R 3 , k ∈ C 3 , Im k = 0, h(k, l) = (2π) -3 R 3 e i(k-l)x v(x)µ(x, k)dx, (5.5) 
where k, l ∈ C 3 , k 2 = l 2 , Im k = Im l = 0. Here, (5.4) at fixed k is considered as a linear integral equation for µ, where µ is sought in L ∞ (R 3 ). The functions ψ, h and G = e ikx g are known as the Faddeev functions, see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]. These functions were introduced for the first time in [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF].

In particular, we have that

(∆ + k 2 )G(x, k) = δ(x), (-∆ + v(x))ψ(x, k) = k 2 ψ(x, k), where x ∈ R 3 , k ∈ C 3 \ R 3 .
We recall also that the Faddeev functions G, ψ, h are some extension to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, h is an extension of the classical scattering amplitude).

Note also that G, ψ, h in their zero energy restriction, that is for k 2 = 0, l 2 = 0, were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions G, ψ, h were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

For further considerations we will use the following notations:

Σ E = k ∈ C 3 : k 2 = k 2 1 + k 2 2 + k 2 3 = E , Θ E = {k ∈ Σ E , l ∈ Σ E : Im k = Im l} , |k| = (|Re k| 2 + |Im k| 2 ) 1/2 for k ∈ C 3 .
Under assumptions (5.2), we have that:

µ(x, k) → 1 as |k| → ∞, (5.6) 
where

x ∈ R 3 , k ∈ Σ E ; v(ξ) = lim (k, l) ∈ ΘE , k -l = ξ |Im k| = |Im l| → ∞ h(k, l) for any ξ ∈ R 3 , (5.7) 
where v is defined by (2.1).

Results of the type (5.6) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. Results of the type (5.7) go back to [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. These results follow, for example, from equation (5.4), formula (5.5) and the following estimates:

g(x, k) = O(|x| -1 ) for x ∈ R 3 , uniformly in k ∈ C 3 \ R 3 , (5.8) 
Λ -s g(k)Λ -s L 2 (R 3 )→L 2 (R 3 ) = O(|k| -1 ), for s > 1/2, as |k| → ∞, k ∈ C 3 \ R 3 , (5.9) 
where g(x, k) is defined in (5.4), g(k) denotes the integral operator with the Schwartz kernel g(x -y, k) and Λ denotes the multiplication operator by the function (1 + |x| 2 ) 1/2 . Estimate (5.8) was given in [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. Estimate (5.9) was formulated, first, in [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF]. Concerning proof of (5.9), see [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF]. In addition, estimate (5.9) in its zero energy restriction goes back to [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF].

In the present work we use the following lemma: Lemma 5.1 is proved in Section 6. This proof is based on estimates (5.8) and (5.9).

In addition, we have that (see [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]):

h 2 (k, l) -h 1 (k, l) = (2π) -3 R 3 ψ 1 (x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (5.2), (5.11) 
h 2 (k, l) -h 1 (k, l) = (2π) -3 ∂D ψ 1 (x, -l) Φ2 -Φ1 ψ 2 (•, k) (x)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0,
and v 1 , v 2 satisfying (1.5), (5.1), (5.12) where ψ j , h j denote ψ and h of (5.3) and (5.5) for v = v j , and Φj denotes the Dirichlet-to-Neumann map Φ for v = v j in D, where j = 1, 2.

In the present work we also use the following lemma:

Lemma 5.2. Let D satisfy (1.2). Let v j satisfy (5.1), ||v j || L ∞ (D) ≤ N, j = 1, 2, for some N > 0. Then

|v 1 (ξ) -v2 (ξ) -h 1 (k, l) + h 2 (k, l)| ≤ c 6 N (1 + N ) v 1 -v 2 L 2 (D) (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , ξ = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ r 2 4 (1 + N ) 2 , (5.13) 
where E ∈ R, vj is the Fourier transform of v j , h j denotes h of (5.5) for v = v j , (j = 1, 2) and constants c 6 , r 4 > 0 depend on D only.

Some versions of estimate (5.13) were given in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF], [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF] (see, for example, formula (3.18) of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]). Lemma 5.2 is proved in Section 6.

6 Proofs of Lemmas 2.1, 5.1 and 5.2

Proof of Lemma 5.1. Using (5.1), (5.4) and (5.9), we get that

µ(•, k) -1 L 2 (D) ≤ R 3 g(• -y)v(y)µ(y, k)dy L 2 (D) ≤ ≤ c 7 N |k| µ(•, k) L 2 (D) , (6.1) 
µ(•, k) L 2 (D) ≤ c 3 + c 7 N |k| µ(•, k) L 2 (D) , (6.2) 
where c 3 is defined by (3.15) and c 7 is some positive constant depending on D only. Hence, we obtain that

µ(•, k) L 2 (D) ≤ 2c 3 for |k| ≥ 2c 7 N. (6.3) 
We use also that

D 1 |x -y| 2 dy ≤ D 1 dy + |x-y|≤1 1 |x -y| 2 dy ≤ c 2 8 , x ∈ D, (6.4) 
where c 8 = c 8 (D) > 0. Using (5.1), (5.4), (5.8), (6.3), (6.4), we get that Using estimates (6.1), (6.3), (6.5) in (6.7), we get that (6.12)

|µ(x, k)| ≤ 1 + D g(x -y)v(y)µ(y, k)dy ≤ ≤ 1 +   D |g(x -y)| 2 dy   1/2 N µ(•, k) L 2 (R 3 ) ≤ ≤ c 5 (D)(1 + N ) for x ∈ D, |k| ≥ 2c 7 N .
I ∆ ≤ (2π) -3 µ 1 (•, -l) -1 L 2 (D) v 2 -v 1 L 2 (D)
Note that for any ξ ∈ R 3 satisfying |ξ| ≤ 2 E + ρ 2 (where ρ > 0) there exist some pair (k, l) ∈ Θ E such that ξ = k -l and |Im k| = |Im l| = ρ. Therefore, estimates (5.13) and (6.12) imply (2.2).
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 531331313 Proof of Lemma 5.2. Due to (5.1),(5.11), we have thath 2 (k, l) -h 1 (k, l) = (2π) -(x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx = = (2π) -e i(k-l)x µ 1 (x, -l)(v 2 (x) -v 1 (x))µ 2 (x, k)dx = = v2 (k -l) -v1 (k -l) + I ∆ (6.6)for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, whereI ∆ = (2π) -(x, -l) -1)(v 2 (x) -v 1 (x))µ 2 (x, k)dx+ +(2π) -(x, -l)(v 2 (x) -v 1 (x))(µ 2 (x, k) -1)dx+ +(2π) -(µ 1 (x, -l) -1)(v 2 (x) -v 1 (x))(µ 2 (x, k) -1)dx. (6.7) Note that, for (k, l) ∈ Θ E , E ∈ R, |Im k| = |Im l| = ρ, |k| = |Re k| 2 + |Im k| 2 = k 2 + 2 |Im k| 2 = E + 2ρ 2 = |l|.(6.8)

µ 2 (E + 2ρ 2 ( 6 . 9 )

 2269 •, -l) L ∞ (D) + + µ 1 (•, -l) L ∞ (D) v 2 -v 1 L 2 (D) µ 2 (•, -l) -1 L 2 (D) + + µ 1 (•, -l) -1 L ∞ (D) v 2 -v 1 L 2 (D) µ 2 (•, -l) -1 L 2 (D) ≤ ≤ 2c 3 c 7 N v 1 -v 2 L 2 (D) c 5 (1 + N ) (2π) 3 |k| + c 5 (1 + N ) v 1 -v 2 L 2 (D) 2c 3 c 7 N (2π) 3 |l| + + (1 + c 5 (1 + N )) v 1 -v 2 L 2 (D) 2c 3 c 7 N (2π) 3 |l| ≤ ≤ c 8 (D) N (1 + N ) v 1 -v 2 L 2 (D) for (k, l) ∈ Θ E , |Im k| = |Im l| = ρ and |k| = |l| = E + 2ρ 2 ≥ 2c 7 N .Formula (6.6) and estimate (6.9) imply (5.13).Proof of Lemma 2.1. Due to (5.11), we have that|h 2 (k, l) -h 1 (k, l)| ≤ c 9 ψ 1 (•, -l) L ∞ (∂D) δ ψ 2 (•, k) L ∞ (∂D) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0, (6.10) where c 9 = (2π) -3 ∂D dx.Using formula (5.3) and Lemma 5.1, we find thatψ j (•, k) L ∞ (∂D) ≤ c 5 (1 + N )e |Im k|L , j = 1, 2, for k ∈ Σ E , |k| ≥ r 3 (1 + N ),(6.11)where L = max x∈∂D |x|. Combining (6.8), (6.10) and (6.11), we get that|h 2 (k, l) -h 1 (k, l)| ≤ c 9 c 2 5 (1 + N ) 2 e 2ρL δ, for (k, l) ∈ Θ E , ρ = |Im k| = |Im l|, E + ρ 2 ≥ r 2 3 (1 + N ) 2 .