
HAL Id: hal-00968822
https://hal.science/hal-00968822

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal ontology for industrial maintenance
Mohamed Hedi Karray, Brigitte Chebel-Morello, Noureddine Zerhouni

To cite this version:
Mohamed Hedi Karray, Brigitte Chebel-Morello, Noureddine Zerhouni. A formal ontology for indus-
trial maintenance. Applied Ontology, 2012, 7, pp.269-310. �10.3233/AO-2012-0112�. �hal-00968822�

https://hal.science/hal-00968822
https://hal.archives-ouvertes.fr


1 

 

A formal ontology for industrial 

maintenance 

 

Authors:  

 

 

1- Dr. Mohamed Hedi KARRAY, LGP-ENIT, University of Toulouse 

2- Dr. Brigitte CHEBEL-MORELLO, Automatic Control and Micro-Mechatronic Systems 

Department, FEMTO-ST institute 

3- Pr. Noureddine ZERHOUNI, Automatic Control and Micro-Mechatronic Systems 

Department, FEMTO-ST institute 
 

 

Corresponding author:  

Mohamed Hedi KARRAY 

 

*e-Mail : mkarray@enit.fr 

 

Abstract 

The rapid advancement of information and communication technologies has resulted in a variety of maintenance 

support systems and tools covering all sub-domains of maintenance. Most of these systems are based on different 

models that are sometimes redundant or incoherent and always heterogeneous. This problem has lead to the 

development of maintenance platforms integrating all of these support systems. The main problem confronted by 

these integration platforms is to provide semantic interoperability between different applications within the same 

environment. In this aim, we have developed an ontology for the field of industrial maintenance, adopting the 

METHONTOLOGY approach to manage the life cycle development of this ontology, that we have called 

IMAMO (Industrial MAintenance Management Ontology). This ontology can be used not only to ensure 

semantic interoperability but also to generate new knowledge that supports decision making in the maintenance 

process. This paper provides and discusses some tests so as to evaluate the ontology and to show how it can 

ensure semantic interoperability and generate new knowledge within the platform. 

 

Key words: ontology, maintenance systems integration, semantic interoperability 

 

 

 

 

 

 

 

 



2 

 

1 Introduction 

Industrial maintenance is a fundamental function in the business process and thus requires the development 

of computer systems (Liyanage & Kumar, 2003). Such developments have become possible through information 

technology as well as advances in automatic control and optimization. 

Maintenance is a complex process comprised of object selection, sensor installation, data acquisition, data 

analysis, decision making, maintenance operation planning, reporting to operators, management of stocks and 

other phases. Thus, the complexity of industrial systems, comprised of over 10,000 devices and various software 

systems renders maintenance tasks difficult (Bangemann, et al., 2006). 

Maintenance covers all domains of a business, from the plant and the equipment to be maintained, to 

organization according to different strategies (preventive maintenance, predictive maintenance, corrective 

maintenance), to managing operators and material (handling, hoisting) and spare parts, to computer-assisted 

diagnostic systems, to documentation management, etc. Various maintenance support systems and tools have 

evolved and have become essential for maintenance process management. They cover all types of domain such 

as CMMS (Computerized Maintenance Management Software), diagnostic support systems, prognosis systems, 

resource management systems like ERP (Enterprise Resource Planning) and other systems. All these systems are 

currently based on different models that are usually complementary, but sometimes redundant, sometimes 

incoherent and always heterogeneous. 

Under this volatile diversity, the maintenance actors who are the eventual users of these systems need to 

have “the right information in the right format in order for the right people to do the right things at the right 

time” (Lee, Liao, Lapira, Ni, & Li, 2009). It has therefore become necessary to integrate all maintenance support 

systems into a global platform for maintenance management.  

Thus, in order to address these problems, computer systems relating to maintenance have been developed 

and are in use today (ENIGMA
1
, CASIP

2
, ICAS-AME

3
, Remote Data Sentinel

4
, IMS/DB

TM 5
, WSDF (Hung, 

Chen, Ho, & Cheng, 2003), PROTEUS (Bangemann, et al., 2006), TELMA
6
, etc.). These platforms come either 

from industry or from academia. Muller et al. (Muller, Marquez, & Iung, 2008) classify them as: proprietary 

platforms (i.e. ICAS), platforms developed within projects (i.e. PROTEUS) or platforms for research and 

education (i.e. TELMA). In fact, many projects have been undertaken in order to provide fully integrated and 

intelligent platforms. Several surveys found in the literature summarize these different works (Muller, Marquez, 

& Iung, 2008) (Jardine, Daming, & Banjevic, 2006) (Levrat, Iung, & Crespo-Marquez, 2008) (Campos, 2009). 

                                                             

1
http://www.enigma.com/ 

2
http://www.predict.fr/ 

3
http://www.esrgtech.com/Documentation/DODSymposium_GreatIdeas.pdf 

4
http://dynamite.vtt.fi/conference_pres/telma_wceam_el_bi.pdf 

5
http://www.imscenter.net/  

6
http://dynamite.vtt.fi/conference_pres/telma_wceam_el_bi.pdf 



3 

 

The principal problem confronted by these integration platforms is to provide the means for different 

applications to move from coexistence to interoperability and cooperation within the same environment. 

Most of the existing platforms use Web services (Bangemann, et al., 2006) (Muller, Marquez, & Iung, 2008) 

to guarantee interoperability between the various integrated applications, despite the fact that setting up adaptors 

between these Web services and standardizing the exchanged data is a very complicated task. 

While research and technologies have successfully addressed many syntactic-level interoperability 

problems, they do not often address the semantics of data. The diversity of information content and formats is a 

salient factor in nearly all distributed systems, and the major challenge is to make diverse information systems 

interoperate at the semantic level while retaining their differences (March, Hevner, & Ram, 2000), which is the 

case in most maintenance platforms.  

Alone, the integration of applications is not sufficient to furnish maintenance actors with the right 

information, exploitable at the right time. Maintenance platforms must also reinforce the exploitation of 

maintenance knowledge by developing the standardization of information and knowledge in terms of 

understanding, interpretation and sharing, thus improving semantic interoperability. Ontology engineering 

appears to be the best way to respond to these problems since ontologies have well-defined terminologies whose 

semantics are unambiguous (Guarino, Formal Ontology and Information Systems, 1998) due to their formal and 

explicit representation of a common understanding of domain concepts and their relationships. 

Indeed, according to (Mizogouchi & Bourdeau, 2004) an ontology provides: 1) a basic conceptual 

structure from which it is possible to develop systems based on knowledge that is shared and reused, and 

2) interoperability between information sources and knowledge.  

In this paper we investigate the development of domain ontology. This maintenance ontology will be 

exploited so as to encourage the sharing and reuse of knowledge, as well as to show the integration of semantic 

interoperability solutions into the maintenance platform. In another paper, we have proposed a semantic 

mediator (Karray, Chebel-Morello, & Zerhouni, 2010) based on a domain ontology covering all aspects of 

maintenance and we are currently working towards its validation. Those studies, however, are not within the 

scope of this paper. 

For Section 2 we selected a methodology of ontology development (METHONTOLOGY) (Fernández-

López, Gómez-Pérez, & Juristo, 1997), a tool and an appropriate language in order to construct a domain 

ontology for industrial maintenance that we called IMAMO (Industrial MAintenance Management Ontology). 

The METHONTOLOGY approach ensures both better management of the ontology life cycle and a progressive 

development process during which a set of activities to be performed has been identified. They are: plan, specify, 

acquire knowledge, conceptualize, formalize, integrate, implement, evaluate, document, and maintain.  

Section 3 is devoted to the IMAMO development process. To perform the activities of acquire knowledge, 

conceptualize and integrate, we refer to different projects undertaken along the same lines as MIMOSA
7
 and 

PROTEUS
8
, and projects implemented in different areas related to industrial maintenance such as PROMISE

9
 

                                                             

7
http://www.mimosa.org/ 

8
http://www.proteus‐iteaproject.com/ 



4 

 

and SMAC
10

. Concerning the activity formalization, a UML ontological model has been built in collaboration 

with maintenance experts. The UML model is then encoded in ALCQHI, a description logic variant adopting the 

approach proposed in (Berardi, Calvanese, & De Giacomo, 2005). We then render the ontology operational in 

the activity implementation by transforming the UML ontological model into PowerLoom (Chalupsky, 

MacGregor, & Russ, 2010), a logic-based representation language for ontology presentation.  

In the evaluation activity, we adopt a business-oriented approach based on actual cases of use in order to 

evaluate the ontology at the application level so as to improve the maintenance process. Some examples from the 

Java API of PowerLoom are provided and discussed. In addition, some metrics (Tatir & Budak Arpinar, 2007) 

are used to characterize the ontological model. 

In Section 4 some perspectives for future investigation are discussed and we conclude in Section 5. 

2 Adopted Approach: Construction methodology, tools and languages 

When a new ontology is built, several basic questions arise related to the methodologies, tools and 

languages to be used in its development process (Corcho, Fernandez-Lopez, & Gomez-Perez, Methodologies, 

tools and languages for building ontologies: Where is their meeting point?, 2003). In this section these topics are 

summarized and an overview of the issues is provided so as to present the approach we adopted in the 

construction of our ontology. 

2.1 Ontology development methodologies 

Ontology development methodologies support the creation of ontologies. Thus, Fernandez et al. in 

(Fernández-López, Gómez-Pérez, & Juristo, 1997) affirm that the ontology development process refers to the 

activities necessary to build ontologies. Several methodologies such as Tove, METHONTOLOGY, On-To-

Knowledge, AFM, OntoClean, DILIGENT, NeOn, etc. have been developed (Mizoguchi, 2004) (Corcho, 

Fernandez-Lopez, & Gomez-Perez, Methodologies, tools and languages for building ontologies: Where is their 

meeting point?, 2003) (Fernandez-Lopez & Corcho, 2004). 

The AFM (Activity-First Method) methodology is dedicated to the development of task ontologies 

(Mizoguchi, 2004). It starts the building process after determining the source document from which the ontology 

will be extracted. 

Ushold and King's methodology (Uschold & King, 1995) is useful in the early phase of development of an 

informal ontology. 

TOVE (The Toronto Virtual Enterprise) is the most formal among the existing ones in that it first 

enumerates the questions to be answered by the resulting ontology and expresses them in a formal language so as 

to use them for verification of the ontology (Fox, 1992). Its competency question strategy is popular and usable 

in any methodology. 

                                                                                                                                                                                              

9
PROMISE : http://www.promise.no/ 

10
SMAC : http://www.femto‐st.fr/en/Research‐departments/AS2M/Research‐groups/COSMI/SyMI/The‐SMAC‐project.php 



5 

 

On-To-Knowledge
11

 works well, especially for knowledge management applications (Mizoguchi, 2004).  

METHONTOLOGY is based on a set of activities leading to the construction of an ontology (Fernández-

López, Gómez-Pérez, & Juristo, 1997). This set is based on the key activities identified by the software 

development process and methodologies used in knowledge engineering. This methodology includes the 

identification of an ontology’s development process, a life cycle based on evolving prototypes and techniques 

used to carry out each activity in the management, development and support activities. 

OntoClean is oriented towards validation of taxonomies (Guarino & Welty, 2002) (Welty & Andersen, 

2005). It is based on very general ontological notions drawn from philosophy to characterize the relevant aspects 

of the intended meaning of the properties of ontology components. These aspects are represented by formal 

meta-properties which impose several constraints on the taxonomic structure of an ontology in order to assess 

and validate the choices made. 

DILIGENT (DIstributed, Loosely controlled and evolvInG Engineering of oNTologies) is intended to assist 

domain experts in a distributed environment and to enable ontologies to evolve (Pinto, Tempich, & Staab, 

2004). This methodology focuses on collaborative ontological engineering. The center of this methodology is an 

argumentation system that facilitates discussion of the logic design changes that are introduced in different 

phases of the ontology lifecycle. 

NeOn (Suárez-Figueroa, 2010) was created within the NeOn project
12

 in order to build ontology networks. 

Specifically, in terms of NeOn dimensions, the methodology includes the benefits of collaboration provided by 

DILIGENT. In addition, NeOn takes into consideration the proposal made by METHONTOLOGY and On-To-

Knowledge in the use of competency question issues for the business specification of the ontology. With regard 

to ontology reuses, NeOn considers the list of activities proposed by METHONTOLOGY as a starting point, and 

it offers guidelines for improvement and expansion. For the construction of these ontology networks, NeOn 

offers nine scenarios relative to the adopted method of construction. 

NeOn is a combination of methods that can be considered as the evolution and expansion of 

METHONTOLOGY, considering activities in greater detail and including collaboration and context. 

Thus, according to (Mizoguchi, 2004), when developing a large-scale ontology, METHONTOLOGY and 

On-To-Knowledge are very useful. Corcho et al. in (Corcho, Fernandez-Lopez, & Gomez-Perez, Methodologies, 

tools and languages for building ontologies: Where is their meeting point?, 2003) therefore concluded that 

METHONTOLOGY was the most mature approach. 

In our case, we have not developed an ontology network nor a task ontology, no more than a taxonomy 

ontology, but a single ontology for the field of maintenance. Consequently, we have adopted 

METHONTOLOGY to develop the domain maintenance ontology. 

2.2 METHONTOLOGY: the adopted methodology 

                                                             

11
 http://www.ontoknowledge.org 

12
 http://www.neon‐project.org/ 



6 

 

Gómez-Pérez et al. in (Fernández-López, Gómez-Pérez, & Juristo, 1997) and (Gómez-Pérez, 1996) assert 

that the ontology development process refers to the activities needed in order to build ontologies. In this context, 

METHONTOLOGY has been proposed as a structured method for the building of ontologies. Its aim is to cover 

the overall life cycle of ontologies and it includes a set of activities to be performed during the ontology 

development process comprised of: schedule, control, quality assurance, specification, conceptualization, 

formalization, implementation, maintenance, knowledge acquisition, integration, evaluation, documentation, and 

configuration management.  

As shown in Fig.1, METHONTOLOGY breaks these activities down into3 levels: management activities 

(schedule, control, and quality assurance), development activities (specification, conceptualization, 

formalization, implementation and maintenance) and support activities (knowledge acquisition, integration, 

evaluation, documentation, and configuration management). 

Concerning development activities, the specification activity states why the ontology is being built, what its 

intended uses are and who the end-users are. The conceptualization activity in METHONTOLOGY organizes 

and converts an informally perceived view of a domain into a semi-formal specification using a set of 

intermediate representations (IRs) based on tabular and graph notations that can be understood by domain 

experts and ontology developers. The conceptualization activity results in the conceptual model of the ontology. 

The formalization activity transforms the conceptual model into a formal or semi-computable model. The 

implementation activity builds computable models in an ontology language. The maintenance activity updates 

and corrects the ontology if needed.  

2.3 Ontology development tools 

Ontology development tools are environments intended to support the ontology development process and the 

subsequent ontology usage. Apart from the common edition and browsing functionality, these tools usually 

include ontology documentation, ontology exportation and importation from different formats, graphical views 

of the ontologies built, ontology libraries, attached inference engines, etc. (OntoWeb Consortium, 2002).  

Tools for building ontologies have increased exponentially in recent years. As examples of these tools we 

find OntoEdit
13

, Protégé2000, Protégé 3.4.5 and Protégé 4.1 supporting respectively OWL.1.0 and OWL.2., 

PowerLoom API and PowrLOOM GUI, TopBraid Composer
14

, NeOn Toolkit
15

, etc. (Corcho, Fernandez-Lopez, 

& Gomez-Perez, 2003) (Mizoguchi, 2004).  

In fact, when a new ontology is going to be built, several basic questions arise concerning the tools to be 

used: Which tool(s) give support to the ontology development process? How are the ontologies stored (in 

databases, XML or ASCII files)? Does the tool have an inference engine? Do tools have translators for different 

ontology languages? What is the quality of the translations? How can applications interoperate with ontology 

servers? Do tools have forward and backward translators to/from different ontology implementation languages? 

                                                             

13
http://www.semtalk.com/ 

14
http://www.topquadrant.com/ 

15
http://neon‐toolkit.org/ 



7 

 

How can applications interoperate with ontology tools? How can the developed ontologies be used in real 

applications? Do tools enable querying information about an ontology? etc. (OntoWeb Consortium, 2002).   

2.4 Ontology languages  

Diverse languages are proposed for ontology implementation (Corcho, Fernandez-Lopez, & Gomez-Perez, 

2003) (Mizoguchi, 2004). They can be classified in two categories according to their chronological order of 

appearance, before and after the boom of the web. 

At the beginning of the 1990s, a set of Artificial Intelligence-based ontology implementation languages was 

created. Basically, the Knowledge Representation paradigm underlying such ontology languages was based on 

first-order logic (e.g. KIF), on frames combined with first-order logic (e.g. Ontolingua, OCML and FLogic), or 

on DL (e.g Loom). 

The rise of the Internet then led to the creation of ontology languages that exploited the characteristics of the 

Web. These languages, such as RDF(S) and OWL are called web-based ontology languages.  

However, some differences exist within the primitives available in each language for the representation of 

concept taxonomies. For example, Ontolingua
16

, LOOM
17

 and OWL
18

 are the most expressive, since they allow 

the creation of exhaustive and disjointed subclass partitions of a concept [35]. In addition, functions can be 

defined easily in this set of languages. Rules, though, can only be defined in LOOM and OWL 2.0, and 

procedures can only be defined in Ontolingua and LOOM (although they cannot be executed). In LOOM and 

OWL the inference engine also performs automatic concept classifications (Corcho, Fernandez-Lopez, & 

Gomez-Perez, 2003). 

PowerLoom
19

, the successor to Loom, provides a language and environment for constructing intelligent, 

knowledge-based applications. It uses a fully expressive, logic-based representation language (a variant of KIF) 

and a natural deduction inference engine that combines forward and backward chaining to derive what logically 

follows from the facts and rules asserted in the knowledge base. While PowerLoom is not a description logic, it 

does have a description classifier which uses technology derived from the Loom classifier to classify 

descriptions expressed in full first order predicate calculus. PowerLoom uses modules as a structuring device for 

knowledge bases, and ultra-lightweight worlds to support hypothetical reasoning.  

2.5 The adopted language:  

Consequently, to implement IMAMO we chose PowerLoom (Chalupsky, MacGregor, & Russ, 2010), 

seeing that it offers reasoning facilities for concepts and individuals. Its distinguishing feature in relation to other 

DL systems is the incorporation of an expressive query language for retrieving individuals, and its support for 

rule-based programming. The expressivity of PowerLoom provides a good scalability to large ontologies and 

                                                             

16
 http://www.ksl.stanford.edu/software/ontolingua/ 

17
 http://www.isi.edu/isd/LOOM/ 

18
 http://www.w3.org/TR/owl‐features/ 

19
 http://www.isi.edu/isd/LOOM/PowerLoom/ 



8 

 

knowledge bases. It allows different reasoning mechanisms such as logical deduction, hypothetical reasoning, 

equality reasoning, arithmetic and reasoning with inequalities. This allows us to check the consistency of the 

model and the rules of our ontology, and also to design improvements straightforwardly.  

In addition, PowerLoom has a static and dynamic query optimizer that is similar to optimizers used in 

database systems. The dynamic optimizer operates for each conjunctive sub-goal based on actual bindings. 

Given this mechanism it is possible to run PowerLoom queries that return hundreds of thousands of solutions. 

PowerLoom also has a powerful relational database interface that allows it to utilize the power of databases for 

handling large assertion bases. Maintenance systems can take advantage of these cited performances of 

PowerLoom to ensure semantic interoperability and to provide new services responding to the needs of 

maintenance actors. They are expected to benefit from the capacities of the PowerLoom reasoning engine. 

3 The IMAMO development process 

The creation of a domain ontology for industrial maintenance was instantiated within the scope of the SMAC 

(Semantic MAintenance and lifeCycle) project. Financed by the Intereg 4 program undertaken by France and 

Switzerland, the project was launched in collaboration between academic (the University of Franche-Comté, the 

Femto-ST Institute, Ecole Polytechnique Fédérale de Lausanne) and industrial (em@systec, Tornos, GMCH) 

groups from both countries. The aim of this project is to provide a semantic interoperable platform of industrial 

maintenance ensuring knowledge capitalization and reuse in order to track and develop equipment lifecycle. An 

initial ontology called SMAC-Model was developed, but it was more oriented towards product lifecycle. We 

thus launched the creation of IMAMO (Industrial MAintenance Management Ontolgy) to compensate for this 

lack and to use this ontology in the maintenance platform that we are developing. 

Consequently, in this section we present the IMAMO development process (specification, conceptualization, 

formalization, implementation and maintenance), in which we followed the METHONOTOLOGY philosophy, 

joining the use of support and development activities. We have therefore exploited the knowledge acquisition 

activity alongside the development activity specification. During the conceptualization activity, we worked on 

the basis of the support activities knowledge acquisition and integration. The support activity evaluation needs to 

be repeated for the different development activities such as conceptualization, formalization and implementation, 

however, due to the structure of this paper, this activity is presented in a separate subsection containing the 

various evaluation types related to these three activities.  

3.1 Specification 

The goal of the specification phase is to produce either an informal, semi-formal or formal ontology 

specification document written in natural language, using respectively a set of intermediate representations or 

competency questions (Grüninger & Fox, 1994).  

Given that ontology creation is not a small task, this requires not only skills in information technology but 

also in the conceptualized domain (Frankovic & Budinska, 2006), hence the importance of the knowledge 

acquisition activity in editing the specification document. 



9 

 

3.1.1Knowledge acquisition 

To acquire knowledge about the field of maintenance, we refer to standards, research projects and experts in 

industrial maintenance. Concerning standards, we adhere to the AFNOR
20

 norms and MIMOSA
21

 standards. The 

PROTEUS
22

 and PROMISE
23

 projects also serve as a basis. Finally, we adopt the business expertise of various 

maintenance experts, managers and operators from different companies such as Cegelec SA
24

 France & 

Germany, Tornos
25

 (Switzerland), Peugeot
26

 (Belfort, France) and em@systec
27

 (France). Various research 

studies such as those of Retour et al. (Retour, Bouche, & Plauchu, 1990), Kaffel (Kaffel, 2001) and Rasovska et 

al. (Rasovska I. , 2006) are also taken into account.  

AFNOR defines maintenance as “the combination of all technical, administrative and managerial actions 

during the life cycle of an item intended to retain it in, or restore it to, a state in which it can perform the required 

function”. In accordance with this definition, Retour et al. (Retour, Bouche, & Plauchu, 1990) present the 

maintenance function as a set of activities grouped into two subsets: activities with technical predominance and 

activities with management predominance. 

In the same context, Rasovska et al. (Rasovska, Morello-Chebel, & Zerhouni, 2007) divide the maintenance 

process into four fundamental technical and business fields, identified in the maintenance domain: (i) equipment 

analysis, which consists of functional analysis and failure analysis, (ii) fault diagnosis and expertise, which aim 

to help the operator during his intervention to diagnose the problem and to establish a prognosis so as to 

anticipate the breakdown and to solve it (iii) resource management, which deals with resource planning for all 

maintenance interventions, and (iv) maintenance strategy management, which represents the decision support 

concept for maintenance managers. 

Consequently, the concepts which should be identified must cover all these fields and activities. To facilitate 

our identification of concepts, we identified all those concepts related to each layer presented above. 

Identification of the main concepts of each layer is based on the models of MIMOSA-CRIS (Kahn, 2003), the 

PROTEUS project (Rasovska, Chebel–Morello, & Zerhouni, 2008), the PROMISE SOM (PROMISE, 2008) and 

SMAC projects (Matsokis, Karray, Morello-Chebel, & Kiritsis, 2010). 

3.1.2 Specification document 

                                                             

20
http://www.afnor.org/ 

21
http://www.mimosa.org/ 

22
http://www.proteus‐iteaproject.com/ 

23
http://www.promise.no/ 

24
 http://www.cegelec.fr/ 

25
 http://www.tornos.com/ 

26
 http://concessions.peugeot.fr/belfort 

27
 http://www.emasystec.com/ 



10 

 

After the acquisition phase in the previous activity, we produced a first excerpt from a specification 

document for IMAMO, presented in Table 1. The key fields in this table are the specification of the domain, the 

purpose of ontology building, the formalization level of this ontology and its scope. 

3.2 Conceptualization 

In this activity, the domain knowledge is structured according to a conceptual model that describes the 

problem and its solution in terms of the domain vocabulary identified in the ontology specification activity. In 

this phase Gómez-Pérez et al. recommend a set of intermediate representations for conceptualization such as a 

concept classification tree, a data dictionary, a table of rules and others (Gómez-Pérez, 1996). A complete 

Glossary of Terms (GT) must first be constructed, including concepts, instances, verbs and properties. This 

activity is mainly based on the support activities of knowledge acquisition and integration.  

3.2.1 Support activities 

While ontologies are built to be reused, their reuse is one of the important issues in their construction. 

According to Pinto et al. there are two different reuse processes (Pinto, Tempich, & Staab, 2004) merge and 

integration. Both of these reuse processes are included in the overall process of ontology building. Merge is 

defined as the process of building an ontology for one subject reusing two or more different ontologies from that 

same subject (Pinto, Tempich, & Staab, 2004). In an integration process, on the other hand, the source ontologies 

are aggregated, combined or assembled, to form the resulting ontology, possibly after reused ontologies have 

undergone changes such as extension, specialization or adaptation. It should be noted that we have adopted both 

processes by reusing and integrating several concepts from other ontologies or models. 

The lack of a formal ontology in the industrial maintenance domain must also be noted. Despite industrial 

maintenance being different by definition from software maintenance, there are some junctions between the two. 

Thus, when we launched our search for already existing industrial maintenance ontologies for potential merge 

and/or integration into IMAMO, we also took into account existing software maintenance ontologies. 

3.2.1.1 Knowledge acquisition 

Several teams have attempted to build an ontology for maintenance. In the software maintenance field, 

Kitchenham et al. (Kitchenham, et al., 1999) developed a preliminary ontology to identify a number of factors 

that influence maintenance (SMO: software maintenance ontology). Ruiz et al. (Ruiz, Vizcaino, Piattini, & 

García, 2004) developed a semi-formal ontology in which the main concepts of products, staff, activities, 

processes, workflow and actions are described. This ontology, besides representing static aspects, also represents 

dynamic issues related to the management of software maintenance projects. Some concepts from these 

ontologies have been reused in IMAMO, though we have not followed the same concept nomination in all cases. 

The mapping between these concepts, however, has been done.  

Concerning ontologies and models of an industrial scope, MIMOSA, as mentioned above in the knowledge 

acquisition phase, is the first initiative to unify data elements to be exchanged for special equipment such as 

condition monitoring tools or dedicated assets by establishing MIMOSA-CRIS (common relational information 

system), a relational database model of maintenance information (Kahn, 2003). Matsokis and Kiritsis (Matsokis 



11 

 

& Kiritsis, 2009) propose an ontology-based approach for the management of product lifecycle, such as the 

extension of the ontology proposed in the PROMISE project (PROMISE, 2008) which provides a semantic 

object model (SOM) for product data and knowledge management.  

To create IMAMO we started from models developed in the PROTEUS project (Rasovska, Chebel–Morello, 

& Zerhouni, 2008), to publish a first version of a maintenance ontology (Karray, Chebel-Morello, & Zerhouni, 

2009). This ontology was composed of 62 concepts and 70 relations integrating the main concepts used in 

PROTEUS. Then, as a part of the SMAC project, we mapped the previously mentioned ontology with the 

PROMISE model. As result, Matsokitis and Karray (Matsokis, Karray, Morello-Chebel, & Kiritsis, 2010) 

proposed a more evolved version of this ontology by orienting it towards the maintenance field while integrating 

some concepts related to the maintenance area included in the MOF (middle of life) phase of PLM (product 

lifecycle management). This ontology, called the SMAC-model, is formalized by UML and implemented with 

OWL-DL via Protégé. 

3.2.1.2 Reuse and integration 

We then returned to the field of maintenance, integrating concepts from the SMAC model in relation to the 

lifecycle of equipment so as to take into account (1) the beginning of the life concerning the design phase, (2) the 

middle of life phase by tracking all the events and states of the equipment’s health, and (3) the end of life, via the 

calculation of indicators supporting the decision for re-use and disassembly. Since, as was mentioned above, 

MIMOSA-CRIS is considered to be the reference of the domain, when creating IMAMO we also took into 

consideration the classes used in this model.  

Based on their various data dictionaries, we manually mapped MIMOSA-CRIS, SMAC-Model, PROMISE 

and SMO in order to reuse some concepts while creating IMAMO. Some labels of reused concepts were 

changed, but the alignment between these ontologies is achieved by the addition of equivalence or subsumption 

rules to these concepts. Concept names are changed to obtain more expressive terms (to eliminate ambiguities) 

or to choose terms in concordance with the different existing models. An example of some reused concepts 

integrated into IMAMO is presented in Table 2 based on our different manual mappings between different 

models and ontologies. 

However, further integration at the instance level is possible (exploitation of concepts from other ontologies 

to be used as instances of IMAMO’s concepts).For example, the functional ontology proposed 

by Kitamura and Mizoguchi (Kitamura & Mizoguchi, 1998) can be integrated as instances of 

the concepts "function" and "subfunction". 

Thus, the fault ontology proposed by Kitamura and Mizoguchi (Kitamura & Mizoguchi, An Ontological 

Analysis of Fault Process and Category of Faults, 1999) can be integrated also as instances of concepts related to 

diagnosis and problem solving in IMAMO. 

3.2.2 Glossary of terms and data dictionary 

Hence, we began the conceptualization of IMAMO by building the glossary of terms. The concepts are first 

classified in the glossary respecting the four fields identified by Rasovska et al. and mentioned above. We then 



12 

 

refined this list of concepts by deepening the first classification. The second classification goes further than the 

first by breaking each layer down into sub-layers. We note that some concepts are shared between different 

layers or sub-layers. This is done purposely in order to count all the concepts in each layer so as to obtain a 

clearer vision and a more precise identification. Next we edited the data dictionary based on the European norm 

NF EN 13306:2001 published by AFNOR. Due to limits of space we will not show these steps in three separate 

tables, but will present only the data dictionary with the conceptual model for a better understanding of the 

different views of the ontology (see section 3.2.5). 

We note, however, that IMAMO will be a generic ontology; different details can be neglected and left to 

users (by user we mean ontologists who will exploit the ontology) according to their needs. In this case, users 

may adapt, evolve and maintain the ontology. 

In our case we will focus only on concepts and relations; tasks and maintenance activities will be instances 

of concepts referring to activity. Relations between concepts will not be presented in a table or in a data 

dictionary, but will be presented as associations with cardinalities within the conceptual model of the ontology.  

3.2.3 Concept classification trees 

After defining the data dictionary, we edit the concept classification trees. We notice that the domain is very 

broad; nevertheless, the ontology that we develop will not contain a lot of trees. This is due to the aim of 

obtaining a rich ontology with different types of relations and not a hierarchical ontology like taxonomy. Is-a, is-

component-of, has and other verbs are the relations supported by the ontology. Fig. 2 summarizes some of the 

concept classification trees in IMAMO (i.e. is-a relations). 

3.2.4 Editing rules  

As mentioned above, this investigation will mainly focus on concepts and relations as well as rules for the 

consistency of concepts. 

The following rule presents the constraints of the composite relationship between differing sets of physical 

equipment. In fact, “physical equipment” is composed of physical equipment which has Component as 

exploitation mode. Also, “physical equipment” cannot be composed by itself. 

ComposedBy  ≡ PhysicalEquipment ? X  ⨅ ( PhysicalEquipment ? Y ⨅ ���_������������_����(PhysicalEquipment ? Y ��������� )) 

Other specific rules and formulas will be left to the evolution tasks and the choice of users (ontologists who 

will exploit the ontology). Here we show only some examples of rules that can be edited. We edit these rules 

through the description logic ALCQHI. The rules can then be translated and edited by the implementation 

language if it allows rule definition. Rules enrich the ontology and allow greater semantic reasoning as well as 

understandability. 

For example, because of the following defined rule, the identification of critical components is possible 

without defining a new concept called “critical component”. The rule describes “critical component” as any 

physical equipment having a functional-degree property value greater than or equal to five.  

CriticalComponent  ≡ PhysicalEquipment ⨅  (≤ ����������� − ������   5) 



13 

 

3.2.5 Conceptual model 

The Unified Modeling Language (UML) may be a good candidate for representing ontologies and 

knowledge (Cranefield S. , 2001). Cranefield and Purvis in (Cranefield & Purvis, 2000) noted that UML models 

have some common features regarded as characteristic of the declarative knowledge representation paradigm 

(Bézivin, 2000). Knowledge expressed via UML is easily accessible for human comprehension. In a UML 

model, knowledge can be changed easily due to the modular nature of object-oriented modeling. Also, new 

knowledge can be derived from UML models by reasoning their contents (Cranefield S. , 2001). From this point 

of view, UML can be regarded as an appropriate candidate for knowledge representation. Cranefield focuses on 

the benefits of using UML as an ontology language, Bézivin stresses that UML addresses the concept of 

representation and more specifically the ontology definition presented in (Charlet, Bachimont, & Troncy, 2004). 

In this study we adopted the UML class diagram to formalize IMAMO. This choice is supported by the graphical 

expressivity and the semantic power of UML recommended in the various investigations mentioned above. This 

expressivity facilitates the exchange between domain experts and human understanding of the ontology. Also, 

the ontology of the domain, although formalized independently of the reasoning methods, has a structure which 

depends on how acquired knowledge will be used for reasoning since experts deliver knowledge adapted to their 

reasoning. Reasoning methods will be considered in the implementation phase.  

For the best understandability and in order to obtain a more readable representation, especially on the 

relationship level, the class diagram has been separated into eight views, according to the layer classification 

used in the phase of glossary identification. We note that these views do not present sub-ontologies or packages. 

These views are:  

- the structural view, which presents the equipment composition and is related to the equipment analysis 

layer. The conceptualization of this view is presented in Fig. 3. Table 3 is its appropriate data 

dictionary; 

- the functional and dysfunctional view, which characterizes different functionalities of the equipment 

and its components, as well as the fault diagnosis and expertise field. Fig. 4 shows the conceptualization 

of this view and Table 4 presents its related data dictionary; 

- the event view which presents the triggering events launched after failures and/or degradation, related to 

the fault diagnosis and expertise field. Fig. 5 shows the appropriate conceptualization of this view and 

Table 5 presents it related data dictionary; 

- the informational view, which presents various resources (documents, human, software, tools, 

indicators, etc.), related to equipment and maintenance tasks as well as to maintenance strategy and 

processes, and also related to the resource management and maintenance strategy management layers. 

The conceptualization of this view is presented in Fig. 6. Table 6 is its appropriate data dictionary; 

- the interventional view presenting concepts related to the intervention process. The conceptualization of 

this view is presented in Fig. 7. Table 7 is its appropriate data dictionary; 

- the strategy view, which presents the managerial aspects of maintenance strategy and contracts. Fig. 8 

shows the appropriate conceptualization of this view and Table 8 presents it related data dictionary; 



14 

 

- the process view, which presents all technical, administrative and managerial processes. The 

conceptualization of this view is presented in Fig. 9 and its appropriate data dictionary is presented 

inTable9; 

- the middle-of-life view, which presents concepts allowing the equipment’s life cycle to be tracked. 

Please see Fig. 10 and Table 10, presenting respectively the conceptualization and the data dictionary of 

this view.  

3.3 Formalization 

To transform the conceptual model into a formal model, it must be formalized using frame-oriented or 

description logic representation systems. 

 With the UML model we cannot know whether the ontology design correctly models the knowledge. 

However, the expressiveness of the UML constructs may lead to implicit consequences that can go undetected 

by the designer in complex diagrams and cause various forms of inconsistencies or redundancies in the 

ontological model (Berardi, Calvanese, & De Giacomo, 2005). Hence, it would be highly desirable to 

automatically detect relevant formal properties of the UML ontology model such as the above-mentioned 

inconsistencies and redundancies. To render the model operational, it must be formalized (Van Der Straeten, 

Simmonds, Mens, & Jonckers, 2003). 

We thus decided to use a description logic variant as the representation language of IMAMO, given its 

properties of decidability, subsumption, and its inference possibilities.  

For the encoding of our class diagram in ALCQHI, we used the same approach as in (Berardi, Calvanese, & 

De Giacomo, 2005). While all associations are binary in our ontology’s UML model, they can be translated in 

the same way as an aggregation, with the extra assertions for an association ASSOC between the classes C1 and 

C2: ∃ ASSOC  ⊑ C1 and ∃ ASSOC  ⊑ C2. 

For example, the association between the relation has-top-model and between the Physical-equipment and 

Equipment-model concepts will be translated as follows: 

∃PhysicalEquipment_Has_EquipmentModel  ⊑ EquipmentModel    

��� 

 ∃ PhysicalEquipment_Has_EquipmentModel ⊑ PhysicalEquipment 

PhysicalEquipment_Has_EquipmentModel  ⊑ EquipmentModel ⨅  PhysicalEquipment 

We notice that in most cases when defining the relation’s name we compose this one of a combination of a 

verb with the two related concepts as in the example presented above. 

3.4 Implementation 

After formalizing, we subsequently translated the formalized model of IMAMO into PowerLoom. Despite 

the current availability of version 4.0, we chose to work with version 3.2.0 since it is stable whereas version 4.0 

is as yet a beta version. 



15 

 

In addition, it should be noted that a PowerLoom exporter for the Protégé editor has been implemented. It 

can write ontologies using the Protégé frame language in PowerLoom, either fully native or with support for the 

system concepts from Protégé. Moreover, the PowerLoom GUI (or knowledge editor), a Java-based graphical 

client for PowerLoom, is now a standard feature and available with PowerLoom starting with version 4.0.  

In this section we present a part of the structural model of the equipment implemented by PowerLoom. Each 

UML class is translated into a PowerLoom concept using the ”DEFCONCEPT” command. Associations and 

attributes of classes are translated into a PowerLoom relation or function using the ”DEFFUNCTION” and 

”DEFRELATION” commands. 

(DEFMODULE "/PL-KERNEL-KB/PL-USER/ONTOLOGIE-MAINTENANCE" 

:DOCUMENTATION "Module for Maintenance" 

:INCLUDES ("PL-USER")) 

(IN-MODULE "/PL-KERNEL-KB/PL-USER/ONTOLOGIE-MAINTENANCE") 

(IN-DIALECT: KIF) 

(DEFCONCEPT PHYSICAL-EQUIPMENT) 

(DEFRELATION PHYSICAL-EQUIPMENT-ID ((?C PHYSICAL-EQUIPMENT) (?EQUIPMENET-ID 

STRING))) 

(DEFRELATION PHYSICAL-EQUIPMENT-COAST ((?C PHYSICAL-EQUIPMENT) (?COAST DOUBLE))) 

(DEFRELATION PHYSICAL-EQUIPMENT-CONSTRUCTOR ((?C PHYSICAL-EQUIPMENT) (?CONSTRUCTOR 

STRING))) 

(DEFRELATION PHYSICAL-EQUIPMENT-CONSTRUCTION-DATE ((?C PHYSICAL-EQUIPMENT) 

(?CONSTRUCTION-DATE DATE))) 

(DEFRELATION PHYSICAL-EQUIPMENT-PURSHASE-DATE ((?C PHYSICAL-EQUIPMENT) (?PURSHASE-

DATE DATE))) 

(DEFRELATION EQUIPMENT-HAS-TOP-MODEL ((?E PHYSICAL-EQUIPMENT) (?MG EQUIPMENT-

MODEL))) 

(DEFRELATION EQUIPMENT-COMPOSED ((?E PHYSICAL-EQUIPMENT) (?COM PHYSICAL-

EQUIPMENT))) 

(DEFFUNCTION FUNCTIONNAL-DEGREE ((?C PHYSICAL-EQUIPMENT)) :->(?N INTEGER)) 

(DEFCONCEPT EQUIPMENT-MODEL) 

(DEFRELATION EQUIPMENT-MODEL-INHERITS ((?MG1 EQUIPMENT-MODEL) (?MG2 EQUIPMENT-

MODEL))) 

(assert (forall (?x ?y)  

 (=> ( and (EQUIPMENT-COMPOSED ?x ?y) (not equivalent (?y ?x)))))) 

(DEFCONCEPT EXPLOITATION-MODE) 

(DEFCONCEPT COMPONENT (? EM EXPLOITATION-MODE)) 

(DEFRELATION HAS-EXPLOITATION-MODE ((?PE PHYSICAL-EQUIPMENT) (?EM EXPLOITATION-

MODE))) 

(DEFCONCEPT SENSOR (?C PHYSICAL-EQUIPMENT)) 

3.5 Evaluation 



16 

 

Let us remember that the evaluation activity in METHONTOLOGY is a support activity that must be 

applied within the main development activities. Its role is to evaluate this investigation and thus we present it in 

a separate section including different evaluations undertaken throughout the development process of IMAMO.  

In fact, evaluation activity can lead us to propose an ontology of good quality according to conceptual, 

operational and functional levels. 

However, these different levels of evaluation do not guarantee that user expectations will be met when 

the ontology is in use since it is precisely at that moment that its performance or shortcomings will 

appear. Ontology evaluation is not entirely satisfactory at present. There are metrics and approaches that 

qualify this, but cannot attest to the real quality of the ontology. 

Sensitive to the evaluation problem, Brank et al. (Brank, Grobelnik, & Mladenić, 2005) conducted a 

study of evaluation approaches and have identified four types: 

- the first is based on comparing the ontology to a “gold standard”, hence the necessity of its existence; 

- the second is based on using the ontology in an application and evaluating the results;  

- the third involves comparisons with a source of data in the domain to be covered by the ontology;  

- finally, the fourth approach, in which evaluation is carried out by humans who try to assess how well 

the ontology meets a set of predefined criteria, standards, requirements, etc. 

 Brank et al. stated that the selection of a suitable evaluation approach depends on the purpose of the 

evaluation, on the application for which the ontology is to be used, and on which aspect of the ontology is being 

evaluated (Brank, Grobelnik, & Mladenić, 2005). In contrast, another survey, presented by Obrst et al. (Obrst, 

Werner, Inderjeet, Steve, & Smith, 2007), describes evolution strategies and highlights current ontology 

evaluation techniques such as criteria, questions and aspects. 

However, while several techniques and methods for evaluating ontologies have been developed aiming at 

estimating and evaluating well-domain ontologies, there is no standardized, objective and widely-accepted 

evaluation method. 

The aim of our evaluation is, firstly, to verify
28

 and validate
29

 IMAMO. Secondly, our aim is to assess the 

quality of this ontology and to highlight its additional value for maintenance systems and actors, as well as to 

provide new users with sufficient information to promote the use of this ontology (the extent of the maintenance 

domain coverage). Another aim of this evaluation is to focus on its weak points in order to facilitate maintenance 

and evolution tasks.  

We evaluate IMAMO using the four types of approach identified by Brank et al., and endeavor to give the 

most comprehensive answers possible. 

Moreover, given the absence of a gold standard in the maintenance domain (refers to the third 

approach identified by Brank et al.) and with IMAMO already reusing various concepts from standards and 

                                                             
28

According to NeOn glossary, ontology verification is the ontology evaluation which compares the ontology against the 

ontology specification document (ontology requirements and competency questions), thus ensuring that the ontology is built 

correctly (in compliance with the ontology specification) (Suárez-Figueroa & Gómez-Pérez, 2008). 
29

According to NeOn glossary, ontology validation is the ontology evaluation that compares the meaning of the ontology 

definitions against the intended model of the world aiming to conceptualize (Suárez-Figueroa & Gómez-Pérez, 2008). 



17 

 

models of the domain such as MIMOSA-CRIS, SMAC model and SMO, our evaluation of IMAMO includes 

two main steps related to three other approaches: 

- Evaluation of the quality of the conceptual model according to certain metrics, and 

- Business-oriented evaluation based on the added value of the ontology by respectively using evaluation 

approaches by humans and implementation. This evaluation falls within the aim of respectively validating 

and verifying the ontology by: 

o Checking the functionalities of IMAMO via a question/answer method; 

o Evaluating applicability and knowledge exploitation by querying the reasoning engine associated to 

the ontology and evaluating the results. 

3.5.1 Quality of the conceptual model   

3.5.1.1 Background 

In accordance with Tartir et al. (Tartir, Arpinar, Moore, Sheth, & Aleman-Meza, 2005), assessing the quality 

of an ontology is important for several reasons, including allowing the developer to automatically recognize 

areas that might need more work, and to know what parts of the ontology might cause problems. Different 

dimensions are available for assessing the quality of an ontology. We are interested in the quality metrics 

presented by (Tatir & Budak Arpinar, 2007). We use the metrics of schema evaluation to evaluate the success of 

the ontology’s UML model of the real-world domain of maintenance: how classes are organized, how the depth, 

richness, breadth, and height balance of the ontology schema inheritance tree can play a role in quality 

assessment.  

To understand the metrics that have been used and the discussion below, it is important to know the 

following as referred to (Tatir & Budak Arpinar, 2007): 

Ontology structure (schema):An ontology schema is a sextuple O := {C, P, A, HC
, prop, att}, consisting 

of two disjoint sets C and P whose elements are called concepts and relationships, respectively, that is to say a 

concept hierarchy HC. HC 
is a directed, transitive relation HC

⊆C × C which is also called concept taxonomy. 

HC
(C1, C2) means that C1 is a sub-concept of C2, a function prop: P → C × C, that relates concepts non-

taxonomically. The function att: A → C relates concepts with literal values. 

Relationship Richness: This metric reflects the diversity and the placement of relations in the ontology. An 

ontology that contains many relations other than class-subclass ones is richer than a taxonomy that has only 

class-subclass relationships. Formally, the relationship richness (RR) of a schema is defined as the ratio of the 

number of relationships (P) defined in the schema, divided by the sum of the number of subclasses (SC) (which 

is the same as the number of inheritance relationships) plus the number of relationships. 

Attribute Richness: The number of attributes that are defined for each class can indicate both the quality of 

ontology design and the amount of information pertaining to instance data. In general, we assume that the more 

slots there are defined, the more knowledge the ontology conveys. Formally, the attribute richness (AR) is 

defined as the average number of attributes (slots) per class. It is computed as the number of attributes for all 

classes (att) divided by the number of classes (C). 



18 

 

Inheritance Richness: This measure describes the distribution of information across different levels of the 

ontology’s inheritance tree, or the fan-out of the parent classes. This is a good indication of how well knowledge 

is grouped into different categories and subcategories in the ontology. This measure can distinguish a horizontal 

ontology from a vertical one, or an ontology with different levels of specialization. A horizontal (or flat) 

ontology is one that has a small number of inheritance levels, each class having a relatively large number of 

subclasses. In contrast, a vertical ontology contains a large number of inheritance levels where classes have a 

small number of subclasses. This metric can be measured for the entire schema or for a sub-tree of the schema. 

Formally, the inheritance richness of the schema (IRs) is defined as the average number of subclasses per class.  

3.5.1.2 Interpretations of IMAMO   

Before applying these metrics to IMAMO, we note that its UML class diagram contains: 

- 200 Relations (P),  

- 110 Concepts (classes) (C), 

- 61 Subclasses (SC) and  

- 91 Attributes (att). 

In Table 11, we include a summary of the calculation of IMAMO’s metrics and their associated interpretation. 

3.5.2 Business evaluation of the ontology 

The business evaluation of the ontology deals with the application of various classes of reasoning for 

checking the consistency of the ontology, checking whether the concepts and their subsumption are 

satisfactory, and checking the classification of instance. Thus, these classes of reasoning are used to evaluate the 

answers of conjunctive queries over a knowledge base. The first part of this evaluation involves checking 

business and technical functionalities, and the second deals with querying the knowledge base according to 

different use cases. 

3.5.2.1 Ontology validation: checking functionalities 

This part is based on the “question asking” approach including in the human verification approach, to check 

whether certain of the ontology’s functionalities are enabled on IMAMO. These questions are summarized in 

Table 12 where we try to respond and argue in favor of the “Does IMAMO allow…?” type of question. 

Questions are divided into two categories. Firstly, business questions related to the four fields of the 

maintenance process identified by Rasovska et al. (Rasovska I. , 2006) concerning the equipment analysis, 

diagnosis and expertise, resource management and maintenance strategy. The second category deals with 

the technical functionalities that can be operated in the ontology. 

3.5.2.2 Ontology verification: use cases and querying  

IMAMO has already been already tested in a real environment. It is integrated in a software platform that 

manages the maintenance of SISTRE a “System of Industrial Supervison of pallet TRansfEr” located in the 

AS2M laboratory of the Femto-ST Institute (see Fig.11)  



19 

 

In this section, the application of and tests for IMAMO were performed on SISTRE. The latter represents a 

flexible production system and is composed of five robotized work stations which are served by a transfer 

system of pallets organized into double rings (internal and external). Each station is equipped with pneumatic 

actuators (pushers, pullers and indexers) and electric actuators (stoppers) as well as a certain number of inductive 

sensors (proximity sensors). An inductive read/write module enables identification and location of each pallet 

and provides information relative to the required operation at a specific station. The pallets are moved by friction 

on belts run by electric motors. Each pallet has a magnetic label that is used as an onboard memory that can be 

read at each work station by means of magnetic read/write modules (Balogh) and that allows the product 

assembly sequence to be memorized. These labels thus enable determination of the pallet’s path through the 

system. The pallets are conveyed on the interior ring which ensures transit between the various stations. When 

the pallet must be handled by a robot at the concrete work station (information read on the pallet’s label), the 

latter is shifted onto the external ring where the appropriate work station is located. The work station is situated 

on the external ring and contains pneumatic and electric actuators (puller, pusher, indexer, and stopper) as well 

as inductive sensors (Rasovska I. , 2006). 

Since equipment is central in this field, we will focus on three important cases in maintenance: 

- Equipment expertise, 

- Maintenance intervention on the equipment, 

- Exploitation of equipment’s history of failure in the reuse of knowledge. 

A- The equipment expertise 

The following PowerLoom code specifies how we can assert the PHYSICAL-EQUIPMENT SISTRE, and 

the EQUIPMENT-MODEL PLATEFORME, as well as the associations PHYSICAL-EQUIPMENT-

CONSTRUCTOR "Bosch" of SISTRE, the top-model EQUIPMENT-HAS-TOP-MODEL of SISTRE which is 

PLATEFORME and the association EQUIPMENT-COMPONENT-COMPOSED in order to describe the 

composition of the physical equipment SISTRE: 

(ASSERT (PHYSICAL-EQUIPMENT SISTRE)) 

(ASSERT (PHYSICAL-EQUIPMENT-CONSTRUCTOR SISTRE "Bosch")) 

(ASSERT (EQUIPMENT-MODEL PLATEFORME)) 

(ASSERT (EQUIPMENT-HAS-TOP-MODEL SISTRE PLATEFORME)) 

(ASSERT (EQUIPMENT-COMPOSED SISTRE ROBOT)) 

… 

(ASSERT (EQUIPMENT-COMPOSED SISTRE CONVOYEUR)) 

(ASSERT (EQUIPMENT-COMPONENT-COMPOSED SISTRE CAMERA-DE-SERVEILLANCE)) 

(ASSERT (COMPONENT ENTRETOISE)) 

(ASSERT (EQUIPMENT-COMPONENT-COMPOSED CONVOYEUR ENTRETOISE)) 

(ASSERT (EQUIPMENT-COMPOSED CONVOYEUR COURROIE)) 



20 

 

The set of defined concepts and assertions are included in the knowledge base of the maintenance platform. 

Some constraint rules can be added to enrich this knowledge base and to give greater precision concerning 

concepts such as, for example, the definition of constraint for CRITICAL-COMPONENT which is PHYSICAL-

EQUIPMENT having more than 6 relations of HAS-INTERVENTION:  

 (DEFCONCEPT CRITICAL-COMPONENT ((?P PHYSICAL-EQUIPMENT)) 

  :<<=>> (AND (PHYSICAL-EQUIPMENT ?P) (> (HAS-INTERVENTION ?P ?i) 6))) 

Also, there is some flexibility for the manipulation of PowerLoom. For example, this expression is 

equivalent to the following two expressions: 

(DEFCONCEPT CRITICAL-COMPONENT ((?P PHYSICAL-EQUIPMENT)) 

(DEFRULE CRITICAL-COMPONENT (> (Has-Intervention ?P ?i) 6)) 

The java API of PowerLoom makes it possible to query the knowledge base (e.g. assertion of the ontology). 

This allows us to check the consistency of the ontological model and to verify the correctness of query answers.  

In this example we query the list of all physical equipment. The given answer is not just the physical 

equipment SISTRE but its composition. In our ontology we specified that physical-equipment can be composed 

of items of physical-equipment having components as exploitation mode (see rules defined in section 3.2.4 and 

in Fig. 3). 

PL-USER |= (load "ontologie-maintenance.plm") 

PL-USER |= (in-module "ONTOLOGIE-MAINTENANCE") 

ONTOLOGIE-MAINTENANCE |= (RETRIEVE ALL (PHYSICAL-EQUIPMENT ?PE)) 

There are 28 solutions: 

#1: ?PE=COURROIE 

  #2: ?PE=CONVOYEUR 

  #3: ?PE=DETECTEUR 

  #4: ?PE=ACTIONNEUR 

  #5: ?PE=SISTRE 

  … 

#26: ?PE=BAL0 

#27: ?PE=TAP-EXT 

  #28: ?PE=TAP-IN 

 

B- The maintenance intervention on the equipment 

In addition, the implicit relations between concepts can be retrieved via PowerLoom’s Java API. The first 

and second queries concerning interventions can be as expressive examples. 

First Query: 



21 

 

ONTOLOGIE-MAINTENANCE |= (RETRIEVE ALL (Has-Intervention TEST02 ?I)) 

There are 2 solutions: 

#1: ?I=INTERVENTION-5 

#2: ?I=INTERVENTION-9 

Second Query: 

ONTOLOGIE-MAINTENANCE |= (RETRIEVE ALL (EXISTS (?D)  

(AND   (EQUIPMENT-SCADA ?D TEST02) 

(EXISTS (?M) (AND  (DATA-ACQUISITION-SYSTEM-CATCH-MEASURE ?D ?M)  (EXISTS (?T) 

(AND (MEASURE-TRIGGER-EVENT ?M ?T)                                                                        

(EXISTS (?WR) (AND     (WORK-REQUEST-ORIGIN ?WR ?T)                                                                              

(HAS-WORK-REQUEST ?I ?WR)))                                                         

))  )) )) ) 

There are 2 solutions: 

#1: ?I=INTERVENTION-5 

#2: ?I=INTERVENTION-9 

PowerLoom’s reasoning engine can infer from IMAMO ontology the various maintenance interventions 

carried out on equipment through explicit and implicit relations. 

C- Third use case: knowledge exploitation and reuse 

In this section we present a simple example checking the possibility of exploiting existing knowledge to 

extract new knowledge. Our case study deals with knowledge about reusable components after disassembly of 

SISTRE. Knowledge necessary to the finding of reusable components exists in the knowledge base, but it is not 

exploited. We thus simply need to edit a new “abstract relation” defining reusable components. Then via the 

PowerLoom reasoning engine we can retrieve the list of reusable components in SISTRE. The following 

commands define a reusable component as one that has a functional period of less than 60000 hours, or fewer 

than three failures in operating mode. We consider that the functional period of a component is the same as that 

for physical equipment. Fig.12 shows the part of the ontology used to define this rule.  

DEFRELATION REUSABLE-COMPONENT-OF ((?PE PHYSICAL-EQUIPMENT) (?COM PHYSICAL-

EQUIPMENT))  :=> 

(OR 

AND( 

(HAS-EXPLOITATION-MODE ?COM ?EM)  

AND ((HAS-FUNCTIONAL-PERIOD ?EM ?FP) 

 (> (SUM (NUMBER-HOURS ?FP ?NH))60000) 

) 

  )  

(AND (HAS-PERIOD ?EM ?P)  

 AND ((DURING ?P ?OM) 



22 

 

  AND((TRUE(FAILURE-STATE ?OM)) 

   (>(COUNT(STATE_ID ?OM ?X))3) 

  )  

 ) 

) 

)   

The following query gives the list of all reusable components of SISTRE:  

ONTOLOGIE-MAINTENANCE |= (RETRIEVE ALL (REUSABLE-COMPONENT-OF SISTRE ?RC)) 

There is 1 solution: 

  #1: ?RC= ACTIONNEUR 

Thus, we note that “ACTIONNEUR” is the only reusable component of SISTRE. This information was 

unknown, but, through the defined relation that can be used on any physical equipment, new knowledge 

concerning the reusability of components can be extracted from the knowledge base. This type of extracted 

knowledge gives an added value to the maintenance system in support of decisions for cost decreases. 

3.6 Maintenance guidelines 

According to Yildiz (Yildiz, 2006) ontologies change and maintenance can take several forms: modification, 

versioning and evolution. 

It is to be noted that defining maintenance operations for ontologies is not easy (Yildiz, 2006) since all 

possible resulting effects for the components of an ontology must be taken into account when a change is made. 

Klein (Klein, 2004) identifies three kinds of changes: conceptual (e.g. changing concept relations), specification 

(e.g. adding new properties [attributes] to a concept) and representation (i.e. formalization and or implementation 

phases through the use of another language for ontology representation). 

Consequently, IMAMO can evolve according to two kinds of change: conceptual and specification. As 

mentioned in the evaluation section, one of the main evolutions needed for IMAMO is the addition of concept 

attributes. Also, as mentioned in the integration section, other ontologies can be integrated and reused to enrich 

IMAMO.  

In addition to these aims, an initiative has been launched to create a website for IMAMO after the end of the 

SMAC project. This will render the ontology more widely accessible to the academic and industrial 

communities, ensure greater sharing and thus initiate collaborative evolution and versioning. 

Concerning the versioning that Klein (Klein, 2004) defines as “the ability to manage ontologies changes 

their effects by creating and maintaining different variants of the ontology”, this form of change is very 

important in the life cycle of IMAMO, considering that the major benefits of this ontology are its reuse and 

interoperability. This functionality is essential while the ontology is generic and will be used in different 

applications in the maintenance field. Two cases are to be noted: in the first, new versions of IMAMO can be 

shared amongst all these applications; in the second, with each new application a specific local version of 

IMAMO will be developed. Despite the differences between local versions, interoperability among them must 

also be ensured (Karray, Chebel-Morello, & Zerhouni, 2010).   



23 

 

4 Discussion and future study 

As mentioned above, the creation of IMAMO favors two points, both the exploitation and the sharing of 

knowledge, as well as semantic interoperability on the maintenance platform.  

Concerning the first point, we can exploit the capabilities of the PowerLoom classifier so as to reason in 

terms of the relations between IMAMO’s concepts for the generation of new knowledge models for the support 

maintenance actors, for example the generation of the behavior model of equipment using relations between 

concepts presenting the structure of the equipment, and those presenting functions and requirements shown in 

the functional and dysfunctional view of the UML model. We are also currently working to integrate a self-

learning module exploiting this ontology so that the platform’s behaviors can evolve. In addition, and in 

perspective, we plan to investigate the development of an intelligent module of diagnosis based on equipment 

behavior models generated from IMAMO by means of the concepts and relation presented in the functional and 

dysfunctional views. 

In order to resolve interoperability problems, our aim is also to share IMAMO for exploitation by the 

maintenance support applications that will be integrated within the maintenance platform. This exploitation can 

be simple, which means that the ontology is to be exploited as it is. For other cases, where IMAMO evolves 

locally in these integrated applications, we have developed an initial version of a semantic mediator system 

ensuring interoperability between the different local versions (Karray, Chebel-Morello, & Zerhouni, 2010) and 

we are working to enhance this system and to integrate it within the maintenance platform. 

In contrast, within the field of semantic interoperability, in a large-scale maintenance information system, 

the mapping between domain ontologies would be easier if the ontologies to be mapped were derived from a 

standard upper ontology (Obrst, Semy, & Pulvermacher, 2004). It would be useful if we could link our ontology 

to an upper and already existing one. Two approaches exist for the use of upper ontologies: top-down and 

bottom-up (Uschold & Gruninger, 1996). Since IMAMO’s concepts were not derived from an upper ontology, 

we must adopt the bottom-up approach and proceed to map our ontology with an upper one. This approach also 

capitalizes on the knowledge built into the upper ontology, but one would expect the mapping to be more 

challenging, as inconsistencies may exist between the maintenance domain and upper ontology to be adopted. In 

fact, a variety of upper ontologies are available such as Suggested Upper Merged Ontology (SUMO)
30

, Upper 

Cyc Ontology
31

, Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)
32

 and 

WordNet
33

.Indeed, after a manual research through the SUMO and WordNet glossaries, we observed that several 

IMAMO concepts have already been defined as concepts in WordNet: equipment, actor, period, activity, 

process, resource and lubricant are a few examples. Consequently, we manually mapped all IMAMO concepts 

with WordNet and found that forty one (41) of the 110 concepts defined in IMAMO are already defined as 

concepts in this upper ontology, thirty three concepts can be classed among the sub-concepts of concepts defined 

                                                             
30
http://www.ontologyportal.org/ 

31
http://www.cyc.com/ 

32
http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf 

33
http://wordnetweb.princeton.edu 



24 

 

(e.g. maintenance strategy is considered as a sub-class of strategy, equipment group is considered as a sub-class 

of group, equipment mode is considered as a sub-class of mode, etc.). 

Finally, the creation of IMAMO allowed us to take a close look at the delicacy and the difficulty of the tasks 

of ontology development: meeting the expectations of users, covering all the domain’s aspects and respecting its 

requirements and standards. 

 The METHONTOLOGY methodology, by way of the very good structure of its activities, has guided us 

well. Nevertheless, we must insist on the importance of adding some kind of formal generic competency 

questions that will help ontology developers to better specify their needs and requirements before undertaking 

development, questions to guide them during the specification activity and also to help them produce better 

specification documents. Such a test might enable them to better identify the sources of knowledge. Given the 

importance and the impact of the specification activity throughout the development process, we recommend that 

it be enhanced and formalized through the addition of a guide for good practices.   

5 Conclusion  

In the landscape of industrial maintenance today, systems integration and collaboration are believed to be 

the key enabling technologies that drive industrial maintenance management systems towards improved 

productivity and efficiency. From the pursuit of these aims emerges the prospect of integrated maintenance 

platforms aiming to provide maintenance actors with the right information exploitable at the right time. To reach 

these aims, the integrated maintenance platform features of semantic interoperability and knowledge sharing 

must be reinforced.  

Indeed, ontologies provide a basic conceptual structure that is semantically unambiguous, requiring a formal 

and explicit representation of the domain that can be shared and reused. We thus adopted an ontology 

engineering approach that meets both of these requirements. 

Due to the lack of a domain ontology covering all aspects of industrial maintenance, despite the presence of 

some standards in the field and different specific ontologies, in this study we have built a domain ontology called 

IMAMO (Industrial Maintenance Management Ontology) that we have presented in its development life cycle. 

After an overview of different state-of-the-art methodologies of ontology creation, we adopted 

METHONTOLOGY due to its stability and maturity in comparison to other methods, as well as for its structured 

activities covering the entire life cycle of ontology development. In addition, a look at some state-of-the-art 

languages and ontology creation tools led us to choose the description language PowerLoom and its Java API for 

the development of IMAMO. 

Furthermore, in the IMAMO life cycle, support activities such as "knowledge acquisition" and "integration" 

enabled us to better perform development activities such as "specification" and "conceptualization". In these 

support activities we took into account previous works on standards and projects produced in the field of 

maintenance, such as the MIMOSA-CRIS conceptual model of the maintenance process (Rasovska, Chebel–

Morello, & Zerhouni, A mix method of knowledge capitalization in maintenance, 2008) and the ontology of 



25 

 

diagnosis and help system repair (Rasovska, Chebel -Morello, & Zerhouni, 2005), or those related to 

maintenance such as the SOM model from the PROMISE project, as well as software maintenance ontologies.  

Regarding the conceptualization activity, we chose the UML class diagram for a semi formal 

conceptualization, motivated by the expressiveness of that language. 

Thus, to obtain a readable and understandable model, particularly concerning the relations between 

concepts, we broke the class diagram down into eight views according to their points of focus. 

To transform the conceptual model into a formal model, we used a presentation system allowing the 

encoding of class diagrams in ALCQHI (a variant of description logic), after which we implemented this formal 

model using PowerLoom 3.2.0. 

While the evaluation activity supports the creation of high quality ontologies at the conceptual, operational 

and functional levels, these different levels of evaluation do not guarantee a perfect match with the expectations 

of the user operating the ontology. Indeed, it is when the ontology is actually used that any performance gaps are 

detected. 

Thus, knowing that there is no standardized, objective nor any widely accepted methods for ontology 

evaluation, to evaluate IMAMO we based our work on and sought answers within the four types of approach 

identified by Brank et al. 

An initial evaluation of the quality of the conceptual model according to the metrics describing ontology 

conceptualization allowed to us to come to some conclusions. Hence, our ontology is not a hierarchy; it is rich in 

its inheritance and other relationships. Also, it is a hybrid, striking a balance between generality and explicitness, 

but it is poor in terms of attributes. In contrast, a second, business-oriented, evaluation focused on the added 

value of the ontology by respectively using the human evaluation and application approaches. Thus, this business 

evaluation allowed us to observe the wealth of manipulations via the PowerLoom classifier as well as the 

possibilities of ensuring semantic interoperability and knowledge generation. 

In the final development activity in METHONTOLOGY which is the maintenance activity, we discussed 

the possible evolution that IMAMO may undergo as to specification and versioning. 

The bottom-up approach to mapping was manually applied to IMAMO, mapping it to the upper ontology 

WordNet. We observed that 30 concepts (equipment, actor, period, activity, process, resource, lubricant, etc.) 

have already been defined in that ontology and, consequently, IMAMO can be mapped to other ontologies 

derived from it. 

ACKNOWLEDGMENT 

This work was carried out and funded in the framework of SMAC project (Semantic-

maintenance and life cycle), supported by Interreg IV programme between France and 

Switzerland. 

 



26 

 

REFERENCES  

Bangemann, T., Rebeuf, X., Reboul, D., Schulze, A., Szymanski, J., Thomesse, J., et al. (2006). PROTEUS 

- Creating Distributed Maintenance Systems through an Integration Platform. Computers in Industry , 539-551. 

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams. Artificial 

Intelligence, 168 , 70–118. 

Bézivin, J. (2000). De la programmation par objets à la modélisation par ontologie. . Journal of Ingénierie 

de connaissances . 

Brank, J., Grobelnik, M., & Mladenić, D. (2005). A survey of ontology evaluation techniques. Proceedings 

of Conference on Data Mining and Data Warehouses .  

Campos, J. (2009). Development in the application of ICT in condition monitoring and maintenance. 

Computers in Industry 60 (1) , 1-22. 

Chalupsky, H., MacGregor, R., & Russ, T. (2010). PowerLOOM manual Powerful knowledge 

representation and reasoning with delivery in Common-Lisp, Java, and C++ Version: 1.48 16. University of 

Southern California. . 

Charlet, J., Bachimont, B., & Troncy, R. (2004). Ontologies pour le Web sémantique. Revue I3, numéro 

Hors Série «Web sémantique» . 

Corcho, O., Fernández, M., Gómez-Pérez, A., & López-Cima, A. (2005). Building legal ontologies with 

methontology and webode. Dans L. a. Web, R. Benjamins, P. Casanovas, J. Breuker, and A. Gangemi (pp. 142–

157). Berlin: Springer-Verlag. 

Corcho, O., Fernandez-Lopez, M., & Gomez-Perez, A. (2003). Methodologies, tools and languages for 

building ontologies: Where is their meeting point? Data & Knowledge Engineering, Vol. 46 , 41-64. 

Cranefield, S. (2001). Networked Knowledge Representation and Exchange using UML and RDF. Journal 

of Digital Information, Vol 1, No 8 . 

Cranefield, S., & Purvis, M. (2000). Extending agent messaging to enable OO information exchange. 

Proceedings of the 5th European Meeting on Cybernetics and Systems Research.  

Fernandez-Lopez, M., & Corcho, O. (2004). Ontological Engineering. Berlin: Springer-Verlag. 

Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology: from ontological art towards 

ontological engineering. Proceedings of Symposium on Ontological Engineering of AAAI . 

Fox, M. (1992). The TOVE Project, Towards a Common Sense Model of the Enterprise. Enterprise 

Integration . 

Frankovic, B., & Budinska, I. (2006). The role of ontology in building of knowledge systems for industrial 

applications. Proceedings of the 4th Slovakian - Hungarian Joint Symposium on Applied Machine Intelligence, 

(pp. 15-25). 



27 

 

Gómez-Pérez, A. F. (1996). Towards a Method to Conceptualize Domain Ontologies . Proceedings of the 

Workshop on Ontological Engineering. ECAI'96. (pp. 41-52). Budapest. Hungary. 

Grüninger, M., & Fox, M. S. (1994). The Role of Competency Questions in Enterprise Engineering. Dans 

A. Rolstadas, Benchmarking—Theory and Practice (pp. 83–95). London: Chapman and Hall. 

Guarino, N. (1998). Formal Ontology and Information Systems. Proceedings of FOIS’98: Formal Ontology 

and Information Systems (pp. 3-15). Trento: Italy: IOS Press. 

Guarino, N., & Welty, C. (2002). Evaluating Ontological Decisions with OntoClean. Communications of the 

ACM. 45(2) , 61-65. 

Hung, M., Chen, K., Ho, R., & Cheng, F. (2003). Development of an e-diagnostics / maintenance 

framework for semiconductor factories with security considerations. Advanced Engineering Informatics , 165-

178. 

Jardine, A. K., Daming, L., & Banjevic, D. (2006). review on machinery diagnostics and prognostics 

implementing condition-based maintenance. Mechanical Systems and Signal Processing , 1483-1510. 

Kaffel, H. (2001). La maintenance distribuée: concept, évaluation et mise en oeuvre. Quebec: Thèse de 

doctorat, Université Laval,. 

Kahn, J. (2003). Overview of MIMOSA and the Open System Architecture for Enterprise Application 

Integration. Proceedings of the 8th Condition Monitoring and Diagnostic Engineering Management 

(COMADEM), (pp. 661-670). Växjö University, Sweden. 

Karray, M. H., Chebel-Morello, B., & Zerhouni, N. (2010). A contextual semantic mediator for a distributed 

cooperative maintenance platform. Proceedings of 8th IEEE International Conference on Industrial Informatics 

(INDIN'10). Osaka: Japan. 

Karray, M. H., Chebel-Morello, B., & Zerhouni, N. (2009). Toward a maintenance semantic architecture. 

Proceedings of the Fourth World Congress on Engineering Asset Management (WCEAM) (pp. 98-111). Athens: 

Springer-Verlag London . 

Kitamura, Y., & Mizoguchi, R. (1999). An Ontological Analysis of Fault Process and Category of Faults. 

Proceedings of Tenth International Workshop on Principles of Diagnosis, (pp. 118-128).  

Kitamura, Y., & Mizoguchi, R. (1998). Functional Ontology for Functional Understanding. . International 

Workshop on Qualitative Reasoning (QR-98) (pp. 77-87). Cape Cod, USA: AAAI Press. 

Kitchenham, B., on Mayrhauser, A., Niessink, F., Schneidewind, N., Singer, J., Takada, S., et al. (1999). 

Towards an Ontology of Software Maintenance. Journal of Software Maintenance: Research and Practice 11 . 

Klein, M. (2004). Change Management for Distributed Ontologies. PhD thesis, Department of Computer 

Science, Vrije Universiteit Amsterdam. 

Lee, J., Liao, L., Lapira, E., Ni, J., & Li, L. (2009). Informatics Platform for Designing and Deploying e-

Manufacturing Systems. Collaborative Design and Planning for Digital Manufacturing , 1-35. 



28 

 

Levrat, E., Iung, B., & Crespo-Marquez, A. (2008). e-Maintenance: review and conceptual framework. 

Production Planning & Control 19 (4) , 1-22. 

Liyanage, J., & Kumar, U. (2003). Towards a value-based view on operations and maintenance performance 

management. Journal of Quality in Maintenance Engineering,Vol. 9 , 333–350 . 

March, S., Hevner, A., & Ram, S. (2000). Research commentary: An agenda for information technology 

research in heterogeneous and distributed environment. Information System Research 11, 4 , 327–341. 

Matsokis, A., & Kiritsis, D. (2009). An Ontology-based Approach for Product Lifecycle Management. 

Computers in Industry. Special Issue: Semantic Web Computing in Industry . 

Matsokis, A., Karray, M., Morello-Chebel, B., & Kiritsis, D. (2010). An Ontology-based Model for 

providing Semantic Maintenance. Proceedings of the 1st IFAC workshop on Advanced Maintenance 

Engineering, Services and Technology (A-MEST’10).  

Mizogouchi, R., & Bourdeau, J. (2004). Le rôle de l’ingénierie ontologique dans le domaine des EIAH. 

Revue STICEF, Volume 11 . 

Mizoguchi, R. (2004). Tutorial on ontological engineering. . New Generation Computing 22(2) , 198-220. 

Muller, A., Marquez, A. C., & Iung, B. (2008). On the concept of e-maintenance: Review and current 

research. Journal of Reliability Engineering and System Safety , 1165–1187. 

Obrst, L., Semy, S., & Pulvermacher, M. (2004). Upper Ontology Distinctions for Use in U.S. Government 

and Military Domains. Third International Conference on Formal Ontology in Information Systems, FOIS-04. 

Torino, Italy. 

Obrst, L., Werner, C., Inderjeet, M., Steve, R., & Smith, B. (2007). The Evaluation of Ontologies: Toward 

Improved Semantic Interoperability. Dans J. O. Christopher, Baker, & K.-H. Cheung, Semantic Web: 

Revolutionizing Knowledge Discovery in the Life Sciences. Springer. 

OntoWeb Consortium. (2002). Deliverable 1.3: A survey on ontology tools.  

Pinto, H. S., Tempich, C., & Staab, S. (2004). Diligent: Towards a ¯ne-grained methodology for distributed, 

loosely-controlled and evolving engingeering of ontologies. In Proceedings of the 16th European Conference on 

Arti¯cial Intelligence (ECAI).  

PROMISE. (2008). SOM FP6 project. www.promise.no.  

Rasovska, I. (2006). Contribution à une méthodologie de capitalisation des connaissances basée sur le 

raisonnement à partir de cas : Application au diagnostic dans une plateforme d’e-maintenance. Thèse de 

doctorat, Université de Franche-Comté. 

Rasovska, I., Chebel -Morello, B., & Zerhouni, N. (2005). Process of s-maintenance: decision support 

system for maintenance intervention. Proceedings of the 10th IEEE International Conference on Emerging 

Technologies and Factory Automation. Catania, Italy. 

Rasovska, I., Chebel–Morello, B., & Zerhouni, N. (2008). A mix method of knowledge capitalization in 

maintenance. Journal of Intelligent Manufacturing Volume 19, Number 3 , 347-359 . 



29 

 

Rasovska, I., Morello-Chebel, B., & Zerhouni, N. (2007). Classification des différentes architectures en 

maintenance . Proceedings du 7ème Congrès international de génie industriel. Trois-Rivières, Canada. 

Retour, D., Bouche, M., & Plauchu, V. (1990). Où va la maintenance industrielle. Problèmes Économiques, 

No. 2.159 , 7-13. 

Ruiz, F., Vizcaino, A., Piattini, M., & García, F. (2004). An Ontology for the management of software 

maintenance projects. International Journal of Software Engineering and Knowledge . 

Suárez-Figueroa, M. (2010). NeOn Methodology for Building Ontology Networks: Specification, Scheduling 

and Reuse. PhD Thesis. Universidad Politécnica de Madrid. Available at "http://oa.upm.es/3879/". 

Suárez-Figueroa, M., & Gómez-Pérez, A. (2008). First Attempt towards a Standard Glossary of Ontology 

Engineering Terminology. The 8th International Conference on Terminology and Knowledge Engineering. 

Copenhagen, DENMARK. 

Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P., & Aleman-Meza, B. (2005). OntoQA: Metric-based 

Ontology quality analysis . Proceedings of IEEE Workshop on Knowledge Acquisition from Distributed, 

Autonomous, Semantically Heterogeneous Data and Knowledge Sources.  

Tatir, S., & Budak Arpinar, I. (2007). Ontology Evaluation and Ranking using OntoQA. Proceedings Int. 

Conf. on Semantic Computing (ICSC) . 

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, Methods and Applications. Engineering 

Review 11 No. 2 , 93-113. 

Uschold, M., & King, M. (1995). Towards a Methodology for Building Ontologies. Workshop on Basic 

Ontological Issues in Knowledge Sharing . 

Van Der Straeten, R., Simmonds, J., Mens, T., & Jonckers, V. (2003). Using description logic to maintain 

consistency between UML models. Lecture Notes in Computer Science vol. 2863 , 326–340. 

Welty, C., & Andersen, W. (2005). Towards OntoClean 2.0: a framework for rigidity. Journal of Applied 

Ontology 1(1) , 107-116. 

Yildiz, B. (2006). Ontology Evolution and Versioning. Technical Report, TU Vienna, . 

 

 



30 

 

Table1-ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT 

 

Domain Industrial maintenance 

Name IMAMO: Industrial MAintenance Management Ontology 

Date 2010 

 

Conceptualized by 

 

Mohamed-HediKarray, Brigitte Morello, Thibault Bobyck 

 

Implemented by 

 

Mohamed-HediKarray, Thibault Bobyck 

 

Purpose 

Ontology concerns most concepts of industrial maintenance when 

information about all technical, administrative and managerial activities 

and actions is required in maintenance information systems. This 

ontology can be used to ascertain decision making throughout the life 

cycle of maintenance activities from failure detection to intervention 

and repair. 

Level of Formality Formal 

 

Scope 

Structure of equipment to be maintained, spare parts, monitoring 

activity, failure detection, events, material resources, maintenance 

actors, technical documents, administrative documents, intervention, 

maintenance reports, equipment states, equipment life cycle. 

Sources of Knowledge Standards (AFNOR, MIMOSA..), projects, experts 

 

 



31 

 

Table 2–EXAMPLE OF A REUSE TABLE 

 

Ontologies and models 

sources 

Mapped Concepts Concepts Reused in 

IMAMO 

PROMISE  //  

MIMOSA-CRIS 

Product -- 

Asset 

Physical equipment 

MIMOSA-CRIS   //   

PROMISE 

Model--  

As-designed-product 

Equipment Model  

MIMOSA-CRIS   //   

PROMISE 

Asset type--  

product group 

Equipment group 

MIMOSA-CRIS  //   

SMAC-Model 

site  --   

Location site 

Site 

MIMOSA-CRIS   // 

PROMISE 

Asset Event + Event Type +Measurement Event – 

Event 

Triggering event 

MIMOSA-CRIS  //   

PROMISE 

Measurement Event-- 

Field Data 

Measure 

MIMOSA-CRIS Geoposition Equipment location  + 

Geo-location system 

MIMOSA-CRIS  //   

SMAC-Model 

Alarm type  --  

Alarm 

Alarm 

MIMOSA-CRIS  //     

SMAC-Model 

Work Management Type--  

Process 

Process pattern 

MIMOSA-CRIS  //    

SMAC-Model 

Work Task Type-- 

Process 

Intervention type 

MIMOSA-CRIS  //   

PROMISE 

Work Step --  

Activity 

Step 

MIMOSA-CRIS  //   

PROMISE 

Work Order --  

Document resource 

Work Order 

MIMOSA-CRIS  //   

SMAC-Model 

Work Request--  

Process 

Work request process 

MIMOSA-CRIS  //   

SMAC-Model   //  

SMO 

Agent  -- 

personal resource  --  

Human resource + software resource+ hardware 
resource 

Actor 

MIMOSA-CRIS  //   

PROMISE  //  

SMO 

work step   --  

Activity --  

Maintenance activity 

Maintenance task 

MIMOSA-CRIS  //  

PROMISE  //  

SMO 

Logistic Resource   --  

resource -- 

resource 

Resource 



32 

 

MIMOSA-CRIS  //   

SMAC-Model 

Asset Function  + Model Function  --  

function + function group 

Function  +  sub-function 



33 

 

Table 3 – DATA DICTIONARY OF THE STRUCTURAL VIEW 

Concept Name Synonyms Description 

domain  A specific field of knowledge or expertise (e.g. hydraulics).  

physical 

equipment 

Asset 

Physical- product 

Machine 

Device 

Item 

A tangible, instantiated, serialized object, component, device, subsystem, 

functional unit, equipment or system which can be individually considered 

to be in maintenance. Physical equipment may be an entire facility, an entire 

functioning platform (such as a CH-47 Tail Number XYZ helicopter), or a 

component piece of equipment, such as a specific instance of a bearing. 

transportation 

equipment 

 Specific physical equipment conveyance. A conveyance which may contain 

one or more area (s) of production, a set of maintenance teams, and a set of 

stores. 

For example: A fishing vessel off the coast has its own decomposition  (a 

motor allowing it to move, etc., as well as a production department  that 

cleans and freezes the fish).   

maintenance tool  Specific physical equipment used as a tool to perform maintenance 

activities. This type of physical equipment must also undergo maintenance.  

equipment model 

 

As-designed-

product 

Model 

Conceptual view of physical composition of the equipment. It is comprised 

of the various component models of the components of the physical 

equipment.  

component model  Conceptual view of a component (e.g. model of an electrical motor).  

component  

 

 Component is an exploitation mode that can be played by physical 

equipment. It has the particularity of being found within superior physical 

equipment (e.g. motor3X57H).  

exploitation mode 

 

 Abstraction of a role played by equipment. It presents the state of 

exploitation that can take physical equipment. It can be exploited as a 

component, production equipment, a spare part or be under repair.  

equipment under 

repair 

 Specific exploitation mode affected to physical equipment while it is being 

repaired or is in a maintenance center awaiting repair. 

production 

equipment  

 Specific exploitation mode affected to physical equipment while it is 

exploited in production tasks and/or located in a production area. 

spare part   Specific exploitation mode affected to physical equipment intended to 

replace corresponding physical equipment in order to restore the original 

required function of the physical equipment. Generally, it is located in a 

store. 

equipment 

location 

 Position of physical equipment in a production area (to locate and track the 

equipment’s position). 

area  Particular geographical region (for multisite management). 

sub area  Region that makes up part of an area. 

site 

 

 Place or setting of something. An area or plot of ground with defined limits 

on which a building, project, park, etc., is located or proposed to be located. 

maintenance 

center 

Maintenance 

workshop 

Specific area for maintenance tasks.   

Store  Stock or supply reserved for physical equipment for future use. 

production area  Specific area for production tasks. 

period  Time interval.  

functional period  Typical period during which the equipment must perform certain functions. 

 



34 

 

Table 4 – DATA DICTIONARY OF THE EVENT VIEW 

 

Concept Name Synonyms Description 

Measure Measurement Number or measure or quantity captured by a sensor. 

Magnitude  Greatness of size or amount. It presents the property of relative measure. 

data acquisition 

system 

 Software system (abbreviated with the acronym DAS or DAQ) that 

typically converts analog waveforms generally retrieved from sensors 

into digital values for processing. 

Condition 

 

 Environmental or functional requirement defined to supervise 

(monitoring task) specific physical equipment or a place (e.g. site) by 

the use of sensors and data acquisition systems. 

triggering event 

 

 Something that happens to physical equipment at a given time that 

triggers a specific maintenance process which is a work request process. 

Alarm 

 

 Type of triggering event launched from a data acquisition system 

indicating that there is a measure from a sensor violating some 

conditions concerning a specific equipment or environment. 

improvement request  Triggering event concerning a specific or general request for the 

improvement of physical equipment. An improvement is defined asthe 

combination of all technical, administrative and managerial actions, 

intended to improve the dependability of physical equipment, without 

changing its required function. 

event observed by 

user 

 Type of triggering event concerning a dysfunction of physical 

equipment observed by the user who is a human resource. 

Notification  Type of triggering event giving notice of future events such as planned 

maintenance or the prognostic RUL. 

Prognostic  Type of notification consisting of the health status at a future time and 

the remaining useful life (RUL) of physical equipment. It is the output 

of the prognostic tool.  

prognostic tool  See Table 6. 

maintenance 

scheduler 

 See Table 6.  



35 

 

Table 5 – DATA DICTIONARY OF THE FUNCTIONAL AND DYSFUNTIONAL VIEW 

 

Concept Name Synonyms Description 

function 

 

 Function or a combination of functions of physical equipment which are 

considered necessary to provide a given service. 

sub function  Elementary function in a combination of functions. 

functional 

requirement 

 Need required by physical equipment to perform a particular function. It 

references the input or the output of physical equipment (e.g. the printer 

needs paper, electrical energy and ink in order to print).  

functional 

environment 

 Type of functional requirement presenting the environmental needs (e.g. 

temperature, humidity, etc) of the physical equipment for it to perform its 

functions. 

matter 

 

 Type of functional requirement presenting the raw material (e.g. paper, 

oil, etc.) needed as input by physical equipment to perform a function, or 

the material product provided as output of the physical equipment during 

the performance of a function. 

information 

 

 Type of functional requirement presenting the information (e.g. a value, 

PLC commands, etc.) needed as input by physical equipment to perform a 

function, or the information provided as the output of the physical 

equipment during the performance of a function. 

energy  Type of functional requirement presenting a thermodynamic quantity 

equivalent to the capacity of a physical system (e.g. electric, hydraulic, 

etc) needed as input by physical equipment to perform a function or the 

energy provided as output of physical equipment while performing a 

function. 

functional flow  Relational flow between two components defined by input/output flow. 

equipment input  Input needed by physical equipment to perform a function. It enables 

management of the functional flow. 

equipment output  Output provided by physical equipment while performing a function. It 

enables management of the functional flow. 

operating mode 

 

Availability 

performance 

Ability of physical equipment to be in a state to perform a required 

function under given conditions at a given time or within a given time 

interval, assuming that the required external resources are provided. 

normal state Operating state State when an item is performing a required function. 

degraded state 

 

 State of physical equipment in which it continues to perform a function 

within acceptable limits but which are lower than the specified values, or 

continues to perform only some of its required functions. 

programmed stop Stand by state Non-operating up state during the required time. 

failure state Fault State of physical equipment characterized by inability to perform a 

required function, excluding inability during preventive maintenance or 

other planned actions, or due to lack of external resources. 

trouble  Source of difficulty, a problem. 

dysfunction  Particular trouble presenting an anatomy of function; it means that the 

physical equipment is not able to perform a required function. 

causes 

 

 Relation between troubles. It is the reason which leads to trouble.  The 

reasons may be the result of one or more of the following: design failure, 

manufacturing failure, installation failure, misuse failure, mishandling 

failure, and maintenance- related trouble. 

effects  Relation between troubles. Consequence that follows and is caused by 



36 

 

previous effects. 

degradation  An irreversible process in one or more characteristics of an item with 

either time, use or an external cause. 

failure  Termination of the ability of an item to perform a required function. 

action  Physical action taken to recover and eliminate trouble. 

skill Competence  Ability acquired through deliberate, systematic, and sustained effort to 

smoothly and adaptively carryout complex activities or tasks involving 

ideas, things (technical skills) and/or people (interpersonal skills). 

requirement  not 

complied 

 Particular trouble caused by a non-respect of functional requirement 

needed to ensure the function of the physical equipment.  



37 

 

 

Table 6 – DATA DICTIONARY OF THE INFORMATIONAL VIEW 

Concept Name Synonyms Description 

resource Maintenance 

support 

Resources, services and management necessary to carry out maintenance. 

actor  Person or a computer system that interacts in the maintenance process. 

role  Prescribed or expected behavior associated with a particular position or status in the 

maintenance process. 

manager  Role played by an actor in the maintenance process. It is responsible for the 

managerial tasks in the maintenance process. 

operator  Role played by an actor in the maintenance process. It is responsible for the 

maintenance tasks and especially the intervention process and repair actions. 

expert  Role played by an actor in the maintenance process. It is responsible for the 

maintenance tasks of monitoring, diagnosis, prognostics analyses and especially 

identification of causes of dysfunction and the corresponding repair actions 

necessary. 

human resource  Human actors contributing to the all technical, administrative and managerial 

actions in the maintenance process.  

document  Item containing some information concerning the maintenance domain, controlled 

and identified with a number in a document management System. 

contract 

 

 Specific type of document defining a service agreement between a service provider 

and a physical equipment owner or exploiter for the maintenance of a set of 

physical equipment. The contract may be applicable to an entire model of 

equipment (e.g. for all engines) in one or more areas (area) (e.g. Peugeot site in 

Belfort), or to a set of production equipment (e.g. robot station 1). 

financial 

document 

 Specific type of document containing financial information concerning all 

technical, administrative and managerial actions.  

technical 

documentation 

 Specific type of document containing technical information about physical 

equipment or software resources (such as the user manual, SADT, etc). 

equipment draw  Type of technical documentation containing the design information of the physical 

equipment.  

work order Job order 

Job ticket 

Work ticket 

An order edited by an actor to plan an intervention concerning a work request. It is 

considered as a specific type of document containing information concerning the 

resources allocated to the intervention. It is received by actors designated to ensure 

activities comprising the intervention.  

work request  A specific type of document edited by an actor when a triggering event is detected. 

Each work request is covered by a maintenance contract. The edition of a work 

request document launches the work request process. 

software 

resource 

 Software actors contributing to all technical, administrative and managerial actions 

in the maintenance process.  

maintenance 

scheduler 

 Type of software resource that allows planning, allocation of a significant amount 

of time and a high degree of coordination between different departments, and is 

typically initiated through a work order. It is considered a software resource. 

resource 

scheduler 

 Type of software resource that allows maintenance actors to reserve any type of 

resource such as spare parts, a human resource, maintenance tools, company cars, 

and more! It allows the checking of resource availability and the reservation of 

online resources. It is considered a software resource.  

geo-location  Type of software resource (GPS type, tag ...) that identifies the exact or 



38 

 

system approximate location (e.g. zone) of production equipment (even mobile equipment).  

e-doc system  Type of software resource called document management system (DMS) which is a 

computer system (or set of computer programs) used to track and store electronic 

documents and/or images of paper documents.  

 

CMMS 

 Type of software resource. CMMS stands for Computerized Maintenance 

Management System, also known as Enterprise Asset Management and 

Computerized Maintenance Management Information System (CMMIS). The 

purpose of CMMS is to simplify the planning and administrative functions of 

maintenance, purchasing, and inventory management.  

ERP  Type of software resource. Enterprise resource planning (ERP) is an integrated 

computer-based system used to manage internal and external resources including 

tangible assets, financial resources, materials, and human resources.  

prognostic tool 

 

 Software tool or system allowing prediction and estimation of time remaining 

before failure and the risk of subsequent existence of one or more failure modes, 

having a confidence level which is a value indicating the degree of certitude that the 

prognosis is correct. 

diagnostic tool  Type of software resource used to identify trouble recognition and localization, 

characteristic of a particular dysfunction and its causes. In certain cases it may 

provide or recommend actions for repair of the trouble.  

diagnostic  Result provided by a diagnostic tool. It is mainly the tuple composed of the trouble, 

localization, cause, and actions.  

external service  Considered a type of resource or service provided to the company by an external 

organization. 

lubricant  Consumable substance such as grease or oil used to reduce friction between 

components in the maintenance of physical equipment. It is a type of resource. 



39 

 

 

Table 7 - DATA DICTIONARY OF THE INTERVENTION VIEW 

 

Concept Name Synonyms Description 

intervention  Specific type of process concerning the main technical part of maintenance which 

is the core of maintenance. 

activity  Organizational unit for performing a specific action ensured by an actor.  

 

intervention report 

 Specific type of document edited, containing information about the intervention 

such as observations and remarks on the part of actors. This type of document is 

exploited in the experience feedback process.  



40 

 

 

 

Table 8 - DATA DICTIONARY OF THE STRATEGY VIEW 

Concept Name Synonyms Description 

maintenance strategy  A long-term plan, covering all aspects of maintenance management, setting the 

direction for maintenance management and containing firm action plans for 

achieving a desired future state for the maintenance function with respect to a 

maintenance type. 

technical indicator  Value calculated from different technical factors of maintenance concerning 

physical equipment maintained under a contract. It presents a specific technical 

evaluation of the contract.  

financial indicator  Value calculated from different financial and managerial factors of maintenance 

concerning physical equipment maintained under a contract. It presents a specific 

financial evaluation of the contract. 

 



41 

 

Table 9 – DATA DICTIONARY OF THE PROCESSES VIEW 

Concept Name Synonyms Description 

goal  Objective to be reached. It is followed by maintenance strategy and fulfilled by a 

set of tasks (e.g. 80% availability). 

goal requirement  Needs required to reach a goal (e.g. duplicate spare parts of critical physical 

equipment). 

process  Sequence of interdependent and linked activities which, at every step, consume 

one or more resources (employee time, energy, machines, money) to convert 

inputs (data, material, parts, etc.) into outputs while respecting a process pattern 

(i.e. the process pattern presents the general model of the process). These 

transition outputs then serve as transition inputs for the next step until a known 

goal is reached. 

process pattern 

 

 Pattern which describes a proven, successful approach and/or series of actions. A 

pattern is a description of a general solution to a common problem or issue from 

which a detailed solution to a specific problem may be determined.  

maintenance type  Specific type of process pattern concerning the method for carrying out 

maintenance and the orchestration of processes used in order to achieve the 

maintenance strategy goals. 

There are 12 possible types of maintenance which are: Preventive maintenance, 

Scheduled maintenance, Predetermined maintenance, Condition-based 

maintenance, Predictive maintenance, Corrective maintenance, Remote 

maintenance, Deferred maintenance, Immediate maintenance, On-line 

maintenance, On-site maintenance and Operator maintenance. 

maintenance task  Specific type of task concerning one part of maintenance work (e.g. repair, 

replace, inspect, lubricate, etc). 

intervention type  Specific type of process pattern. It is the principle method of conveying the 

appropriate activities to all parties involved in an intervention on physical 

equipment. It presents the generic model of an intervention. 

 

task 

 Work assigned or performed as part of one's duties. The task is evaluated by 

looking at its outcome in terms of completeness, accuracy, tolerance, clarity, 

error, or quantity. 

repair action  Specific type of maintenance task defined as a physical action taken to restore the 

required function of faulty physical equipment. 

production task 

 

 Specific type of task that terminates in a discrete product or outcome that is 

observable and measurable.  

constraint  Restrictive condition for the control of transitions between steps.  

activity  Organizational unit for performance of a specific action. An activity is the 

execution of a task, whether a physical activity or the execution of code. It 

presents the activity performed by an actor in the real world. 

step  Maneuver under taken as a part of the progress made towards the progress of a 

process. It is referenced by an activity. 

work request 

process 

 Specific type of process launched automatically or by an actor when receiving a 

work request. It allows management of the work request until resolution of the 

original problem triggering the event and the end of the intervention process, 

including edition of the intervention report. 

transition  Passage from one step to another in the course of a process. It is the 

connection between two steps in a process.  A transition ensures the move from 

one step to another according to a particular event. 



42 

 

Activity Input 

Output 

 Parameters, values and / or input events triggering the launching of an 

activity. These parameters can be the outputs from other activities. The execution 

result of an activity (output) is the input from another activity.  Activity Input 

Output is the passing link from one activity to another. Therefore, each Activity 

Input Output can refer to a Transition. 



43 

 

 

Table 10–DATA DICTIONARY OF THE MIDDLE-OF-LIFE VIEW 

Concept Name Synonyms Description 

life record life-Cycle-Phase From a PLM approach, life record is added as a concept containing the pieces 

of information concerning the middle of life phase of physical equipment 

(e.g. all during its exploitation, from purchase to disassembly). 



44 

 

Table 11– METRICS OF IMAMO EVALUATION 

Metric 

Name 

Metric 

 Formula 

IMAMO’s 

Metric Result 

Interpretation 

 

Relationship 

Richness 

 

RR= 
|!|

!" !|!|
 

IMAMO_RR= 

 200/(200+61) = 

 0.76 = 76% 

The RR of our ontological model largely exceeds the 

average. This means that our ontology is not a 

hierarchical one. It is not just a hierarchy of 

subclasses but it is rich with role associations. This is 

due to the inclusion of domain concepts and proves 

that the ontological model is business-oriented and 

responds to the maintenance needs of businesses.  

 

 

Inheritance 

Richness 

 

 

IRs= 

∑|Hc(C1, Ci)|

|C|
 

 

IMAMO_ΣH
C 

(C
1
, C

i
) 

 = 61; 

 

IMAMO_IRs 

= 61/110 

= 0.55. 

This result is near the average of 0.5. This shows that 

in the context of knowledge details, our ontological 

model is hybrid; it is neither vertical (which might 

reflect a very detailed type of knowledge that the 

ontology represents) nor horizontal (which means 

that it represents a wide range of general knowledge). 

We consider this result as a target reached, because 

our first goal was to build a generic ontological 

model for the maintenance domain, but one that was 

simultaneously strong enough to cover as many 

maintenance aspects (concepts) as possible. 

 

 

Attribute 

Richness 

 

 

AR= 
|!""|

|!|
 

 

IMAMO_AR 

=91 /110 

= 0.82 

 

The result obtained shows the poverty of the 

ontological model in terms of attributes. The result 

gives as an average of 0.81 attributes per concept 

which is very low. We have known this from the 

beginning because when constructing the model we 

chose to define concepts and not attributes so as to be 

more general. This choice was made in order to favor 

the reuse and the exploitation of these concepts by 

the different applications integrated into the platform, 

especially since we are concerned with all aspects of 

maintenance. 

However, for our future work, and in order to enrich 

these concepts, we envisage collaboration with 

business experts so as to include certain attributes 

(e.g. details of classes of the IMAMO model). 



45 

 

Table 12- FUNCCTIONALITIES ENSURED BY IMAMO 

Category Functionality 

 

Does IMAMO allow…? 

 

 

 

 

Questions about 

business aspects 

Description of equipment as it is Yes. By means of its structural model.  

 

 

Tracking the history of equipment  

Yes, it is possible to retrieve information about current 

and past uses of the physical equipment through 

concepts "exploitation mode" and 

"functional period". Moreover, it retrieves the different 

modes of operation during the life cycle of 

equipment through the concepts of "operating mode", 

"triggering event", “intervention” and “life record." 

Management of maintenance data Yes, it is possible to link information with 

the maintenance process through the concepts of process 

view, the concept "trouble" and the concepts of resources 

view, namely "intervention report", "work request", 

"diagnosis" and others. 

Extension of Coverage on PLM Yes. It is able to connect this information with the 

different life-cycle phases via the ‘life record’, 

‘equipment model’ and ‘period’ concepts. 

Automatic Data Processing for 

Events 

Yes, via the event view via PowerLoom’s API and by 

means of the description classifier. 

Resources management Yes, via the resource view including all types of 

resources. 

Monitoring and prognostic 

management  

Yes, via the manipulation of event view and resource 

view, as well as the functional and dysfunctional view. 

Diagnosis management Yes, via the manipulation of event view and resource 

view, as well as the functional and dysfunctional view. 

Strategy management Yes, via the manipulation of strategy view and resource 

view, as well as the intervention view. 

   

 

 

 

Questions about 

technical aspects 

Execution Yes, via PowerLoom API. 

Loading of Data Yes. It can be instantiated via PowerLoom API. 

Consistency Yes, via PowerLoom’s description classifier.  

Equivalencies Yes, via PowerLoom’s description classifier. 

Reclassification Yes, via PowerLoom’s description classifier. 

Inference Yes, via PowerLoom’s description classifier. 

Importation/exportation of Data Yes, via PowerLoom’s API and GUI. 

Importation of multiple Models 

under one source 

Yes, via PowerLoom’s API and GUI. 

Merger of Models Yes/No, depending on which tools are used.   

Simple Calculations Yes, via PowerLoom’s API and thanks to description 

classifier. 



46 

 

Restriction ofAll the classes Yes, via PowerLoom’s API and by means of the 

description classifier. 



47 

 

Figures captions 

Fig1. Decomposition of METHONTOLOGY 

Fig 2. Example of the concepts classification trees in IMAMO  

Fig 3. Structural view 

Fig 4. Event view 

Fig 5. Functional and dysfunctional view 

Fig 6. Informational view 

Fig 7. Intervention view 

Fig 8. Strategy view 

Fig 9. Processes view 

Fig 10. Middle of life view 

Fig 11. The pallet transfer system “SISTRE” 

Fig 12. A part of the ontology used to define reusable components 



48 

 

Figures 

 

 

Fig. 1 -Components of METHONTOLOGY (Corcho, Fernández, Gómez-Pérez, & López-Cima, 2005)  



49 

 

 

Fig.2 some examples of classification tress 



50 

 

 

Fig 3. Structural view 



51 

 

 

Fig 4. Event view 



52 

 

 

Fig 5. Functional and dysfunctional view 



53 

 

 

Fig 6. Informational view 



54 

 

 

Fig 7. Intervention view 



55 

 

 

Fig 8. Strategy view 

 



56 

 

 

Fig 9. Processes view 



57 

 

 

Fig 10. Middle of life view 

 



58 

 

 

Fig 11. The pallet transfer system “SISTRE” 



59 

 

 

Fig 12. A part of the ontology used to define reusable component 

 


