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Abstract – A two-dimensional system of particles with tunable repulsive interactions is exper-
imentally investigated. Soft ferromagnetic particles are placed on a vibrating rough plate and
vertically confined, so that they perform a horizontal Brownian motion in a cell. When immersed
in an external vertical magnetic field, the particles become magnetised and thus interact according
to a dipolar repulsive law. As the amplitude of the magnetic field is increased, magnetic repulsion
raises and the rate of inelastic collisions decreases. Studying the pair correlation function and
the particle velocity distributions, we show that the typical properties of such a dissipative out-
of-equilibrium granular gas are progressively lost, to approach those expected for a usual gas at
thermodynamic equilibrium. For stronger interaction strengths, the system continuously solidifies
towards a hexagonal crystal. This new setup could consequently be used as a model experimental
system for out-of-equilibrium statistical physics, in which the distance to the quasi-elastic limit
can be accurately controlled.

Introduction. – Statistical mechanics provides, with
the assumption of thermodynamic equilibrium, a precise
description of molecular gases composed of thermally agi-
tated microscopic particles. In contrast, in granular gases
macroscopic particles are mechanically driven. Since the
collisions between these particles are dissipative, energy
must be continuously provided into the system from out-
side to reach a stationary out-of-equilibrium state. In
consequence, granular gases have been extensively stud-
ied as a model system for out-of-equilibrium statistical
physics [1] theoretically [2, 3], numerically [4] and experi-
mentally [5–7]. Two-dimensional granular gases, i.e., par-
ticles lying on a horizontal plate vertically vibrated, were
especially studied because particle trajectories can be re-
constructed using fast imaging and tracking algorithms
[5–9]. Nevertheless, few studies investigated the case in
which non-contact interactions between particles compete
with kinetic agitation and thus introduce spatial correla-
tions differing from those observed for an inelastic hard-
sphere gas. In a granular gas composed of particles owing a
permanent magnetic dipole, the anisotropic dipole-dipole
interactions lead to dipole alignment, then attraction and
clustering [10–12]. In contrast, physics differs strongly us-
ing ferromagnetic particles with a low remnant magnetic

field. When immersed in an external static magnetic field,
such particles acquire an induced magnetisation so that
inter-particle dipolar interactions become tunable by the
operator. Applying this protocol to a granular packing,
a first order fluid-solid transition [13] and a surface insta-
bility due to competition between gravity and magnetic
forces [14], are observed. If such particles are confined in
a two-dimensional plane and immersed in an external per-
pendicular magnetic field, the magnetic interactions be-
tween particles are purely repulsive, since their dipoles are
all aligned in the vertical field direction. At low packing
fraction, low agitation and high magnetic field, the system
forms a hexagonal lattice [15]. As mechanical agitation is
increased crystal melting is observed, that is, translational
and orientational orders disappear, as in some other 2D
systems of interacting particles [16–20].
In this letter, we study a 2D granular gas with such

tunable repulsive magnetic interactions. To our knowl-
edge, the influence of dipolar interactions on the particle
velocity distributions has only been studied in a case dom-
inated by attractive interactions [21]. Free-cooling of 3D
granular gases with electrostatic repulsions has also been
investigated theoretically and numerically [22, 23]. In our
experiment, we start from the well studied case of a two-
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Fig. 1: (color online) (a) Experimental setup (see text).
(b) Snapshots in the inelastic regime for B0 = 0G (ε = 0),
(c) the quasi-elastic regime for B0 = 127G (ε = 16.2), and
(d) the hexagonal crystal-like regime for B0 = 436G (ε = 283).
Snapshots size is 3.5 cm× 3.5 cm, and Γ = 3.32. For the full
time evolution, see movie movie1.m4v in supplementary ma-
terial or at [31]. (e) Area fraction of balls φ in the area S
versus B0 for Γ = 2.45 and 3.32. The dashed line corresponds
to the area fraction for a homogeneous particle distribution
φth = N0πσ

2/S0 ≈ 0.194.

dimensional granular gas [8,9] where mechanical agitation
is provided to the particles by the vibration of a horizon-
tal rough bottom plate. Additionally, a vertical magnetic
field is then applied, leading to repulsive dipolar inter-
actions between particles. Using particle tracking tech-
niques, we analyse quantitatively the structural changes
within the granular gas and its dynamical properties. The
rate of inelastic collisions between particles can be easily
tuned. Indeed, increasing the amplitude of the magnetic
field enhances magnetic repulsion and thus decreases the
number of inelastic collisions. As the dissipation rate due
to inelastic collisions is proportional to the number of col-
lisions, the total dissipation in the system is reduced. We
thus show that the system undergoes a transition from a
dissipative to a quasi-elastic system when the magnetic
field is increased.

Experimental setup. – The experimental cell is de-
picted in Fig. 1(a). It consists of a horizontal, square
duraluminium bottom plate of area S0 = 9 cm × 9 cm

and covered by a sandpaper sheet in order to provide
roughness. The cell is filled with N0 = 2000 chrome
steel (AISI 52100) spherical particles with a diameter
a = 2 σ = 1mm± 2.5µm and a mass m = 4.07× 10−6 kg.
These balls are confined by rigid aluminium walls and by a
rigid, smooth, antistatic coated polycarbonate lid placed
1.5a above the bottom plate. In order to reach a non-
equilibrium steady state, this cell is driven sinusoidally
in the vertical direction by means of an electromagnetic
shaker. The dimensionless acceleration is Γ ≡ (2πf)2A/g
with f = 300Hz the frequency and A the amplitude of the
sinusoidal forcing, g being the gravitational acceleration.
Γ is measured using an accelerometer screwed on the cell.
Two coils generate a vertical magnetic field B0 which is
perpendicular to the cell plane and is spatially homoge-
neous within the cell volume with a 2% accuracy. A high
speed camera (Phantom V10) is located above the centre
of the cell. A diffusive LED ring encircling the cell illu-
minates from the top the particles that appear as bright
rings on a dark background. The camera acquisition rate
is fixed to 779 frames per second in order to detect the col-
lisions between particles. Video recordings are performed
once the stationary state is reached (waiting time of 60 s)
and last at least 3.85 s. To avoid measurement issues
at the boundaries, we choose a region of interest S of
5.7 cm× 5.7 cm around the cell centre. The particle diam-
eter then corresponds to 20 pixels. We performed individ-
ual detection of particles from the video recordings using
first a convolution-based least-squares fitting particle de-
tection routine [8, 24] completed by an intensity-weighted
centre detection algorithm. This provides particle centre
positions with a resolution of less than 0.3 pixel∼ 0.015a
[9]. Finally, individual trajectories were reconstructed us-
ing a tracking algorithm [25, 26]. Hence, from highly re-
solved particle position data, we compute their velocity
distributions, pair correlation functions, mean square dis-
placements as well as collision rate estimations.

Experimental parameters. – Let us now describe
the influence of the external magnetic field B0 on the
chrome steel particles. These balls are soft ferromagnetic,
i.e., with a low remnant magnetic field and a high mag-
netic permeability. When placed in a vertical magnetic
field of amplitude B0, each particle is uniformly magne-
tised. It behaves as an induced magnetic dipole of mag-
netic moment 4

3
πσ3 χm

µ0

B0 ez, with χm the volume mag-
netic susceptibility, µ0 the vacuum permeability, and ez

the upward unit vector along the vertical axis. For a
purely 2D system of two identical spheres i and j with
B0 perpendicular to rij (the horizontal vector between
the particle centres), the potential energy of magnetic in-
teraction reads [27]:

Em, 〈i,j〉 =
4π

µ0

B0
2 σ6

|rij |3
(1)

in the limit of high intrinsic magnetic permeability. We
point out that without taking into account the geometry of
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the magnetisation and the demagnetising magnetic field,
an effective susceptibility χ can be defined [15, 18], yield-
ing an expression of the magnetic energy proportional to
Eq. (1). The repulsive force between these two particles,

Fm, 〈i,j〉 = −∇Em, 〈i,j〉, decreases with |rij |−4
and is di-

rected along rij . Therefore the repulsion between particles
can be tuned by the amplitude of the magnetic field B0.
If particles are not exactly in the same horizontal plane
between the two confining plates, the horizontal repulsive
force is reduced due to 3D effects. Nevertheless, further
results in this letter show that a 2D analysis is relevant
to describe the system behaviour, by considering Em, 〈i,j〉

from Eq. (1) as a scale of the actual magnetic energy of
two interacting particles.
In addition to parameters Γ and B0, the last important

parameter is the dimensionless area fraction φ ≡ N πσ2/S,
with N the number of particles detected in the region of
interest S. As it can be expected for a system of particles
with increased repulsive interactions, we observe [Fig. 1(e)]
an expansion of the system when B0 is increased. φ is
found to be a decreasing function of B0, which differs from
the expected value φth = N0 πσ

2/S0 ≈ 0.194 computed
for the full cell area. Indeed, φ ≈ 0.27 for B0 ≈ 0G due
to clustering [3, 5, 28–30] in the cell central region. As
B0 is increased, the horizontal magnetic repulsive forces
cause the granular gas to expand and to reach a state of
smaller and homogeneous area fraction in the region of
interest S. It is well known that a higher particle density
near the boundaries is induced by non-repulsive boundary
conditions [22] and a weak magnetic field radial gradient.
Nevertheless, we point out that φ is found to be homo-
geneous in the region of interest S whatever B0 > 0, the
inhomogeneity of φ being confined within the area outside
S.

Competition between kinetic and magnetic ener-

gies. – From the parameters B0, Γ and φ, we define now
the relevant physical quantities, that we use to describe
the behaviour of our system. Considering a 2D assem-
bly of N particles mechanically agitated and immersed in
B0 inside the region of interest S, we compute its kinetic
energy per particle from velocity measurements, namely
Ec =

1

2
m 〈vx2 + vy2〉, where vx (resp. vy) denotes the hor-

izontal velocities in the x-direction (y-direction), 〈·〉 an en-
semble average and · the temporal average. Note that Ec

is directly proportional to the granular temperature usu-
ally defined as Tg = Ec

m
[8, 9]. We also compute the mag-

netic energy per particle Em = 1

N

∑N

i=1

∑N

j=i+1
Em, 〈i,j〉,

with 〈i, j〉 a pair of particles within S and Em, 〈i,j〉 its
potential energy from Eq. (1). The magnetic potential
energy depends on the local configuration of the particles,
and therefore it fluctuates in time. Finally, a dimensionless
interaction parameter is defined by the ratio ε ≡ Em/Ec

between the magnetic and kinetic energies [15, 18]. When
ε is increased, the system undergoes a continuous transi-
tion from an inelastic granular gas [Fig. 1(b)] to a quasi-
elastic granular gas [Fig. 1(c)] since inelastic collisions be-
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Fig. 2: (color online) (a) Particle kinetic energy Ec as a func-
tion of the magnetic field B0 for accelerations Γ = 2.45 and
3.32. (b) Particle magnetic potential energy Em versus B0.
(c) Ratio of the energies ε = Em/Ec versus B0. (d) Collision
rate νc (number of collision per particle and time unit) versus ε.

tween particles are progressively replaced by elastic mag-
netic interactions. At higher ε, the system self-organises
in a condensed-like phase showing a 2D-hexagonal crystal
lattice [Fig. 1(d)] as particle displacements become con-
strained due to magnetic repulsions. This evolution of
the system is also shown in the supplementary material
movie1.m4v (and at [31]) for a continuous increase of B0

at fixed Γ.
We present now experimental results obtained for in-

creasing B0 and for fixed Γ (2.45 or 3.32). These values
correspond to the bounds of the range of Γ where Ec in-
creases linearly [8]. The evolutions of Ec, Em and ε with
B0 are depicted in Fig. 2(a)-2(c). Note that ε is larger
than 1 for B0 > 20G, meaning that regimes dominated
by magnetic repulsions are reached for moderate values
of B0. We also notice a non-monotonous evolution of Ec,
which reaches a maximum for B0 ≈ 70G (ε ≈ 5). The
rate of inelastic collisions between particles νc is indeed
strongly reduced for increasing values of ε as depicted in
Fig. 2(d). Due to the magnetic energy barrier, only parti-
cles with sufficient kinetic energy can collide [22]. The av-
erage number of collisions per particle and per time unit,
νc, is evaluated using an algorithm detecting individual
collisions through a distance criterion selective process.
νc decreases with ε, vanishes below 0.1 Hz for ε > 10 and
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Fig. 3: (color online) Pair correlation function g(r) for Γ = 3.32
and ε = 0, 2.89, 16.2 and 283. For the last value, peak positions
for a hexagonal crystal are shown in dashed lines as multiples
of the lattice distance r1st/a = 2.28, for factors 1,

√
3, 2,

√
7,

and 3. Inset: Position of the first peak r1st/a versus ε and
compared with d0/a expected for a hexagonal crystal (see text).

is strictly zero for ε > 30. For greater ε, particle displace-
ments become bounded [15]. Indeed, in Fig. 2(b) Em is
found to be proportional to B0

2 for B0 > 150G (ε > 30),
because particle geometrical arrangement becomes a fixed
parameter in the calculation of Em, once they are mag-
netically confined.

Radial pair correlation function. – This en-
ergetic description is also associated with impor-
tant structural changes, which can be enlightened
by computing the radial pair correlation function

g(r) ≡
[

∑N

i=1

∑

j 6=i δ(r − rij)
]

S/(2πrN2), with rij is

the distance between the particles i and j. This function
gives the probability to find two particle centres separated
by a distance r. g(r) is shown in Fig 3 for characteristic
values of ε and at fixed Γ. At ε = 0, g(r) displays a
sharp peak at the contact value r = a, as in usual granu-
lar gases [5,6]. This confirms that most collisions occur in
horizontal planes and validates the 2D description. Col-
lisions happening out of horizontal planes, when viewed
from the top, produce indeed a partial overlapping, lead-
ing to non-vanishing values of g(r) for r < a. When ε
is slightly increased, the amplitude of the first peak de-
creases to almost 1, giving a nearly flat g(r) (see the curve
for ε = 2.89). This shows that radial correlations are then
quasi-absent as for a non-dissipative perfect gas whose g(r)
is zero for r < a and 1 elsewhere in the vanishing density
limit. When ε is further increased, this feature is gradu-
ally lost. Due to magnetic repulsions, g(r = a) decreases
towards zero and a first peak appears at r > a, indicating
the appearance of a preferential distance between parti-
cles. A similar transition of g(r) has been observed nu-

merically for a 3D repulsive granular gas with a Coulomb
interaction potential [22]. For high enough values of ε,
the system structure approaches the one of a hexagonal
crystal [15]. In this case, once the lattice cell size is set
to the first peak position, theoretical secondary peak po-
sitions can be predicted from geometrical calculations and
are indeed found to be close to the measured values (see
the vertical dashed lines in Fig. 3). The dimensionless
position of the first peak of the pair correlation function
r1st/a versus ε [Fig. 3(inset)] can be used to discriminate
the different regimes. Indeed, for ε < 2.89 (Γ = 3.32),
r1st/a = 1, which corresponds to a gas-like state becom-
ing more and more elastic as ε increases. Then, for higher
values of ε, r1st/a > 1 means that a fluid-like phase with a
negligible collision rate is reached. A system solidification
progressively occurs: r1st/a grows slowly with ε and pro-
gressively approaches the value expected for the hexagonal

lattice d0/a =
√

π/(2
√
3φ), which depends on φ since

measured in S. A distance to the hexagonal crystal is thus
provided by the calculation of d0/a− r1st/a.

Mean square displacements. – Another way to
characterise structural and dynamical changes consists in
measuring the mean square displacements (MSD) of the
particles

〈

|R(t+ t0)−R(t0)|2
〉

, where R(t) is the parti-
cle position at time t, t0 being an arbitrary time origin.
For particles experiencing a Brownian motion in two di-
mensions, the MSD equals 4Dbt, where Db is the diffusion
coefficient. MSD normalised by the particle diameter are
plotted in Fig. 4. For ε < 30, at short times a ballistic
regime occurs (MSD ∝ t2), followed by a normal diffu-
sive regime at longer times (MSD ∝ t). Therefore, in this
regime, particles perform a horizontal quasi-Brownian mo-
tion in the experimental cell. For ε > 30, the diffusion
becomes anomalous : a fit of the MSDs by a power law
tα would provide α < 1, showing that particles undergo
a sub-diffusive motion. We point out that simultaneously,
the collision rate becomes zero, marking a change of be-
haviour of the particles as magnetic interactions become
stronger. Moreover, the derivative of the MSD vanishes at
finite times as the MSD locally saturates, shedding light
onto the existence of magnetic confinement. This becomes
very clear for ε > 102, as particles are strongly confined
and move around equilibrium positions corresponding to
the nodes of the hexagonal lattice.
For ε ≤ 30 and after waiting long enough to define a

normal diffusive regime, we extract from the MSD the
particle diffusion coefficient D, computed as one fourth of
the slope of the MSD (evaluated from t + t0 = 1 s until
the end of the measurement). The corresponding fits are
plotted as thick dashed lines in Fig. 4, and the obtained
values of D are shown in Fig. 4(inset). Like Ec [Fig. 2(a)],
D as a function of ε is non monotonous and decreases
strongly for ε > 5, showing that magnetic repulsions op-
pose the displacements. It can also be noticed that D and
Ec reach their respective maximum for the same value of
ε, namely 5.
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Fig. 4: (color online) Mean square displacements (MSD) for
Γ = 3.32 and ε = 0, 2.89, 16.2, 38.1 and 283. The thin dashed
lines indicating slopes of values 1 and 2 are guides to the eye.
The thick dashed lines superimposed on MSD data from t = 1 s
to the end of the recordings are linear fits performed in the
normal diffusive regime. Inset: slopes of the linear fits divided
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Velocity statistics. – Structural modifications imply
important changes on dynamics, especially on the parti-
cle trajectories and velocity distributions. In the inset of
Fig. 5, the probability density functions (PDFs) of veloc-
ities (x-component) normalised by their standard devia-
tion, vx/σx with σx ≡

√

〈vx2〉, are plotted at fixed Γ for
different values of ε. They are compared to the Gaussian
distribution expected for a perfect gas at thermal equi-
librium. Identical results are found for vy due to system
isotropy in the central region. As reported in other exper-
iments [6–9], at ε = 0 the velocity distribution presents
a deviation from the Gaussian due to enhanced proba-
bilities of high velocity events since collisions are dissipa-
tive. As ε is increased, the PDFs become progressively
closer to the Gaussian until ε ≈ 10 but then depart for
higher values. This behaviour is better depicted by plot-
ting the flatness of the velocity distributions, defined as
F ≡

〈

(vx − 〈vx〉)4
〉

/σ4
x and shown in Fig. 5. For a purely

Gaussian distribution F equals 3 and is larger for more
spread distributions. A range of significantly low values
of F can be defined for 4 < ε < 30, where the granu-
lar gas can be considered as quasi-elastic. Indeed, energy
exchanges between particles should occur mainly through
magnetic repulsive interactions, which are dissipationless.
Note that the lower bound in ε is fairly consistent with the
value ε = 2.89 separating the usual granular gas regime
and the one with negligible collisions (see Fig. 3). For
ε > 30, displacements become progressively constrained
by magnetic repelling and the system can be seen as an
assembly of confined particles [15]. F then increases with
ε, highlighting a heterogeneity of velocities, as particles

ε

F

 

 

Dissipative Quasi−elastic Confined

10
0

10
1

10
2

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Γ= 2.45
Γ= 3.32

−6 −4 −2 0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

v
x
/σ

x

P
D

F

 

 

ε = 0
ε = 2.89
ε = 16.2
ε = 283
Gaussian

Fig. 5: (color online) Flatness of the velocity probability den-
sity functions as a function of ε. For B0 = 0G (i.e., ε → −∞),
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are individually more or less confined.

Conclusion. – We have studied the effect of tunable
repulsive dipolar interactions on a quasi-two-dimensional
granular gas. For fixed dimensionless accelerations Γ and
in a low density regime (φ ≈ 0.2), we increased the mag-
netic field B0. The rise of the ratio ε between magnetic in-
teraction and kinetic agitation leads to a continuous phase
transition from a dissipative granular gas state at ε = 0, to
a collisionless hexagonal nearly crystalline state at high ε.
More interesting, in the intermediate range of ε, struc-
tural and dynamical properties of the magnetic granular
gas display similar features to those expected for a molec-
ular gas at thermal equilibrium (quasi-Gaussian velocity
distributions and nearly flat pair correlation functions).
This transition from a dissipative to a quasi-elastic gran-
ular gas, when B0 is increased, comes from the decrease
of the dissipative collision rate, which leads to the reduc-
tion of the total dissipation. Hence, the 2D granular gas
is then closer to the quasi-elastic limit. We were thus able
to produce a macroscopic system whose distance to the
quasi-elastic limit could be precisely controlled through
the applied magnetic field.
Future studies on this new system could be useful to

validate theoretical works about out-of-equilibrium dis-
sipative gases, by investigating velocity correlations and
coupling with the forcing viewed as a thermal bath [9,32].
Moreover, for denser regimes and for high ε, we observe
more complex disordered states, which will be investigated
in a further work. Our experimental system could indeed
be used to mimic, at the macroscopic scale, geometric frus-
tration [33,34] or topological defects [35] arising in various
physical systems.
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N., Phys. Rev. E, 87 (2013) 022204.
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