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Vector-Value Markov Decision Process for
multi-objective stochastic path planning

Abdel-Illah Mouaddib*
GREYC — Université de Caen, Bd Maréchal Juin, Caen Cedex, France

Abstract. The problem of path planning in stochastic environments where the shortest path is not always the best one is a
challenging issue required in many real-world applications such as autonomous vehicles, robotics, logistics, etc. . . . In this paper,
we consider the problem of path planning in stochastic environments where the length of the path is not the unique criterion
to consider. We formalize this problem as a multi-objective decision-theoretic path planning and we transform this latter into
2VMDP (Vector-Valued Markov Decision Process). We show, then, how we can compute a policy balancing between different
considered criteria. We describe different techniques that allow us to derive an optimal policy where it is hard to express the
expected utilities, rewards and values with a unique numerical measure. Firstly, we examine different existing approaches
based on preferences and we define notions of optimality with preferred solutions and secondly we present approaches based
on egalitarian social welfare techniques. Finally, some experimental results have been developed to show the feasibility of the

approach and the benefit of this approach on the single-objective techniques.

Keywords: Planning under uncertainty, Markov Decision Processes, multi-criteria decision making, autonomous systems

1. Introduction

In real-world robotic applications [17,25], the solu-
tion quality is frequently a function of multiple criteria.
One of the applications concerned with such approach-
es is the multi-criteria path planning where the shortest
path may not always be the most efficient means of
getting from start to destination. There are many other
attributes of a path that may be desirable in addition to
distance. One example would be the smoothness of a
path. Indeed, the smoothness of a path when using real
robots is important because of resource consumption
and of localization. When a robot uses odometry for
localization, paths with many slopes make the localiza-
tion with odometry very difficult. Also using actions to
rotate is energy consuming rather than a linear move-
ment. Another advantages to reduce the slopes in the
paths is that the robot doesn’t need to reduce its speed.
Consequently, considering the smoothness of the path
in addition to the length of the path is more effective
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than classical approaches where only one criterion is
taken into account. The development of an effective
multi-criteria selection method may be difficult. Com-
paring two candidate solutions using multi-criteria may
need a sophisticated technique. Preferences on differ-
ent solutions and criteria are an adequate way to char-
acterize the interesting solutions. For example, the de-
signer can prefer the smoothness and a long path rather
than a short and difficult path. We mention that this
example of path planning with multiple criteria length,
smoothness, energy, . . . will be used at many places to
illustrate our claims.

The sequential decision process applied to such ap-
plications yields a result having a quality described as a
vector Z of quality criteria (21, 22, . .. , 2, ). In the path
planning applications the quality could be the length of
the path and also the number of slopes in the path. Each
decision improves the quality of the result according to
a subset of criteria.

However, the use of vectors to represent multi-
criteria quality leads to new problems where numeri-
cal, additive utility, reward and value functions are not
available. Since the utility of multi-criteria quality can
be represented as a multi-dimensional utility, we meet



the problem of how to decide that a multi-dimensional
utility dominates another since operator of comparison
such as Max is used to compare single values but it is
unable to compare vectors . This problem has been ad-
dressed in utility theory as a representation of the utility
function issue [6] as well as preference elicitation [5]
and pareto-dominance approaches [13]. Most of the
approaches developed in utility theory select the most
preferred action in a local state without considering the
fluctuation in the rest of states while the approaches
based on the preference elicitation are, in some cases,
not enough to quantify the utility. This issue has also
attracted some work in extending MDP (Markov Deci-
sion Process) to vector-value function [18,35]. These
approaches based on leximin techniques consider that
the value of criteria are of the same scale and the same
nature. In addition to these classical approaches, we
present an extension of leximin to be independent of
the scale of criteria by using a ratio regret measure.

In this paper we discuss how to construct an opti-
mal policy using a multi-dimensional utility. For that,
we focused our study on the use of preference-based
techniques. In fact, it is more appropriate to represent
preference over states with an ordering relation rather
than with additive utilities and rewards. The prob-
lem of extending decision-theoretic planning to mul-
tiple objectives application is important because it al-
lows decision-theoretic techniques to be more gener-
al. However, this extension leads to new interesting
but difficult problems. These problems have attracted
the attention of new interests for dealing with multi-
attribute value functions and generating optimal policy
in decision process and advocating a qualitative version
of decision theory [4,28,31]. The approach we devel-
op in this paper shows how multi-objective decision-
theoretic planning offers new potential for new appli-
cations of Al such as multi-objective path planning.

The paper is organized into 10 sections. After the
introduction, Section 2 describes how the multi-criteria
path planning can be considered as a multi-objective
optimization problem and the limits of the existing tech-
niques. Section 3 considers the stochastic aspect of
the problem and presents a formal framework of multi-
criteria stochastic path planning using Markov Decision
Process (MDP) techniques and how to extend the exist-
ing algorithms of solving MDPs to MDPs with multi-
attribute value functions, named vector-valued MDPs
(2V-MDP). Section 4 shows how to consider bounded
resources constraints in this model. Section 5 gives an
overview of techniques of multi-criteria optimization
based on different social welfare approaches and pref-

erence ordering techniques. Section 6 describes how
to use the social welfare techniques in value iteration
algorithms to solve 2V-MDPs. Section 7 introduces a
new technique based on regret measure to solve 2V-
MDPs. Section 8 presents the validation and experi-
mental results. Section 9 gives a description of related
work and in Section 10 we conclude the paper and we
give the remaining issues which are let to the future
works.

2. Multi-objective decision optimization problem

Let {O1,03,...,0,} be the set of objectives of a
problem to achieve in an available resource 7'. Ob-
jectives O; can be totally or partially ordered and or-
ganized in an acyclic graph where arcs represent the
dependency between objectives. Let A be the set of
actions {a1, ag, as, ...,a,} which act to achieve the
objectives O;. We assume that when an action a; is
executed, it contributes in achieving partially some ob-
jectives O;. In a simple scenario, an action gradually
achieves a unique objective and objectives are consid-
ered to be completely independent or weakly coupled.
However, we focus our attention on actions that achieve
more than one objective, at once, and that the objec-
tives could be strongly connected, such in the example
we presented above where the dependency between the
length of the path and energy consumption for example
is obvious. We present an approach that allows us to
represent this problem as a multi-criteria decision. We
use vector Z = (21, 22, . . ., 2 ) Of solution qualities of
objectives O; where z; is the solution quality of achiev-
ing the objective O;. In the context of our decision-
theoretic planner, the objectives are to minimize the
length of the path, the number of slopes of the path and
the resource consumption.

In the following, we describe our formal framework
and how to best act to solve this multi-objectives prob-
lem.

3. Multi-objective decision-theoretic planning with
Markov Decision Process

3.1. Markov Decision Process

The Markov Decision Process (MDP) framework
provides a formal description for modeling a large va-
riety of stochastic, sequential decision problems. Itis a
well framework with well established on-line and off-



line algorithms for determining optimal behavior, such
as value iteration algorithms and policy iteration algo-
rithms [2]. The limitations of this developed frame-
work are also well-known: compliance with Markov
property, generally requires a very fine grained descrip-
tion of the environment, i.e. a very large number of
states. Many researchers have focused their attention
on the development of methods for large state spaces.
However, a small attention has been paid to the reward
and value functions where numerical and additive mea-
sures are not available. Indeed, several applications
requires a multi-attribute value function. Before dis-
cussing the issues that should be addressed when deal-
ing with a multi-attribute value function in MDPs, let
us first recall that an MDP model is defined by a tuple
< S, A,p,r, T >st: (1) S is aset of states, (2) A is
a set of available actions, (3) p is the probability distri-
butions where p(s, a, s’) describing the probability to
be in state s’ when applying action «a in state s (this
probability represents the uncertainty on the outcome
of the action a, (5) rewards r(s) obtained when being in
state s and (5) the horizon T is a set of stages (assumed
in our case finite, but this assumption does not affect
the claim of the paper) in which decisions are made.
A policy 0 is an application from S to A assigning
an action to each possible state in the world. Solving
an MDP consists in deriving an optimal policy 6* by
solving Bellman equation:

V*(s) =r(s)+ I;leaXZp(s, a,s)V*(s)

5 = argmax(r(s) + 3 p(s.8(). V() (D)

The optimal policy 0* maximizes the expected value
function V* (expected value of the optimal policy) as
described by Eq. (1). Deriving an optimal policy con-
sists in maximizing the expected value in each state.
This computation is based in using a max operator.
If we extend the expected value function to a multiple
attributes function, the global optimal policy becomes
less clear. We discuss this problem in the rest of paper
by defining different notions of optimality.

3.2. MDP with multi-attribute value function

The expected value of a non-terminal state in an
MDP is given by the following equation:

V(s)=r(s) + I;leaXZp(s, a, sV (s') 2)

This expected value function of terminal states s is:
V(st) =r(sr) 3)

The computation of state value is performed in a back-
ward way starting from the terminal states. This
computation leads to an optimal policy (solution) and
assumes a single attribute value function of a state.
Let us, now, assume the state s be a vector of cri-
teria Z = (21, 22,...,2,) where actions « modify
the values of criteria. States s represent the state
of the vector Z. Equations (2) and (3) should be
adapted by redefining the reward value that itself can
be seen as a vector of local reward functions s.t.:
r(Z) = (r1(z1),72(22),...,7(2,)) and the value
function V" as a vector of value functions s.t.: V(Z) =
(v1(21),v2(22),...,vn(2n)). The function 7;(z;) is
the reward of the value of a criterion z;. The value
function v;(2;) is the expected gain of the value of a
criterion z;. Equation (2) adapted to our framework
becomes:

V(Z)=r(Z)+ rnéLXZp(Z, a,Z\V(Z') (4)

7
The value function v; is the expected gain of the val-
ue of a criterion z; given by: v;(z;) = ri(2;) +

> 7, P(Z,a,Z")v;(z;) where z; is the state of criterion
1 of Z while z] is the state of criterion i of Z'. By
extension of Eq. (4), we obtain, then:

v1(z1) r1(z1)
va(22) | _ [ ra(z2) +max, (5
vn.(.zn) Tn.(.z.n) =
v1(21)
n(Z,a,2)). | 122
Un(2p,)
where V(Z) = (vi(z1),v2(22),...,vn(2n)) and

V(Z') = (v1(2]),v2(25),...,vn(2])) is the value of
the vector obtained after application of action a. To
derive an optimal policy from this equation we need to
redefine the max operator. To do that, we have to deal
with different notions of optimal solutions using differ-
ent notions of preferred solutions. In the same equa-
tion the probability p(Z, a, Z’) is a specific conditional
probability table in dynamic Bayesian networks. The
Bellman equation extended to a vector-valued func-
tion is similar to a linear system of Bellman equations.
Thanks to Eq. (2), the optimal policy 6* is subject to:



vi(21)=r1(21) + max, Y.z, p(Z,a, Z')vi(2})
/

vo(22) =72(22) + max, Y 7, p(Z,a, Z')va(2s)

O (2n) =Tn(2n) + maxq Yz, p(Z,a, Z)v,(2],)

Note that this system couldn’t have a solution because
the action optimizing criterion z; could be different
from the action optimizing criterion zj«;. However,
deriving a preferred solution from this linear system
of equations is possible. We discuss in the rest of the
paper, how to solve this system.

4. Bounded resources as a complementary
objective

A multi-objective decision-theoretic planner offers
new potential for real-world applications requiring so-
lution quality as a function with multiple criteria. Such
planners could be extended to deal with limited re-
sources by considering the resource consumption min-
imization as an objective. The approach we present
will also consider this aspect by considering a new state
representation in the MDP: [Z,t] where Z is the vec-
tor of criteria and ¢ is the resource consumed to attain
vector Z. In the rest of the paper, let ¢ be time con-
sumed (assumption does not affect the generality of the
approach). We describe an adaptation of the former of
Eq. (4) to this new representation. To do that, we have to
redefine the probability p(Z, a, Z') by considering un-
certainty of resource consumption of actions « and we
replace the reward function by a time-dependent utility.
In the following, we give preliminaries on stochastic
outcomes of actions and a new adaptation of the Bell-
man equation to our former and discussing the problem
of solving the obtained MDP.

4.1. Representation of stochastic outcome of actions

The probability p(Z, a, Z’) represents the stochas-
tic outcomes of each action. Indeed, each individual
action a has a characterization of its performance that
maps the status of an input quality vector Z to a discrete
probability distribution of the resource consumption ¢
and output quality z; that is the quality of objective
O; after the execution of an action a. This condition-
al probability, denoted PP, ;((z;,c)|Z), expresses the
dependency between the status of the vector and the
resource consumption c and the output quality z; of ob-
jective O;. This probability allows us to indicate how
an action contributes in improving the quality of an ob-
jective given the current state of the qualities of all the

objectives of the problem. We use a discrete represen-
tation of this performance { ((z;, ¢), Z, p) } where p is
the probability to get the couple (z;, ¢) given vector Z.

The representation we use allows us to compact the
joint probability distribution over the considered objec-
tives and to represent this conditional probability com-
pactly as in Bayesian networks. Our technique is in-
spired from the techniques we find in those representa-
tions [11,23,30]. Indeed, the objectives are organized
in an acyclic graph where each node is an objective and
the arcs are the dependency between them. With this
representation, we use some well-known techniques
used in Bayesian networks to define and estimate the
joint probability distribution. Consequently, the prob-
ability to get a quality z; of an objective depends on
the qualities of its predecessors that we name also par-
ents and we denote with parent(i). This conditional
probability is expressed as follows:

PP, i((2,1)|Z) = Pr((2i,t)|zjeparent(i))
where Pr is the probability to get an output quality z;
and computation time ¢ given the qualities z; of the
parents of the node 7.

4.2. Dependency

Definition 1. We say that objective p depends on ob-
jective ¢ when we have to achieve, even partially, ob-
jective g before achieving objective p. We also say that
objective ¢ preceeds objective p.

‘We formalize this definition by using PP, ; and gen-
eralizing to situations where objective p depends on
objectives r, s, ..., u:

Z = (21, ey Zry Zsy ey Zuy ey 2n)
Vtand Z, with z, =0orz;, =0 or z, = 0,
PFap((2p = 0,1)|Z) =1 (6)
andV t and Z, with z. > 0 and z; > 0 and 2, > 0,
PP, ,((zp > 0,t)|Z) > 0 @)

This equation means that the quality of the solution of
objective p being equal to 0 when at least one objective
on which p depends are not (even partially) solved
because of Eq. (6).

4.3. Time-dependent utility function

Instead of a reward function r(Z) where the re-
source dimension is not considered, we introduce an
utility function U(Z,t) of the output vector quality
that represents the utility of the status of the quality
vector after consuming ¢ resource units. We repre-
sent this utility function U(Z,t) as a vector of utili-
ties functions of each dimension such that: U(Z,t) =

(u1(21,t),u2(22,t),. .., un(zn, t)).



4.4. Transitions

The transitions from a state [Z,t] to a state [Z/,t']
when acting with an action « is probabilistically given
by the probability Pr([Z’,t']|[Z, t], o). This probabil-
ity is calculated by:

Pr([Z',t =t +]|[Z,1], @)
= Hie{p,q ..... r}PPayi((Zia C)|Z)

where {p,q,...,r} are the objectives modified in Z
after the execution of action a. Moreover, given that
our agent is with limited resources ', we have to con-
sider all transitions that lead to an over-consumption
of resources (t > T'). For this reason, we consider
those transitions by the following equation where the
execution is stopped when the available resource has
been fully elapsed and no modification in the vector Z
has been done. Differently speaking, if an action leads
to consumption of available resources then the current
state is not changed, and all the probabilities have to be
additively cumulated.

Pr([Z,t' =T)|[Z,t],a)
= K. Z PPa,i((Z’iac”Z)
cie+t>T

Where K is a constant to normalize the sum.
4.5. Value function

We adapt the Bellman equation [2] to our formal
framework such that:

The value of intermediate states

V(1)) = max

Pr([Z ,t + d||Z,t],a)V([Z', t + c])+ (8)
Pr([Z,T)|[Z,1],a)V([Z,T]))

The value of terminal state

V*([Zbestat]) = U(Zbestat) 9)

We consider for this equation domains where the com-
putation of the best vector is possible such as path plan-
ning, navigation and exploration problems (In the path
planning of our example, the best vector could be (d i,
€min» slope,,..) for length with minimal distance and
with minimal consumed energy and minimal slope in
the path. dpin, €min, slope,,;, are criteria that can be
assessed by a reverse scale of the distance (the shorter

the path the better it is) and of the consumed energy
(the lower the energy consumption the better it is) and
finally the best path is the one with minimal slopes. We
also attain terminal states when all resources have been
fully consumed:

V*([Z2,T)) =U(Z,T) (10)

The resulting MDP is a finite-horizon that can be eas-
ily solved for a reasonable size (relatively large state
spaces) using standard dynamic programming algo-
rithms (value iteration algorithm) [2] or search algo-
rithm AO* (extension of A* algorithm to AND/OR
graph [21]) where the operator max is redefined for
multi-value functions instead of a single value function.
This is the issue we will discuss in the next sections.

5. Social welfare ordering and optimal policy

The multi-objective decision-theoretic planning le-
ads to a problem of maximizing the satisfaction of each
individual objective using a society’s preferences. For
this reason, we borrow the concepts from welfare eco-
nomics [13]. Two concepts are possible: (1) using
the approach maximizing the sum of all utilities of the
member of society (utilitarianism concept), and (2) us-
ing the approach minimizing differences between the
utilities of the member of society (egalitarianism con-
cept). The first concept takes a sense in many applica-
tion where all members contribute to an overall goal of
the society. This is not the case in many multi-objective
applications where objectives could potentially be con-
flictual. In the opposite, egalitarianism concept allows
us to consider that differences of individual welfare are
unjust and consequently to remove or attenuate these
differences. In other words, the foremost goal of such a
society is to maximize the welfare of its weakest mem-
ber. We use this egalitarianism concept to deal with the
multi-objective MDP. We introduce two social welfare
orderings over multi-attributes value functions. Given
the value of each individual objective (attribute of the
value function), a social welfare ordering formalizes
the notion of a society’s preferences. In this section,
we will examine the maximin and lexicographic max-
order ordering and the relationship between the notion
of optimal policy and preferred solutions using social
welfare ordering [13]. In the following sections, we
use definitions of general concepts of “Decision with
Multiple Objectives: Preferences and Value Tradeoffs”
introduced in [13] and gracefully formalized in [12].
The aim of the use of these concepts is to define a no-
tion of optimality in MDP with vector value functions
using preference ordering.



5.1. Elitist social welfare: Preference-based
approaches

In this section, we examine different approaches of
elitist preference-based techniques and explaining their
suitability and sensitivity.

We define a preference between the different values
of a criterion z;. Let <,,C D(z;) x D(z;) be a strict
partial order for each z;. For example, we choose > for
smoothness and < for the length of the path. We write
u <X viffu < voru=wv. We write vs(z;) the value
of a criterion z; in solution S.

Most of multi-criteria optimization methods consider
preferences between the different values of each crite-
rion but they do not specify that some criteria are more
important than others (we would like to state a pref-
erence between a high smoothness and a short length)
but we will still would like to get a solution where the
length of the path is minimized while the degree of the
smoothness is maximized. The main issue is to define
different notions of optimal solutions with notions of
preferred solutions.

Let us, now, express with preferences different no-
tions of optimality used in multi-criteria optimization.

5.1.1. Pareto-optimal solutions

Definition 2. A solution S is Pareto-optimal solution
of multi-criteria (Z, <, ) problem iff there is no solution
S* s.t. vg«(zk) <z vs(zr) for ak and ve-(2z;) =,
vg(zi), forall 4.

In our framework, Eq. (8) can be based on this defi-
nition to derive a Pareto-optimal solution using a pref-
erence on criteria. The adaptation of this definition to
our framework consists in using the strict partial order
<, for each z; where the value vs(z;) of a criterion z;
in solution S corresponds to the value v, of a criterion
z; in the vector V' (Z, t).

Claim 1. An optimal policy of an MDP given a multi-
criteria value V' (Z, t), a performance profile PP, and
a preference on criteria <., is the pareto-optimal so-
lution of multi-criteria (Z, <) problem, at each state.

Proof: This claim is trivial since Eq. (8) selects the
maximal value that can be redefined by a pareto-optimal
solution. The Bellman equation with multi-attributes

value is as follows:
V* = max{(vy ..,V 2ps 1 Va.z, ) s
- s

o,z % Yo%

where

vy, ., = Pr([Z',t + c]|[Z, 1], vy
+Pr([Z,T)|[Z,t], a)vs,

Let Z 4 be defined as follows:

Za = {(Vy 21 Va,zpr - 1Vnz,) | Y € Aand
vy, ., € D(zj)} is the set of vectors (v, ,,, Vs 4ps-- -
Uy, 2, )- In our formal framework we consider that each
criterion z; has a domain D(z;). Since vy, ,, € D(z;)
we can say that Z4 C Z.

The permutation 7(Z) corresponds to the rearrange-
ment respecting an increasing order. This permutation
can be then applied to Z4. Then, we can apply the
preference on criteria <, to m(Z4). Consequently, the
absolute solution of the multi-criteria (Z 4, <,,) witha
permutation 7 is the optimal solution of the MDP.

We can thus use <., partial order to compare vectors
in Z4. Consequently, max, operator in the previous
equation is defined here from the Pareto-optimal solu-
tion definition. In some situations, we cannot estab-
lish a preference order between criteria (for example
vectors (5,3,6) and (4,4,5) could be difficult to com-
pare) but we would like to be able to find compromises
between them. The weighted sums are often used to
achieve those compromises. Surprisingly, those meth-
ods do not necessarily produce the best solutions (the
ones offering the best compromises).

Sometimes, it is natural to specify preferences be-
tween different criteria as well. For example, we prefer
a smoothest path rather than a shortest one. We there-
fore introduce preferences between criteria in form of
a strict partial order <7 C Z x Z.

We aggregate preferences between and on criteria to
preferences between assignments of criteria of the form
z; = v. Let < be the relation satisfying following two
conditions: (1) if u <., v then z; = u < z; = v and
2) if z; <z zjthen z; = u < z; = v, Vu,v. The
second condition means that if criterion z; is preferred
to criterion z; then any assignment to z; is preferred to
any assignment to z;.

5.1.2. Ranking of criteria

A ranking of criteria is considered to derive a lexico-
graphic optimal solution. This interpretation leads to
the R-preferred solution [12].

Definition 3. A solution S* is a R-preferred solution of
(Z, <) if there exists a permutation 7 s.t. (1) 7 respects
<1 (i.e. z; <z z; implies m; < 7;) and (2) there is no
other solution S satisfying Vs(7(Z)) <iex Vs+ (7(Z))



Intuitively, R-preference compares solutions accord-
ing to an ordering of criteria. Let consider the example
of preferences on car. R-preference can express the
fact that cars are compared first according to the price
criterion and second according to the color criterion.

Claim 2. An optimal policy of an MDP given a multi-
criteria value function with a < preference between
criteria, a performance profile PP, and a permutation
w is the R-preferred solution of (Z, <), at each state

Proof: The proof is similar to the previous ones
using Z 4.

5.1.3. Elitist social welfare

An interesting case in the social welfare that we ex-
amine is where the welfare of the society is evaluated
on the basis of the happiest member. In such elitist so-
ciety, the decision process supports the champion (the
happiest member). In our formal framework, we rep-
resent the multi-dimensional utility by the utility of the
maximal quality of the vector.

Definition 4. An optimistic utility associated with a
state [Z,t] can be defined as:

uwOPY(Z,t) = max
i€{1,2,...,n}

U (2Zn,t))

The policy 6,42 using Eq. (8) based on u“P! means
that we maximize the utility of the most satisfied crite-
rion. This approach focuses its processing in improv-
ing the criterion of the highest quality. This approach
has a little sense but it could be appropriate for some
situations. A typical scenario is where different agents
are launched with the same goal, with the aim that at
least one agent achieves that goal (no matter what hap-
pens to the others). We don’t consider this approach for
our problem because it means in our case that only one
criterion is considered for optimization while we are
interested in solutions with the best balance between
all criteria.

(u1(21,1), uz(22,1),
(11)

5.2. Egalitarian social welfare approaches

In this section we consider each criterion of the multi-
dimensional value function as a member of society cri-
teria and we show how social welfare ordering con-
tributes in defining measures that allow us to make ex-
pectation. Those measures allow us to compare be-
tween the utilities of two quality vectors (seen here as
a society) and try to guide the decision process using
Egs (7), (8) and (9). In the following, we give two
social welfare ordering over multi-dimensional value:
the maximin and lexicographic order.

5.2.1. Egalitarian social welfare

The aim of an egalitarian social welfare is to maxi-
mize the welfare of its weakest member. In that sense,
we can measure the social welfare by measuring the
welfare of the member who is worst off. In our for-
mal framework, this idea leads to the definition of the
following egalitarian social welfare function

Definition 5. The multi-dimensional utility is a vector
of single utility of each dimension (u;). An egalitar-
ian social welfare associated with a state [Z,t] can be
defined as:

W(Z,t) = min(U(Z, 1)) = min (us(21,0),
[ €1,...,n (12)
ooy Un (20, 1))

The function u*“(Z,t) gives rise to a social pref-
erence ordering over different quality vector states.
State [Z,t] is strictly preferred over state [Z/,t] iff
u®(Z,t) > u®(Z',t). This ordering is well-known
by the maximin-ordering name. The computed poli-
Cy 0y using u*" allows us to maximize the egalitari-
an social welfare. This policy is based on a sequence
of actions that maximizes the welfare of the weakest
criterion.

UQ(ZQa t)a

5.2.2. Lexicographic optimal solutions

The maximin-ordering induced by »*" only takes in-
to account the welfare of the currently weakest com-
ponent, but is insensitive to utility fluctuation in the
rest of the vector. To allow for a finer distinction of
the social welfare for different quality vectors, we use
the so-called leximin-ordering. The principle consists
in rearranging the elements of the vector in increas-
ing order and using a lexicographic ordering over the
rearranged vectors.

Definition 6. Let Vs(7(Z)) = (vs(zr, ), Vs(2ny)s - - - s
vs(zr,)). A solution S* is an absolute solution of (Z,
<, iff there is no other solution S s.t. Vs(7(Z)) <jex
Vs« (m(Z)) and <. is a lexicographic order.

‘We mean by an absolute solution that some criteria have
an absolute priority over other criteria. Different rank-
ing (or permutation) lead to different absolute solutions
which are all Pareto-optimal. An absolute solution can
be determined by solving a sequence of single-criteria
optimization problems starting with the most important
criterion.

The lexicographic order in our framework considers
the multi-attribute value function V(7(%),t) = (v, ,

U2n2a' "avznn)'



Claim 3. An optimal policy of an MDP given a multi-
criteria value function V(7 (Z), t), a performance pro-
file PP,, m a permutation and a lexicographic order
~lex» 18 the absolute solution of multi-criteria (Z, <)
problem with the permutation 7 and a lexicographic
order <e S.t. Vg (7(2),1) <jex Vs(m(Z),1), at each
state.

Proof: In Eq. (8), we have:

V¥ =max{(v], .,V s sy Un s )}

o210 Va,za0 -+ o1 Va2
where
v(;yzi = Pr([Z',t + d|[Z,1], a)vqé
+Pr([Z,T)|[Z,t], x)v.,

ZA = {(v;721,0;722,...,v;72n) |[Va € A,

and v, .. € D(z)}

is the set of vectors (v, ,,, Vg 25+ Vs, ). Inour
formal framework we consider that each criterion z; has
a domain D(z;). Since v, ,, € D(z;) we can say that
Za C Z. The permutation 7(Z) can be then applied
to Z4. Then, we can apply the lexicographic order
~lex to (Z 4). Consequently, the absolute solution of
the multi-criteria (Z 4, <,) with a permutation 7 and a

lexicographic order is the optimal solution of the MDP.

6. Value iteration algorithms with social welfare
ordering

The MDP described in Section 5 considering limited
resources can be solved using a standard dynamic pro-
gramming algorithms (value iteration algorithm). This
algorithm is based on backward chain starting from the
value of terminal states given by Egs (9) and (10) and
computing the values of the initial state and the inter-
mediate ones using Eq. (8). To perform this process-
ing, we need the initial values for starting computation
Egs (9) and (10) and the max operator for the com-
putation of the values of the other states. To do that,
we have to give for each social welfare ordering [13]
what are the value of terminal states and which max
operator we use.

— Egalitarian Social Welfare: in this approach, we
have used u** measure given in Eq. (11) to initial-
ize the values of terminal states given by Eqs (9)
and (10). After that, we use the standard max
operator for the value iteration. While for the
lexicographic approach, max is given by V* =
max(V* V) iff V <., V*.

— Preference-based approaches: in all those ap-
proaches, we have just to adapt the definition of
the max operator to the definition of the prefer-
ence introduced in [12,13] we use: (1) Pareto-
optimal definition we use: V* = max(V*,V)
iff Vzp2Vou(zi) <5, V*0*(2;), (2) Ranking cri-
teria, we use: V* = max(V* V) iff V <e,
V* with a particular permutation 7 defined by:
m(2i) < m(z;) iff 2; <7 2;. Finally, we use stan-
dard max operator for the elitist social welfare us-
ing u°P! by initializing the value of terminal states
given by Egs (9) and (10) using the measure u°P*.

7. A socially satisfying policy for 2VMDP
7.1. Basic idea

The overall objective of our approach is to allow
the decision making of an artificial agent to evolve ac-
tions that have multi-dimensional outcomes. Our ap-
proach uses a multi-dimensional value function as a
vector of value functions of criteria and then it can use
one of welfare social ordering to prefer an action over
another one. But, Maximin ordering and Leximin or-
dering are interesting when the values of criteria have
the same scale or the same nature. In this paper, we
consider an approach using Leximin ordering and mea-
sures similar to Maximin regret and Competitive ratio
to make leximin independent from scale factor. Fur-
thermore, these measures will give more global sense
among all criteria to the values of states. Indeed, our
approach needs to know the distance between the cur-
rent value of a criterion and its optimal value that it
is computed during an optimization step. To do that,
the first step of our approach is to derive all policies
{d;: i € {1...n} } that optimize one criterion in-
dependently from the others and the second step con-
structs a new policy using the values of the policies d;,

Vi (Zp). Indeed, we compare the value of each out-
come V(Z) = (v1(z1),v2(22),...,vn(2,)) using vec-
tor VOr02:0n — (01 202 | ydn ) where v}
is the expected value of the policy J; optimizing cri-
terion i (Fig. 1). Note that vector V91929 can be
realistically not reachable but it allows us to use it as a
value of an ideal state that a decision making agent tries
to reach. In the example presented in Fig. 1, vector (17,
11, 9) is out of reach. The decision making agent will
prefer an action a over an action b when the value of the
outcome of action a is closer to V°1:92:9n than the
value of the outcome of action b. The relation closer to
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Fig. 1. The computation of local policies 6;.

will be defined using qualitative decision criteria like
maximin, minmax regret, leximin order and competitive
ratio. We also discuss the Euclidean distance decision
criterion and its unsuitability.

7.2. Decision making with vector-valued functions

7.2.1. Computation of policies 9;

where the value of each feature ¢ of this vector is a
result of a policy J,. Let’s define now how policy 9;
prefers an action over another.

Definition 7. Let V(Z) and V(Z’) be respectively the
values of the outcomes of actions a and b. The decision
making agent prefers action a over b when v;j(z;) >
v;(2;). Let this ordering be max'.

The policy &; is computed by using the max® order-
ing in the linear system of equations Eq. (2). It allows

us to maximize the value of criterion ¢. This policy is
given by solving the following linear system:

V(2Z) = x(Z) + max p(Z,0.Z)V(Z)  (13)

¥ _ hx V(Z
07 =arg max (Z)
Let v %% be the value of the optimal policy optimizing
criterion %, given in Eq. (13). The values of the other
criteria j # i are given as follows:

vi(2j) = (2, 6:(Z)) + Y _ P(Z,6,(Z), Z).v;(2})
A

This processing is performed for all criteria i € {1,
...,n}. Thus, V01025000 — (yi‘val , v;ﬁz ’v;ﬁn).

gooe e

7.2.2. Computation of a socially satisfying policy

In order to define the relation close fo, we use qualita-
tive decision criteria like maximin, minmax regret, lex-
imin order and competitive ratio that have interesting
properties such closure under union.

Definition 8. Let V(Z) = (v,,,0.,,...,0;,) and
VZ’) = (vzi,vzé, ...,V ) are respectively the val-
ues of the outcomes of actions a and b. The deci-
sion making agent prefers action a over b based upon
ratio regret criterion adapted to our former if vector

v, v . . .
(=3 = —¢) is lexicographically preferred
1 2 L
v Vs v/ . .
over (=%, —=%,..., =% ). We call this ordering
vy Vg vy

minimax regret ordering.

These qualitative decision criteria should be ana-
lyzed in sense that our objective is to satisfy as high as
possible all the criteria even if some criteria are contra-
dictory. We have also to make our measure independent
from the scale factors. Local values v; can have differ-
ent scales or different natures and the use of qualitative
decision criteria like maximin, minmax regret, leximin
order cannot be significant. That’s why, we use another
measure that combines lexicographic order with a nor-
malized regret measure. This ordering is called com-
petitive ratio ordering. This measure allows us to define
a distance to the value of the ideal state 1791:02::0k
For each value of a state V(Z), we define a new val-
ue VY(Z) as follows: VY(Z) = (v¥ ,vY,...,0%)

*,8;
v sy - 80,0\ _
—5— and vy, = 0 for v, (%)) =
;

where: v} =
0.
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In the same way, we define a new reward function of

all terminal states Zp as follows: r'(Zp) = (r,
u u U v:ﬁi Tz
ry,...,r% ) where r} = —
i
*,01 *,02
L P B T R T Ay
v (Zr)= -
T I *6 *.0n
vy vy Un

This reward r*(Z7) is necessary to compute the policy
as shown bellow.

This new value vector VY(Z) and reward r'*(Zr)
is used by the decision making agent to prefer an action
over another one.

Definition 9. Let V(Z) and V(Z’) be respectively the
values of the outcomes of actions a and b. The de-
cision making agent prefers action a over b when
VY(Z) is lexicographically preferred over VU(Z’).
‘We name this ordering competitive ratio and we denote
it min"®,

The policy 6* is computed using the minfgf ordering
and allows us to satisfy as high as possible all the criteria
by reducing the distance between the value of each
criterion ¢ and its best expected value. Consequently,
the obtained policy is socially satisfying. By socially
satisfying, we mean that this approach cannot prefer a
vector over another when the distance of a criterion is
too high even if the other criteria are very satisfying.
This policy is given by solving the Bellman equation
of our context:

lex,u

V(Z) =r(Z) + néiﬂp(z, a,Z").V(Z'") (14)

lex,u

= in V(Z
4] arg min (Z)

Example 1. Figure 1 illustrates our algorithm in an
example with 6 terminal states Zs3, Z4, Zs5, Zs, L7, Zsg,
each of which a reward with three criteria is assigned.
For simplicity of the presentation, we assume, in the
example, thatr(Z) = (0, 0, 0) except for terminal states
and that actions are deterministic as shown in Fig. 1.
We compute, first, policies J; noted in the exam-
ple p1,p2, p3 that optimize respectively criteria 1, 2
and 3. We also compute a policy inimar in order

to show the difference with our approach. From the
policies p1, p2, p3, we have VP (Zy) which are used to
compute VPUP2P3 — (1711, 9). This vector is used
to compute vectors V¥*(Z3), V¥(Zy4), V*(Z5), V¥ (Zs),
VY(Z7),V*(Zsg) that will be used with our technique
as mentioned in Fig. 2 using Eq. (4) that leads to a more
egalitarian approach. We can see that policy p; prefers
Z4 over Zs because the value of its first criterion is
higher (17 > 15). Policy py prefers vector Z3 over Zs
because the value of its second criterion is higher (10
> 9). Policy ps prefers Zz over Zs because the value
of its third criterion is higher (9 > 5.5).

As we can see the expected value of the initial state
following the policy pj,n 1s (9,11,8) while the expected
value of the initial state following the policy of our
approach is (15,9,5.5). This result shows that p,,;,
is a local optimization while our approach uses values
with more global sense. Our approach can be seen as
a maximin with more complete and global information
among all criteria. Our approach considers that vector
(15,9,5.5) is closer to (17,11,9) rather than (9,11,8)
because of the value of criterion 1 that it is not satisfying
and the distance to the best value 17 is high. Our
approach is socially satisfying in the sense we give
above that all the values of criteria should be as close
as possible to the best possible values.

lex,u

Theorem 1. The policy § using min
mal.

is Pareto opti-

Proof.  Using Claims 1 and 2 and the fact that leximin
ordering leads to a Pareto optimal solution and that
min‘®®>* uses this ordering then the policy obtained is
Pareto optimal. O

7.2.3. Value iteration algorithms with social welfare
ordering
From Eq. (5), we can derive a satisfying policy by
using an optimization operator like min;.;, ,, that leads
to Eq. (14). Solving this equation uses the following
algorithm:

1. For all criteria z;, compute the policy d; optimiz-
ing criterion z; and get its optimal value v,

2. For each terminal state Z, compute r*(Zr).

3. By backward chain from terminal states to initial
state, compute for each state Z its regret ratio
V*(Z), using Eq. (14).

4. Derive the social satisfying policy 6* = arg
min/% V(2)

This algorithm is illustrated in the example of Fig. 2.

For example in this Figure we have to determine the
preferred outcome from the different computed val-



(0.12,0.18,0.32)

(0.12,0.18,0.32)

Z1

(0.18,0.41,0) (0,0.45,0.11) (0.12,0.18,0.32)

Fig. 2. The com

RS R Sp—_—

(0.35,0.18,0.33)

(0.29,0.36,0.45) (0.35,0.18,0.33)

(0.47.0,0.11)

puted policy using V*.

I [ -

/\.

N~—T

/

'V,. FIT
.

v

[LEEEEE
b <

L SNRpy

~ad

)

e
- Ce,

-~

hsssunbny
- -

T T

-
e *
... H

Youue,
-

Las i
e, 7=

S

Minimizing the smoothness

Minmax approach

Minimizing the length of the

Minimizing the Eucledian distance
Our approach based on Regret

path

Fig. 3. Example: Multi-Criteria path planning.

ues V'* (0.18,0.41,0), (0, 0.45, 0.11) and (0.12, 0.18,
0.32). These vectors are ordered in a decreasing
way that leads to vectors (0.41,0.18,0), (0.45,0.11,0),
(0.32,0.18,0.12), then we apply a minmax criterion that
allows us to select vector (0.32,0.18,0.12) because its
max is the min of all the max of the other vectors. Then
this vector becomes the value of the parent node. This
algorithm has used the policies 0; using Eq. (3) that
compares two vectors by comparing only the values of
criterion 7. For example, in Fig. 1, policy pl prefers
vector (17,6,8) over all because the value of criterion 1
is dominating. This algorithm is similar to general-sum
stochastic game but it differs from the fact that we use
a regret measure.

Theorem 2. Our algorithm to solve 2VMDP with finite
horizon with no loop is polynomial.

Proof. Let | S| be the size of state space. The first
step uses a classic backward chaining algorithm n times

to compute all d;. Thus, this step is O(n.|S|). The
second step to compute the policy d uses the backward
chaining algorithm based on a leximin ordering. Thus,
the algorithm is O((n + 1).|S|). The algorithm is then
polynomial. O

8. Analysis and experimental results

We have tested our approach in the path planning
in a grid problem depicted in Fig. 3. A robot is at a
start location and should move toward the destination
(charging room). There are many obstacles (rectangles
in the figure). The actions of a robot are the 8 directions
that we assume in this example as deterministic. How-
ever, we consider a multi-dimensional reward function
using the length of the path (Manhattan distance) and
the number of slopes of the path (simplified to the num-
ber of time the robot changes the direction). We con-



Table 1
Results of different policies

Policy Expected smoothness ~ Expected length

519n gth T 13.6
5smomh 2 24
5minimwc 6 16.6
élex,u 2 1541
distance 5 14.1

sidered only two dimensions of the function but more
dimensions doesn’t affect the performance of the algo-
rithm according to the statement of Theorem 2. The
robot can create a path by any of the aforementioned
multi-criteria planning technique. The paths presented
in Fig. 3 are created by using minimax qualitative deci-
sion approaches, or a local optimization of a criterion.
The obtained paths with these different approaches are
summarized in Table 1. The measures reported in Ta-
ble 1 are based on the fact that each cell has a dimension
of one unit and crossing diagonally the cell measures
/2. This table allows us to compare our approach with
the single-criterion optimization approaches.

What we can interpret from these results is: the short-
est path (length = 13.6) given by the policy d;eng:n has
a poor value of the smoothness (7) while the smoothest
path (2) is given by the policy dsmootn, has a poor val-
ue of the length (24). However, these policies allow
us to have a value of an ideal path (the shortest and
smoothest) that it is (2,13.6). Although the fact that
there is no path having this value, the robot tries to find
a path with a value closer to this ideal value. This is
what we find with our approach which creates a path
with value (2,15.41) that is close to (2,13.6). We can
also see in Table 1 that the minimax qualitative decision
approach is not enough accurate in general because the
values of criteria are with local sense. In order to con-
sider an approach based on weigthed-sum for compar-
ison, we have been interested in an approach using an
Euclidean distance as a decision criterion where an ac-
tion a is preferred over b when the distance between the
value of the outcomes of @ and V?1:92:-+-9n i smaller
than the distance between the value of the outcomes of
b and V?1:92:9n  Formally speaking,

~—
~—
[N
v
=

5distance =arg mzin (Z(Ul (Zl) - ’Uzu(zzo

7
This criterion is a specific case of weigthed-sum ap-
proaches. The obtained policy creates a path with an
expected value of (5,14.1). Here also, we can say that
this decision criterion is not enough accurate. It means
that this policy can prefer an action over another using
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Fig. 4. Policy optimizing the length criterion.

the distance but it is insensitive to the fluctuation. Also
it is known that an Euclidean distance is an approx-
imation of the closer to relation because it does not
take into account the fact that some locations are not
realistically accessible. Our approach prefers (2,15.41)
over (5,14.1) because criterion 1 is not satisfying and
the distance to the best value 2 is high. Also, our ap-
proach prefers (2,15.41) over (6,16,6) because of the
same reasons.

In addition to synthetic evaluation, we have imple-
mented the algorithms and we assessed them on a grid
5 x 6. In Figs 4, 5 and 6, each cell in the grid contains
the expected value of the length, the expected number
of slopes and the action selected by the policy. Also,
the cells are labeled D for the departure cell, F for the
arrival cell, O for obstacles and P for the others. Also,
the color of the cell represents the degree of preference
of the policy to reach this cell. Indeed, more the cell
color is dark less it is preferred. The results depicted
in Figs 4, 5 and 6 representing respectively the policies
optimizing of length criterion, number of slope criteri-
on and a leximin order over both criteria. It is shown
that our policy has a value (—5, —2) that is a good
compromise in comparison with the short length policy
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Fig. 5. Policy optimizing the number of slopes criterion.

(—5, —3) with a bad value of number of slopes and the
number of slopes policy (—7, —2) that has a bad value
for the length criterion.

In this example we presented results with only two
criteria but it can be extended to more than 2 criteria
since the computational complexity is polynomial as
stated in Theorem 2.

Other experiments have been conducted with stoch-
astic actions using scenarios as depicted in Fig. 3. We
considered a grid representing an environment with ob-
stacles (black boxes) and risky areas (“red” triangles)
where a robot has to evolve using one of the policies
introduced in previous sections. Actions are stochastic
in sense that each action reaches the target cell with a
probability 0.8 but it can reach the cells on the left or
on the right of the target cell with respectively a prob-
ability 0.1. In Fig. 7 (grid 7 x 7) we can see different
paths proposed with different policies. We can see that
our policy (black path) proposes a path with a good
balance between the risk (to collide with obstacles) and
the length of the path, while the other policies optimize
only one criterion (short-dash line path) optimizes the
risk of collision that’s why the path is far from obsta-
cles and risky areas and the long-dash path optimizes

Fig. 6. Socially satistying policy.

Table 2
Computation time of the policy according to the size of the grid

Grid Computation time of the policy (ms)
5x5 0.32

7x7 0.33

10 x 10 0.37

20 x 200.48

50 x 50 1.01

the path by minimizing the risk (minimize the risk of
collision first and the length after). An interesting ob-
servation that we can do from these experiments is the
fact that the intuitive best path is that the robot goes
to the left and then up. This intuition comes from the
fact that we reason with deterministic actions but when
introducing the stochastic aspect, the robot cumulates
both risks of the left and the right (“red” triangles and
thus crossing between both risky areas is with low value
while deciding to go to one of side of risky areas leads
to consider only one risky area and thus minimizes the
risk. This is what it was performed with our approach
in the black path.

This experiments confirm the expected behavior as
presented in Fig. 3. We have also developed experi-
ments with different size of the grid from 5 x 5 to 50 x
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50 and the time of computing the policy is summarized
in Table 2. Experiments have been run on an Intel Core
Duo 3.00 GHz CPU proces- sor with 1 GB of RAM.
In this table is shown that for grids with sizes less than
50 x 50 we need less than 1 ms for computing the
policy and around 1 ms for a grid with 50 x 50.

9. Related work

9.1. Decision-theoretic exploration algorithms using
(POMDP

The exploration model is fully subsumed by the
POMDP (Partially Observable Markov Decision Pro-
cess) framework and applied in many domain such
as planetary exploration [9,22,26], search and res-
cue [20], abandoned mine mapping [16,27] and sen-
sor fusion [29]. However, exploring using POMDP
meets the curve of dimensionality and limits its ap-
plication to exploration domain because it considers
uncertainty on observation, outcomes of actions an its
state. Recent researches have been focused on algo-
rithms that scale up. The most popular algorithms are
QMDP which transforms a POMDP into an MDP of
beliefs which has the same complexity of an MDP [15].
Beliefs represent the distribution probability on states
and their set is huge. To reduce this set, a particle filter
version of the POMDP algorithms approximate beliefs
using particles. These class of techniques are named
Monte-Carlo POMDP [32]. Other techniques based

on specific structure or augmented MDP allow us to
reduce this complexity. Recently, we have produced
a new algorithm, named TOP [8], which is one of the
most competitive algorithm based on topological orga-
nization of the space to better organize the resolution.
This algorithm is very suitable to allow us to incre-
mentally explore and map the environment. 2V-MDP
is a new decision model to extend these techniques to
multi-criteria issues.

9.2. Multi-Objective optimization

This work concerns Multi-Objective Linear Pro-
gramming (MOLP) [1,7] which generalizes the stan-
dard Multi-criteria Optimization Problem (MOP) [10].
In the standard MOP, the problem remains the search
of the Nadir point while the computation of the Ideal
point is easy. Vector-Value Markov Decision Process
(2V-MDP) contributes in the resolution of this prob-
lem by giving an approximate Nadir point while the
Ideal point is computed from standard dynamic pro-
gramming method. 2V-MDP is similar to the method
presented in [7] which finds a solution without any ad-
ditional computation. In [7], the authors use a MIN-
MAX and MINSUM of percentage of deviations to find
an optimal solution while in 2V-MDP we use a lexico-
graphic order on percentage of deviations which lead
to the same set of solutions when the vectors have no
identical components. The theoretical solution on the
weak pareto-optimality of the solution obtained by 2V-
MDP is compatible with the claim of the authors in [7]
considering the dominance order.



9.3. Non-classical and qualitative MDPs

This approachis in the spirit of many existing models
of MDPs with vector value functions [24,33] and ap-
propriate algorithms to solve them where most of them
use backward induction, policy iteration and value iter-
ation by substituting operations (+, X ) by (max, min)
in computations. Other approaches have been interest-
ed in the use of a qualitative version of MDPs and al-
gebraic MDPs [24,28]. Besides these positive results,
we propose an alternative to standard MDPs combin-
ing regret measure similar to Tchebychev norm with
an appropriate lexicographic order and a backward in-
duction algorithm to derive a satisfying policy. Further
comparisons with these non-classical MDPs model will
be developed in the future work. Another contribution
of our model is the use of these non-classical models of
MDP for multi-agent planning coordination problem.

10. Conclusion and future works

In this paper, we have addressed the problem of
stochastic path planning where more than one criterion
is considered to prefer a path over another one. To
do that, we propose an MDP with multi-attribute value
function to design a multi-objective decision-theoretic
planner. This approach meets the problem of deriv-
ing an optimal policy using a multi-dimensional value
function. For this reason, we have presented different
approaches using social welfare techniques and pref-
erences to deal with an appropriate maximization op-
eration of a multi-dimensional expected value. Con-
sequently, we redefine max operator by different defi-
nitions of preferences in the Bellman equation for de-
riving an optimal policy. We present a new operator
based on a regret ratio measure to derive a policy for
the path planning offering a good trade-off between all
the criteria of the path without degrading anyone.

Future work will concern the extension of this work
to multi-agent stochastic path planning using multi-
agent MDP [3,19] and the application of this approach
in a real autonomous robot by considering its multiple
resources such as power, storage and bandwidth com-
munication [14]. Another direction consists of a the-
oretic study on formalizing qualitative MDPs such as
algebraic MDP [24,34] using our approach and assess
to at what scale this model is more general than the
existing ones.

References

(1]

(2]

B3]

(4]

[3]

(6]

(7]

(8]

]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

R. Aras and A. Dutech, An investigation into mathematical
programming for finite horizon decentralized pomdps, J Artif
Intell Res (JAIR) 37 (2010), 329-396.

R. Bellman, Markov Decision Process, Journal of mathemat-
ical Mech 6 (1957), 610-616.

A. Beynier and A. Mouaddib, A polynomial algorithm to
solve decentralized MDP with temporal constraints, in: In the
Fourth International joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS), 2005, pp. 963-969.

C. Boutilier, Towards a logic for qualitative decision theory,
in: Knowledge Representation and Reseaning (KR), 1994,
pp. 75-86.

C. Boutilier, F. Bacchus and R. Brafman, Ucp-networks: A
directed graphical representation of conditional utilities, in:
International Conference on Uncertainty in Artificial Intelli-
gence (UAI), 2001, pp. 56-64.

R. Brafman and M. Tennenholtz, An axiomatic treatment
of three qualitative decision criteria, Journal of ACM 47(3)
(2000), 452-482.

H. Daellenbach and C.D. Kluyver, Note on multiple objective
dynamic programming, International Journal of Operational
Research Society 31 (1980), 591-594.

J. Dibangoye, B. Chaib-Draa, A. Mouaddib and G. Shani,
Topological order planner for POMDPs, in: Internation-
al Joint Conference of Artificial Intelligence (IJCAI), 2009,
pp. 1684-1689.

E. Gat, R. Desai, R. Ivlev, J. Loch and D.P. Miller, Behavior
control for robotic exploration of planetary surfaces, IEEE
Transactionon Robotics and Automation 10 (1994), 490-503.
M. Ehrgott and D. Podehl, Computation of ideal and nadir val-
ues and implications of their use in mcdm methods, European
Journal of Operational Research Optimization 151 (2003),
119-139.

R. Howard and A. Matheson, Influence diagrams. Principles
of Applications of Decision Analysis 2, 1981.

U. Junker, Preference-based search and multi-criteria opti-
mization. In: CPAIOR, 2000.

R. Keeney and H. Raiffa, Decision with Multiple Objectives:
Preferences and Value Tradeoffs. John Wiley and Sons, Inc,
1976.

S. Le_Gloannc, A. Mouaddib and F. Charpillet, Adaptive mul-
tiple resources consumption control for an autonomous rover.
In: European Robotic System Symposium, 2008, pp. 1-11.
M. Littman, A. Cassandra and L. Kealbling, Learning poli-
cies for partially observable environments: Scaling up, in: In-
ternational Conference on Machine Learning (ICML), 1995,
pp- 362-370.

S. Mahadevan and N. Khaleeli, Robust mobile robot naviga-
tion using Partially-Observable Semi-Markov Decision Pro-
cess. 51] P. Maybeck. Stochastic Models, Estimation, and
Control 1, 1999.

M. Mataric, Behavior-based control: Example from naviga-
tion, learning and group behavior, Journal of Experimental
and Theoretic Artificial Intelligence 9(2-3) (1997), 323-336.
A. Mouaddib, Multi-criteria path planning, in: IEEE Interna-
tional Conference on Robotic and Automaton (ICRA), 2004,
pp- 2814-1819.

A. Mouaddib, B. Boussard and M. Bouzid, Multi-objective
multiagent planning, in: Internation Joint Conference on
Autonomous Agent and MultiAgent Sytems (AAMAS), 2007,
pp- 123-130.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

R. Murphy, Human-robot interaction in rescue robotics. IEEE
Systems, Man and Cybernetics Part C: Applications and Re-
views, 2004, 138-153.

N.J. Nilsson, Principles of Artificial Intelligence. Springer,
1982.

A. Pahliani, M.T.J. Spaan and P.U. Lima, Decision-theoretic
robot guidance for active cooperative perception, in: Proc. of
International Conference on Intelligent Robots and Systems,
2009, pp. 4837-4842.

J. Pearl, Probabilistics reasoning in intelligent systems: Net-
works of plausible influence. Morgan-kaufmann, 1981.

P. Perny, O. Spanjaard and P. Weng, Algebraic Markov Deci-
sion Processes, in: International Joint Conference on Artificial
Intelligence (1JCAI), 2005, pp. 1372-1377.

P. Pirjanian, Multiobjective action selection in behavior-based
control, in: Sixth Symposium for Intelligent Robotic Systems,
1998, pp. 83-92.

J.M. Porta, M.T.J. Spaan and N. Vlassis, Robot planning in
partially observable continuous domains, in: Proc. of the 17th
Belgian-Dutch Conference on Artifical Intelligence, Brussels,
Belgium, Oct. 2005, pp. 375-376, extended abstract.

S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D.
Furguson, D. Hahnel, M. Montemerlo, A. Morris, C. Reverte
and W. Whittaker, Autonomous exploration and mapping of
abandoned mines, IEEE Robotics and Automation Magazine
11(4) (2005).

R. Sabbadin, Possibilistic Markov Decision Process, in: Eu-

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ropean Conference on Artificial Intelligence (ECAI), 2000,
pp- 586-590.

A. Sanfeliu, J. Andrade-Cetto, M. Barbosa, R. Bowden, J.
Capitan, A. Corominas, A. Gilbert, J. Illingworth, L. Merino,
J.M. Mirats, P. Moreno, A. Ollero, J. Sequeira and M.T.J.
Spaan, Decentralized sensor fusion for ubiquitous networking
robotics in urban areas, Sensors 10(3) (2010), 2274-2314.

R. Shachter, Evaluating influence diagrams, Operation Re-
search 34(6) (1981), 871-882.

S.-W. Tan and J. Pearl, Qualitative decision theory, in: Inter-
nation Conference of American Association of Artificial Intel-
ligence (AAAI), 1994, pp. 928-933.

S. Thrun, W. Burgard and D. Fox, Real-time algorithm for
mobile robot mapping with applications to multi-robot and
3d mapping, in: International Conference on Robotic and
Automation (ICRA), 2000, pp. 321-328.

K. Wakuta and K. Togawa, Solution procedures for multi-
objective markov decison processes, Optimization 43 (1998),
29-46.

P. Weng, Axiomatic foundations for a class of generalized
expected utility: Algebraic expected utility, in: International
Conference on Uncertainty in Artificial Intelligence (UAI),
2006, pp. 520-527.

G. Zoltan, Z. Kalmar and C. Szepesvari, Multi-criteria rein-
forcement learning, in: International Conference on machine
Learning (ICML), 1998, pp. 197-205.



