N
N

N

HAL

open science

An algorithm for multi-robot planning: SGInfiniteVI

Mohamed Amine Hamila, Emmanuelle Grislin-Le Strugeon, René Mandiau,
Abdel-Illah Mouaddib

» To cite this version:

Mohamed Amine Hamila, Emmanuelle Grislin-Le Strugeon, René Mandiau, Abdel-Illah Mouaddib.
An algorithm for multi-robot planning: SGInfiniteVI. IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, 2010, toronto, Canada. hal-00968786

HAL Id: hal-00968786
https://hal.science/hal-00968786

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00968786
https://hal.archives-ouvertes.fr

An algorithm for multi-robot planning: SGInfiniteVI

Mohamed Amine Hamila':?3, Emmanuelle Grislin-le Strugeon'-?-3, Rene Mandiau'?:3, Abdel-Illah Mouaddib*
L Univ Lille Nord de France, F-59000 Lille, France
2 UVHC, LAMIH, F-59313 Valenciennes, France
3 CNRS, UMR FRE 3304, F-59313 Valenciennes, France
4 GREYC, Universite de Caen Basse-Normandie, France
{mohamed.hamila,emmanuelle.grislin,rene.mandiau} @univ-valenciennes.fr
mouaddib@info.unicaen.fr

Abstract—In this paper we introduce an efficient path
planning algorithm called SGInfiniteVI so the resulting path
solution facilitates for robots the accomplishment of their tasks.
The algorithm is based on the dynamic programming and deals
with the problem of distributed equilibrium computation and
selection in general-sum stochastic games with infinite horizon.
Our approach proposes three Nash selection functions (in case
of multiplicity of Nash equilibria) and obtains its benefits by
pointing out experimentally which function is the most suitable
to favor better interaction between robots. Experiments were
conducted on the classical box-pushing problem, with several
mobile robots moving objects in dynamic environments.

Keywords-Stochastic Games; Multi-agent Planning; Markov
processes; Game theory;

I. INTRODUCTION

To design and deploy a multi-robot system constitutes an
important research challenge. Indeed, mobile robots have
become autonomous enough, so that we have to think of
their organizations. We are considering in this study how
robots can render service by moving by themselves. Thus,
multiple practical applications can be considered, such as
the exploration, search and rescue, people rescue, etc. In this
kind of systems, the mutual interactions between individual
robots sharing the same workspace are complex in general
cases and one of the most important issues is how to
coordinate the behavior of each robot so that the overall
performance can be optimized. In order to facilitate tasks
achievement, the common approach consists of time and
continuous-space discretization into a finite collection of
cells. The problem is then reduced to decide which cell
to visit at each time interval. This looks like the class of
multi-agent sequential decision problems under uncertainty
[1], where it is necessary at each step to decide what joint
action to choose.

The framework of “Stochastic Games” seems to be a con-
venient tool for modeling and solving multi-robot interaction
problems. It provides a theoretical basis for many recent
works [2], [3], [4], [5], dealing with planning and learning
in multi-agent sequential decision making. Stochastic games
can be considered as an extension of Markov Decision
Process (MDP) [6], [7] and game theory [8], [9]. It is pos-

sible to have multiple agents (that may be non-cooperative),
whose actions directly impact the resulting rewards and the
transition to the next state.

In this paper we focus on planning approaches for solving
stochastic games. There are few studies that address this
problem [4], [10]. The most recent work, by Kearns et
al. [4], proposes the FINITEVI algorithm. However, this
algorithm requires a high level of centralization, and because
of multiplicity of Nash [11] equilibria its direct application
remains an open problem. Thus the main contribution of our
work is actually twofold:

o Firstly, we propose a novel algorithm for planning in
general-sum stochastic games with an infinite horizon,
called SGInfiniteVI!, taking into account the necessity
of decentralization and offering different approaches for
the selection of Nash equilibria. To prove in practical
its efficiency, we tested SGInfiniteVI algorithm on a
box-pushing problem. We show empirically that under
certain conditions robots can often select the same
Nash equilibrium and therefore choose non-conflicting
actions.

o Secondly, we focus on the robustness of the Nash
equilibrium against the non-cooperation of one of the
robots. In this case, several scenarios can be investi-
gated, as the failure of a robot or its substitution by a
human. The result is promising and opens up interesting
prospects as the construction of joint-decisions between
robot and human [12], [13].

The paper is organized into four sections. Section 2
recalls the definitions and notations of stochastic games and
their solving methods. Section 3 describes our SGInfinite VI
algorithm and shows how to apply the model of stochastic
games to a grid-world game. Some preliminary results are
presented and discussed in section 4 and finally we conclude
in section 5.

II. STOCHASTIC GAMES

In this section we present an introduction to stochastic
games, and then two crucial aspects of the model, namely

'SGInfiniteVI is short for “Stochastic Games Infinite Value Iteration”.



the Nash equilibrium and the resolution methods.

A. Definitions and concepts
Stochastic Games (SG) [14] are defined by the tuple:

< Ag,{Ai:i=1...|Ag|},{Ri:i=1...|4¢g|},S, T >

o Ag: finite set of agents.

o A;: finite set of actions of agent i (i € Ag). A
pure strategy corresponds to an action chosen in a
deterministic way.

o R;: reward function of the player i, R;(a) — R, where
a=<ai,as,...,aag > (a€A).

o S: finite set of states of the game.

o T transition function, 7" : Sx Ax.S — [0, 1], indicating
the probability of moving from a state s € S to a state
s" € S by running the joint action a.

The stochastic games extend MDPs [6] to several agents,
selecting simultaneously different actions. Henceforth the
next state and the rewards depend on actions of all agents.
Each agent has a separate reward function and the main
objective is to select actions that maximize its future gains.

These games can also be seen as an extension of game
theory but with multiple states. In game theory, the set
of all possible gains that can be obtained by two agents
is generally represented by a two-dimensional matrix. The
choices jointly made determine the gains of each of the
agents according to the played matrix.

The particularity of stochastic games is that each state
s can be considered as a matrix game M (s). For example,
suppose that both players start the game in state s, then they
play the matrix M (s). Immediately after, players receive a
payment. The game then goes to M(s’) with probability
P(s'|s,a) depending on the joint-action a played at step s
and so on.

B. Nash equilibrium in stochastic games

As in a Markov Decision Process, each agent computes
its own policy that maximizes performance criterion. This
criterion is usually the Expected discounted sum of its future
rewards: E [ Y0 7 R .

However, general-sum stochastic games have reward func-
tions which can be different for every agent. In certain
cases, it may be difficult to find policies that maximize the
performance criteria for all agents. That is why in general-
sum stochastic games, equilibrium is always looked for. This
equilibrium is a situation in which no agent can improve its
performance criteria if it is the only one to change policy:
we find here the definition of Nash equilibrium.

Definition 1 A Nash Equilibrium is a set of strategies

(actions) a* such that:

Ri(a;‘, (Ltl) > Ri(aia (Ltl) Vi € Ag, Val‘ S A,L (1)
The concept of Nash equilibrium can also be written using

the concept of Best Response:

Definition 2 Given the other players’ actions a_;, the Best
Response (BR) of the player 1 is:

BR; :a_; — argmaza,eca; Ri(ai,a_;) 2)
thus, we say that a* is a Nash equilibrium if:
a; € BR;(a*;) Vi (3

Definition 3 The set of all equilibria, one per state,
constitutes a “joint-policy”:

Im:s—A4, A E{A1XA2X...XA|Ag|}

This policy can also be considered as a vector II =
(71,72, .., T ag)) of an individual agent policies.

The Nash equilibrium is often used in general-sum
stochastic games as the equilibrium of better mutual an-
swer (while ensuring a better response for their individ-
ual goals). Thus, when all other agents follow the joint-
policy II, the performance criteria for the agent ¢ will be:
E [ 35,7 R |

However, the Nash equilibrium is not always unique and
the fact to have (for the same game) multiple equilibria with
different values generally poses coordination problems. In-
deed, in this case if agents choose to play different equilibria,
the joint-action performed may not be an equilibrium. The
next section will show how planning techniques will address
these problems.

C. Solving stochastic games

In this section we will discuss some solutions for stochas-
tic games. The main works concerning the planning in
stochastic games are the ones of Shapley (1953) and Kearns
et al. (2000). The first one presents an algorithm finding
a Nash equilibrium by planning in zero-sum? stochastic
games. The second bases itself on the first one and widens
it to general-sum stochastic games but with finite horizon.

1) Algorithm of Kearns et al: our work was inspired
by Kearns et al. [4] dealing with planning in stochastic
games with finite horizon and two agents. We are particularly
interested by their algorithm called FiniteVI (algorithm 1)
which finds a centralized Nash equilibrium of a stochastic
game with a horizon T. The algorithm is based on the
principle of value iteration, computes a value function and
converges by successive iterations to the optimal solution
with the following Bellman equation [15]:

V(s) = R(s) + mazx, Z T(s,a,s") V(s)
s'eS
The algorithm loops over the horizon 7' and at each step
t computes for every state s of the stochastic game the
correspondent matrix (line 4 of Algorithm 1), then selects
a unique Nash equilibrium (line 6 Algorithm 1) using the
function f, the value of the equilibrium being given by ka .
The arbitrary function f3, introduced by Kearns et al. in their

2zero-sum: describes a game in which the gains of one are the losses of

the other.
3According to Kearns et al., recall that f is an arbitrary Nash Selection
Function, f5 extracts the strategy selected by the player k.



article, chooses a Nash equilibrium and provides for each
agent the correspondent policy to play through the functions
f1 and f5. The authors have shown that the complexity of
their algorithm is linear on the horizon time but quadratic
in terms of state space size.

Algorithm 1 Algorithm FiniteVI
Require: A general-sum stochastic game SG
1: for all t=1..T do {time steps}
2: forall s € Sk € 1,2 do {state s and player k}

3: for all o € A do {joint-action a}

4: My(s,t) = Ry(s,a) +
D T(s,a,8) VI(M(s',1=1), My(s',1-1))
s'esS

5 end for

6: Wk(sat):fk(Ml(sat)aMQ(sat))

7 end for

8: end for

9: return The policy pair (71, m2)

2) Discussion: we observe that the FiniteVI algorithm
requires a high level of centralization: the presence of the
function f during the planning process to select the same
equilibrium for all agents. Moreover, this function f was not
clearly defined and may be considered as an “oracle”. We
think that an implementation of the above algorithm is an
open problem.

Our work is in the spirit of this approach and presents a
decentralized planning algorithm for general-sum stochastic
games with infinite horizon. It aims to:

o Preserve the advantage of the planning which allows
us to find a better solution more quickly than the
algorithms of learning as far as we have the model of
the world.

o Get rid of the centralization of the algorithm proposed
by Kearns et al.

o Encode the Nash selection function f.

o Seek and find the best Nash selection function in case
of multiplicity that will minimize conflicts and livelocks
during the execution phase (simulations).

« Compute a stationary policy (infinite horizon): we adopt
an empirical approach aimed to adapt the algorithm
presented previously to the case of an infinite horizon.

III. A NEW ALGORITHM AND APPLICATION ON A
GRID-WORLD GAME

In this section, we present our algorithm SGInfiniteVI,
and then we will apply the model of S.G. to a scenario of
interaction between robots.

A. Proposal of an algorithm

As mentioned above, the main objective of this work is
to avoid the centralization implied by the selection function
f. An intuitive idea consists in distributing the computation

of equilibria. This supposes that each agent will enjoy of its
own Nash selection function but also equilibria calculated
at each step may differ from one agent to another. Since the
problem arises only in cases where several Nash equilibria
coexist for the same game, we will try to find in such
circumstances the best method that will lead all agents to
choose the same equilibrium.

SGInfinite VI (algorithm 2) takes as parameters: a stochas-
tic game SG, v (discount factor), e (stopping condition) and
returns policy actions for the player.

1) Differences with FiniteVI: We can summarize our
contribution with regard to the previous algorithm in three
important points:

o Decentralization and Nash selection function: the best
response functions can be used to determine the func-
tion f. This suggests a procedure for finding a Nash
equilibrium:

1) To find the best response function of each player
(equation 2).

2) To identify a set of actions for which both players
play their best response (equation 3).

This method guarantees to identify all Nash equilibria
which can exist in the game. Indeed in case of multi-
plicity of Nash equilibrium, several variants of imple-
mentation of the function f are available. It is possible
to choose between multiple equilibria, for example:
to maximize the global/individual payoff or to choose
a non-Pareto-dominated Nash*. It will be possible to
show the variant which will (at best) avoid problems
of coordination between agents during simulations. Let
us note also that each agent will perform the same
instantiation of the algorithm but this does not mean
that the equilibria calculated by each are the same for
the others.

e Number of agents > 2: to increase the number of
agents, we must now build a multidimensional array
instead of a simple two-dimensional matrix. It is an
| Ag|-dimensional hypercube, where each dimension
represents the decisions for the involved player.

o Infinite horizon: to adapt the algorithm to the case
of infinite horizon and with reference to the classical
dynamic programming algorithms, it is necessary to
add the discount factor v which incorporated into the
matrices computed at each step (line 5 of algorithm 2)
and the stopping condition € (line 9 of algorithm 2).

2) SGinfiniteVI Complexity: For searching equilibria, our
algorithm is dealing only with a pure Nash equilibrium. It
has been proved that even with very restrictive conditions
on the players strategies, to determine if a game has a “pure

“non-Pareto-dominated Nash: it is a Nash equilibrium non-Pareto-
dominated by another Nash equilibrium. Also, the game is in a Pareto
optimal state if no player can increase its profit without damaging the gain
of at least one other.



Algorithm 2 Algorithm SGInfiniteVI

Require: A general-sum stochastic game SG, v € [0, 1],
€e>0

1: t«—0
2: repeat
32 forallseS,kel.. |Ag| do
4 for all a € A do
5 My (s,t) = Ri(s,a)
+ 7y Z T(s,a,s") VI (Mi(s',t-1),..., M aq (s t=1))
s'eS
6: end for
7 Wk(sat):fk(Ml(sat)v"'a M|Ag|(sat))

8:  end for
9: until maxs€5|ka(s,t) - ka(s,t —1)<e
10: return The policy 7

Nash equilibrium” is NP-complete [16], [17]. Therefore, the
running time of SGInfiniteVI algorithm is not polynomial
in the size of the game matrix (due to the fact that the
function f used to compute Nash equilibrium is itself non-
polynomial). Moreover, the sizes of state space and joint
action are exponential in the number of agents. Overall, we
believe that the running time of our algorithm is exponential.

As for the space complexity, it mainly depends on the
payoff matrix that will be generated every time that the
corresponding state is valued. The matrix size is static:
|A1] x [Az] x ... x [Ajag)] = |A]

Each entry in the matrix is composed of |Ag| values,
making a total of |Ag| X |A] values. Every agent must
maintain a backup matrix at each state s, including its own
payoff but also the payoffs of the other agents. Therefore the
number of matrices stored during algorithm iterations is |.S|
and the total number of required values is: |Ag| x |S| x |A].
SGInfiniteVI is linear in the number of states but exponential
in the number of agents.

Fortunately, when the algorithm converges, there is no
longer need to keep matrices in memory and we get back
only a policy (state-action pairs).

B. A grid-world game

The example that we choose is similar to the examples
from literature, as the “Two-Player Grid Soccer” of Littman
[18] or the “Two-Player Coordination Problem” of Hu and
Wellman [19], but a little more difficult. It is the problem of
multi-robot box-pushing (see figure 1), the game includes:
robots, objects and a container box. For example, the authors
of [19] study Q-learning as a way to solve this application;
but, as in their analysis, our works consider the following
hypothesis: “one game has deterministic moves, and the
other has probabilistic transitions” [19].

1) Description: In this example, the objective of the
robots is to put all the objects in the box with a minimum
number of steps. Robots have no preference on the objects to

be carried, do not communicate, do not share any initial plan
and when they must make decisions they must avoid any
conflict (to take up the same place, to carry the same object).
Despite the simplicity of the problem, grid-world games
possess all the key elements of dynamic games: location-
or state-specific actions, state-transitions, and immediate and

long-term rewards.

Figure 1. An example of scenario: two robots, four objects and a container
box.

2) Modeling as a stochastic game: The game presented
above can be easily modeled through a stochastic game. Let
us recall that the model of S.G. is defined by the tuple:

< Ag,{Ai:i=1...|Ag|},{Ri:i=1...|4¢g|},S, T >

o Ag: two or three robots (we chose to limit the number
of robots to three, mainly for problems of computation
time).

o A;: each robot has a set of five actions: {(U)p, (D)own,
(Lyeft, (R)ight, (N)othing}.

e RR;: the reward function is defined in the same way for
all robots, with the following arbitrary values:

+100 when all objects are transported into the container box.
—200
—200

if the robot occupy the same position of another one.

if the robot carries an object and try to carry another.

o S: this is the set of states consisting of:

— Geographic positions of robots/objects in the grid.

— Internal state of a robot (carrying or not an object).

— Internal state of an object (carried or not).

o T this function represents the response of the envi-
ronment to the executed actions. It will be defined
according to these cases:

— A robot cannot carry two objects at a time.

— If arobot moves in a cell containing an object then
it must carry this object.

— If an action brings an object into the container box,
then this object is removed from the grid and the
robot (which transported it) is marked as empty.

— Robots move on a toroidal grid.

The following section intends to validate our algorithm

on the modeled game.

IV. VALIDATION

In this section, we present the results obtained in applying
our SGInfiniteVI algorithm. Firstly we will start by showing



the mode of operation of the algorithm (to ease in its cen-
tralized version) according to the game previously presented.
Then we measure the computation time and memory space
required by the algorithm and we show that the threshold of
one million states is reasonably calculable. Finally we will
see through its decentralized version the best Nash selec-
tion function that will facilitate coordination and minimize
conflicts situations between agents. The simulator has been
implemented in the JAVA language and the experiments were
done on a machine quad core 2.8 GHZ and 4 GB of memory.

A. Observation on the convergence

Along the experiments we observed that the algorithm has
always converged consistently and quickly, despite the fact
that it is not guaranteed to do so. Recently, Zinkevich et
al. [20] showed that the Value-Iteration algorithm may not
converge in certain case of general-sum stochastic games
with infinite horizon, but converges always to cyclic equi-
librium policies. Indeed, the Nash equilibrium operator is
usually not a contraction operator. However, Hu and Well-
man [19] have shown that it is a non-expansion operator and
that under restrictive conditions convergence is guaranteed.
Alongside their work, we believe that the convergence of
such algorithms depends strongly on the structure of matrix
games evaluated during planning and therefore it is not fair
to generalize convergence to the full range of stochastic
games.

B. Evaluation on computation time and memory space

Despite the simplicity of the example we can note that
the size of the state space is not negligible. The complexity
is: (2 n?)l491 « 20 where |Ag| represents the number of
agents, O is the number of objects and n? is the grid size.
For example, for a grid size of 8 (64 cells), 3 agents and 3
objects the total number of states is 16,777, 216;

1600 A
Space memory —&—
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Space memory (MB)
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Figure 2. Memory space required to compute a policy with three agents,
three objects and different grid sizes (n X n).

We noted that the construction of matrices and the search
for equilibria increase considerably the size of needed mem-
ory (figure 2) and the computation time (figure 3). It seems
that even with a large state space, memory requirements
remain reasonable and only the computation time policy

8000 C ion time —ﬁ—/;
7000
2 6000
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Figure 3. Computation time required to compute a policy with three
agents, three objects and different grid sizes (n X n).

seems a priori problematic. We have not considered this
problem in our work; but to decrease the CPU time we
know that exist heuristics to reduce the size of matrices and
to improve the method of searching equilibria [21], [22].

C. Principle

SGlInfiniteVI algorithm provides a policy for each agent.
More precisely, the agent plans actions based on its own
payoff matrix. But, due to the lack of space, we present
only an illustration of the centralized version of SGInfiniteVI
algorithm (with a single payoff matrix for all agents).

The following example (table I) shows how two agents
manage together to coordinate themselves, to avoid colli-
sions and to achieve their basic objective. The game starts
from an initial state chosen randomly. After observing the
current state, agents choose their actions simultaneously and
thus they discover the new state. The game stops when all
objects are placed in the container box. Each state of the
world is represented with a “screen-shot”, a payoff matrix®
and the future Nash-actions to do. Payoffs representing the
selected Nash equilibrium are marked in a gray cell. The
steps are:

o Step 1: robot 2 goes to the right (to take an object)

and robot I moves to approach the remaining object.
The equilibrium chosen in this step is important be-
cause it prevents the competition on the objects to be
transported and defines the mission of each robot.

o Step 2: this equilibrium confirms the rationality of
robots. Indeed, if robot 2 tries to maximize its gains
then it will never go to a square where there is an object.
Therefore, robot I can carry safely the remaining object
with the certainty that the other robot cannot take it.

o Step 3: robot 2 yields the way to allow robot I to put
the object that it was carried.

Note that this centralized approach guarantees that there is
no conflict between robots but it requires a high degree
of centralization. The next section will attempt to present
the main contribution of this work namely the decentralized
version of SGInfiniteVI algorithm.

SPayoff matrix obtained from the last iteration of SGInfiniteVI algorithm.
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Actions Down ; Right Right ; Down Up ; Down
Table I

AN EXAMPLE OF POLICY ACTIONS IN A TOROIDAL WORLD.

D. Nash selection functions

In this part we discuss the experimental results of the
SGInfiniteVI algorithm and we will see empirically what
versions of the function f that will guarantee good results (in
case of multiple Nash equilibria). Thus, the tests have been
done on 200 policies®. For each of these policies, 100, 000
tests were performed’, and so we get 20 millions tests by ex-
perimentation. The experiments were arbitrarily performed
with the following scenario: two agents and four objects. The
notations of legend indicate different implemented versions
of the selection function f, each agent:

o NashMaxTot: selects the first Nash equilibrium that
maximizes the payoffs of all agents.

o NashMaxSub: selects the first Nash equilibrium that
maximizes its own payoff.

o NashPareto: selects a non-Pareto-dominated Nash equi-
librium.

Once the entire actions plan calculated, we wanted to count
the percentage of Nash equilibria that are different from
one agent to another. This measure will allow us to have
a first point of view on the selection methods mentioned
previously. Table II shows that in general the percentage of
different Nash equilibria remains low and does not exceed
(in the worst case) the threshold of 5 percent. It is also
clear that the functions NashMaxTot and NashMaxSub are
almost equal and offer less different equilibria compared to
the function NashPareto.

However, the percentage could not inform us about the
quality of solution that can be obtained. Indeed, two different
Nash equilibria do not necessarily suggest conflicting actions
and therefore we should consider other benchmarks.

%The positions of objects are selected randomly following an uniform
distribution on the interval [0, n?].

"The positions of agents are selected randomly following an uniform
distribution on the interval [0, n?].

NashMaxTot | NashMaxSub | NashPareto
4x4 2.36 2.46 4.59
5x5 0.64 0.61 1.05
6x6 0.61 0.59 1.17
7x7 1.27 1.38 2.07
8x8 0.86 0.83 2
9x9 1.19 1.13 1.96
10 x 10 1.55 1.45 1.93
11 x 11 1.08 1.76 2.99
Table II

THE PERCENTAGE OF DIFFERENT NASH EQUILIBRIA ACCORDING TO
SEVERAL SELECTION FUNCTIONS.

Thus, some elements of comparison are considered:

o Average number of conflicts per simulation: for this
application, no binding hypothesis has been imposed.
In particular, the space conflicts are not prohibited. For
example, it is quite possible that an agent carrying an
object decides to move to an adjacent cell containing
another object.

o Average number of livelocks per simulation: the live-
lock is an endless cycle that prevents agents from
reaching a goal state. If agents fall into such cycle,
the game never progresses.

It is easy to see that when using the functions NashMaxTot
and NashMaxSub give best results: the number of conflicts
(figure 4) and livelocks (figure 5) tends towards zero. It
seems that these functions lead in most cases agents to the
same equilibrium, and otherwise to non-conflicting actions.
We also noticed that when agents choose their equilibria by
using the function NashPareto then there is a worst number
of conflicts and livelocks.

E. Assumption of non-cooperation

Let us remind that the given above results imply a strong
assumption: the agents must respect imperatively their plans
during the execution phase. Thus in order to check the
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Figure 4. Comparison between Nash selection functions according to the
average number of conflicts, with two agents and four objects.
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Figure 5. Comparison between Nash selection functions according to the
average number of livelocks, with two agents and four objects.

robustness of the Nash equilibrium solution some comple-
mentary experiments are done on less restrictive hypothesis.
Indeed, an agent may encounter situations where the other
(robot, human, etc) do not cooperate. So we wanted to study
the extreme case and assume that one of the two agents
has a completely random behavior®. These experiments will
further point out the Nash selection function that allows (at
best) the agent to adapt with such difficult situations.

The small number of livelocks (figure 7) shows that the
robot undergoing disruption still manages to accomplish
its goal in most tests. Meanwhile, the number of con-
flicts (figure 6) is also relatively small, for example it is
about 1.4 (on average) by 32 steps for a 4 x 4 grid. The
functions NashMaxTot and NashMaxSub confirm previous
conclusions by being better than the function NashPareto.
All these observations suggest that a solution based on the
Nash equilibrium is robust to situations of non-cooperation
or failure of a robot and therefore able to cope with much
more realistic interactions.

Swith the same probability distribution over all its actions.
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Figure 6. Comparison between Nash selection functions according to the

average number of conflicts, with two agents and four objects when the
second agent’s behavior is randomized.
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Figure 7. Comparison between Nash selection functions according to the
average number of livelocks, with two agents and four objects when the
second agent’s behavior is randomized.

FE. Experiments with three agents

We also performed some experiments with a scenario
including three agents and three objects, but we found that
even with a large battery of tests, the results showed no
conflicts or livelocks. We believe that this phenomenon is
due to the fact that the number of steps (on average seven
steps to move all objects in a grid of 7 x 7) was not enough
for them to have sufficient interaction. Let us note also that
the transition to a higher number of agents (> 3) is possible,
but only by using a “near Nash equilibrium” [23]. For these
reasons we introduced only the results corresponding to the
scenario of two agents.

V. CONCLUSION

In order to coordinate a multi-agent system, the aim of
this preliminary work is not only to study the model of
general-sum stochastic games but also to develop a planning
algorithm based on the dynamic programming and the Nash
equilibrium. According to the state of art, this problem is
considered as difficult in terms of resolution. Our attempt for



understanding this difficulty consists in the implementation,
the evaluation and the validation on an example issued from
a classical problem. Different Nash selection functions have
been proposed and we have shown experimentally which is
the most suitable to have better interactions between agents.

Additionally, our approach still has significant constraints
on the environment. Two limitations maybe easily identified:

1) Known games: the algorithm needs to know the pay-
offs of each agent.

2) Full observability: agents need perfect observations of
their environment.

Finally, we find it interesting that the algorithm converged
consistently and quickly despite the fact that it is not
guaranteed to do so. Hopefully the results of this paper
could lead to the investigation of more general settings under
which these convergence properties can be proven.
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