
HAL Id: hal-00968752
https://hal.science/hal-00968752v1

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Higher Quality Internal and Outside
Multilingualization of Web Sites

Christian Boitet, Valérie Bellynck, Mathieu Mangeot, Carlos Ramisch

To cite this version:
Christian Boitet, Valérie Bellynck, Mathieu Mangeot, Carlos Ramisch. Towards Higher Quality In-
ternal and Outside Multilingualization of Web Sites. ONII-08 (Summer Workshop on Ontology, NLP,
Personalization and IE/IR), Jul 2008, Mumbai, India. pp.8. �hal-00968752�

https://hal.science/hal-00968752v1
https://hal.archives-ouvertes.fr

Towards Higher Quality Internal and Outside

Multilingualization of Web Site

Christian Boitet, Valérie Bellynck, Mathieu Mangeot, Carlos Ramisch

GETALP (Groupe d’Étude pour la Traduction Automatique et le Traitement Automatisé des Langues et de la Parole)

LIG (Laboratoire d’Informatique de Grenoble, Grenoble Informatics Laboratory)
UJF (Université Joseph Fourier), UFR IMAG, France

{Christian.Boitet, Valerie Bellynck, Mathieu.Mangeot, Carlos.Ramish@imag.fr}

Abstract

The multilingualization of Web sites with high quality is increasingly important, but is unsolvable in most
situations where internal quality certification is needed, and not solved in the majority of other situations. We
demonstrate it by analyzing a variety of techniques to make the underlying software easily localizable and to
manage the translation of textual content in the classical internal mode, that is by modifying the language-
dependent resources. A new idea is that volunteer final users should be able to contribute to the improvement or
even production of translated resources and content. For this, we have developed a PHP piece of code which naive
webmasters (not computer scientists nor professional translators) can add to a Web site to enable internal
multilingualization by users with enough access rights: in management mode, these users can edit the texts of titles,
button labels, messages, etc. in text areas appearing in context in the Web page. If Web site developers follow
some recommendations, all textual interface elements should be localizable in this way.

Another angle of attack, applicable in all cases where navigating a site though a gateway is possible, consists in
replacing the problem of diffusion by the problem of access in multiple languages. We introduce the concept of
iMAG (interactive Multilingual Access Gateway, dedicated to a Web site or domain) to solve the problem of
higher quality multilingual access. First, by using available MT systems or by default morphological processors
and bilingual dictionaries, any page of an elected website is made instantly accessible in many languages, with a
generally low quality profile, as through usual translation gateways. Over time, the quality profile of textual GUI
elements, Web pages and even documents (if accessible in html) will improve thanks to outside contributors, who
will post-edit or produce the translations from the reading context. This is only possible because the iMAG
associated to the website stores the translations in its translation memory (TM) and the contributed dictionary items
it its dictionary. The TM has quality levels, according to the users’ profiles, and scores within levels. An API will
be proposed so that the developers of the elected website can connect their to its iMAG, retrieve the best level
translations, certify them if necessary, and put them in their localized resources. At that point, external localization
meets internal localization.

Keywords: Multilingual access, Machine Translation (MT), online MT, Web localization, collaborative translation
environment, extended translation memory, translation of dynamic Web sites.

Introduction

More and more information is disseminated trough
Web sites, and there is a desire or even an
obligation to make it accessible in many languages,
with a quality level far above what general-purpose
MT can achieve. International bodies such as the
EU or UNESCO or ITU have actually a legal
obligation to do it (in more than 20 languages for
Europe, in 6 languages for UNESCO and ITU).
Large and small firms have to publish their
documentation in many languages, and to adapt, or
localize their products. Software publishers are a
case in this point: IBM localizes in 25 languages,
Adobe in 32, HP in 40, MicroSoft in 45, etc.
Another kind of would be multilingual quality
publishers are Web communities dedicated to
causes such as human rights (PaxHumana), peace,
health, or simply to some domains (e.g., cooking).

But official organizations legally bound to publish
in many languages don't do it in reality, or only for
a very small proportion of the information, even if
they spend a lot on translation. Many firms can
also not bear the costs of HQ translation, and limit

their localization to a few languages, which reduces
their potential market, and dramatically increases
the cost of their hot lines, under heavy pressure
because users cannot understand well enough the
English documentation, or the low-quality
translations provided.

We propose two complementary approaches to
solve this problem. First, outside localization is
possible for Web sites, although it may be
differently handled for program-related textual
material (labels of GUI elements such as titles,
buttons, and program messages) and for content-
related material. Whether that content is stored in
static Web pages or dynamically generated from a
database makes no difference in our approach,
based on associating an iMAG (interactive
Multilingual Access Gateway) to an elected Web
site or domain.

Second, inside localization techniques can be
dramatically improved in the case of Web sites,
with respect to classical techniques.
The first step is to allow not only developers, but
managers and reliable users of Web sites to edit the
localized resources (program-related as well as

content-related) in their language in an easy way.
According to the design of the Web site, the
localized strings appear immediately, or only after
the next build of the packages used.
The second step is to allow localization in context,
which is a dream for translators of software
packages. For the moment, our technique is
limited to Web sites. If the developer follows some
guidelines and organizes the code appropriately,
the manager and reliable users can localize the
Web site in context, while using the site, switching
seamlessly between usage context and editing
context: in management mode, an editable text area
appears next to each localizable object, and the
page is updated after the next click outside it.

The first section discusses in more details the
differences between inside and outside localization
techniques, according to various translational
situations. The second section describes pros and
cons of classical inside techniques, applied to Web
sites, and introduces an innovative in context
localization technique. The third section presents
outside localization techniques, and introduces the
iMAG concept, which extends the translation
gateway concept to allow contributive quality
improvement.

1 Inside and outside localization

The proper term to use in our context is
multilingualization or linguistic porting, rather than
localization, which implies not only translation into
other languages, but more adaptations. For
example, a vertical menu placed at the left for left
to right scripts (e.g. English, Hindi) should be
placed to the right in the case of right to left scripts
(e.g. Arabic, or Urdu). We will however often use
localization here instead of multilingualization for
the sake of brevity.

Inside localization is done by working on the code
and resources of an application (a Web site in
particular), while outside localization is done by
translating and adapting what is produced by the
application, without any intervention on its code
and resources.

1.1 An unsolvable problem: quick certified HQ

multilingual diffusion

Many official organizations such as the European
Union (EU) or UNESCO have several official
languages in which they are supposed to
disseminate all their documents. However, any
multilingualization index of their websites is
abysmally low. Here is an example taken from the
EU site, where that index is less than 25% (6/23),
even at the first level. When one goes down 2
clicks, it decreases to 4—8% (1—2/23).

That happens often because of the presence of a
(understandable) certification policy. No material
can be disseminated without formal approval. In
the case of translation, that means that professional
translators hired by the organism or firm have to

“bless” any translation before it is published as
coming from it.

Figure 1: low multilingualization index at EU site

In 2004-05, a group of 3 labs translated the textual
material of the B@bel Web site of Unesco from
English into Chinese, French, Russian, Spanish
(and later Thai), 4 of the 5 other Unesco official
languages. That material comprised 42301 words,
about 169 standard pages, divided in 2896
segments of 14.9 words in average (the 1000
longest were 15.6 words long in average). The
translations were all revised by native speakers
with good knowledge of the domain.

Although this had been done in the framework of a
research contract from Unesco, it was later
impossible to get Unesco to include these
translations in its database. That database is indeed
prepared to handle the 6 languages in question, but
remains almost empty for all but English.

1.2 Multilingual access with unguaranteed &

unlabeled quality is not enough

Using free translation gateways is also not a
solution when a really good understanding of the
content is necessary. Trying to browse in French
(or even worse in German) the Europe Web site(s)
for calls for proposals is a conclusive experience.
These calls should (by European law!) be available
in all 23 official languages at the same time, with
the same quality. The 1700 translators of the EU
are certainly not enough to cope, and that number
did not considerably augment with the number of
languages growing from 9 around 1982 to 23 in
2007, 25 years later.

1.3 Misunderstandings about progress in MT

The kind of MT which would be necessary to cover
that kind of need is simply not there. There are
many claims about the progress made in MT in the
last 25 years. It may be true that a lot more
language pairs are covered, but usability when HQ
is needed has not improved, on the contrary.

Even for main language pairs, Systran admittedly
did not improve its quality significantly since 1990
or so. Small improvements are now coming from
the use of statistical techniques (to try to correct
mistakes in the output, or better to choose another
morphosyntactic analysis in the output lattice).

Google is now proposing many language pairs built
by SMT, but their reliability is even lower. Unseen
words simply disappear, while they at least show in
the outputs of Systran or Reverso, and can be
outlined on demand. More generally, claims to the
quality progress ignore the basic fact about MT,
which is that "C . A . Q << 1" (the product of
coverage by automaticity by quality is far lower
than 1), which is inherent in the problem. To
achieve HQ in large domains, one must use some
kind of human help, such as interactive
disambiguation in the source language, or
interactive choice among a large quantity of
candidates in the target language, or (co)edition of
an intermediate form.

2 Inside multilingualization

The classical way to internationalize a Web site,
and more generally any application, is to separate
from the code the natural language strings to be
shown or printed (or pronounced) by the
application, and to put them in separate resources.
One can distinguish 5 kinds of segments to
localize:

• A: short, fixed texts without variables.

• B: parametrized messages with variables and
possible variants in the surrounding text, such
as error messages or personalized invites.

• C: longer and more complex texts, such as on-
line help included in the code.

• D: the same, but residing not next to the code,
but elsewhere, possibly on another Web site.
The is the case of the minimal online help of
Dokuwiki (reference manual).

• E: pages built with the tools of the considered
Web site (content).

2.1 Localization of messages and GUI texts

These textual elements (A and B above) are
represented as formats, that is strings containing
variables and formatting controls, such as “Max
temperature was %f °C” (or “%3:1f” to put 3
digits before the decimal point and 2 after).

2.1.1 The gettext / ngettext technique

Although it is used for Web applications such as
WordPress (a CMS1 blogging software), the
gettext library (www.gnu.org/software/gettext/)
was originally designed for standalone software. It
contains a compiler of message catalogs and the
gettext and (more powerful) ngettext macros.
Here is an example where ngettext is used to

1 Content Management System

generate variants (singular and plural forms) in the
text around the (instanciated) variable.
// nplurals = number of variants for the plural.
// plural varies from 0 to nplurals-1,
msgstr[plural] will be selected.

// Catalog en_US: 1 variant for plural in English
Plural-Forms: nplurals=2; plural=n != 1;
 # catalog header

msgid "Match to %d point" # key for case n=1
msgid_plural "Match to %d points" # --- case n≠1
msgstr[0] "Match to %d point" # n == 1
msgstr[1] "Match to %d points" # n == 0, 2, 3 ...
// Catalog jp: no variants for plural in Japanese
Plural-Forms: nplurals=1; plural= 0; // plural=0:
msgid "Match to %d point"
msgid_plural "Match to %d points"
msgstr[0] "%d POINTO MATTI" # all n
// Catalogs for Russian : 3 variants for plural.
Plural-Forms: nplurals=3;
 # condition (OK here, false on GNU site!)

plural=(n%10==1 && n%100!=11 ? 0 : n%10>=2 &&
n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2);

msgid "Match to %d point"
msgid_plural "Match to %d points"
msgstr[0] "..."
 # n == 1, 21, 31, 41, ..., 91, 121 …

msgstr[1] "..."
 # n == 2, 3, 4, 22, 23, 24, 32 ...

msgstr[2] "..."
 # n == 5, …, 20, 25, …, 30 …

/* Call (the same for all langages) */
printf (ngettext ("Match to %d point", "Match to
%d points", n), n);

Figure 2: Example of using ngettext

In the “native” program, messages that need to be
localized are tagged (msgid, msgid_plural).
Then, the compiler generates a file with all the
messages that need to be localized. This file is
duplicated and translated into every needed
language. A final compilation produces a binary
file used at runtime for displaying the messages in
the user’s preferred language. This library has been
adapted to many programming languages, inclu-
ding PHP: WordPress is a software programmed in
PHP and uses the PHP-gettext.php library.
Advantages. Because the messages are first
compiled before runtime, the execution is faster
than with an array loaded on demand at runtime.

Inconvenients. In the translation files, only the
messages are displayed. Their context is missing.
But it is often difficult to translate messages
without any context.2

Also, in some cases, when a software is available
for download, only compiled .mo files are
included, not the source files. Thus it is very
difficult to modify a translation. Furthermore, even
if the source files are available, the gettext
library must be installed locally to recompile and
obtain the new .mo files.

Finally, it happens that different plugins use
different localization techniques.

2.1.2 The PHP array technique

The PHP array technique is used by many CMS
coded in PHP, such as the Dotclear blogging
software. This technique is very similar to the
gettext technique. Message files are in the same

2 That is one of the main problems encountered by IBM-
Japan when localizing the giant CATIA software.

format, but each is compiled into a PHP array
instead of into a .mo file.
$GLOBALS['__l10n']['Invalid user level'] = 'Niveau
d\'utilisateur invalide';

$GLOBALS['__l10n']['User password missing'] = 'Pas
de mot de passe';

$GLOBALS['__l10n']['User name missing'] = 'Pas de
nom d\'utilisateur';

$GLOBALS['__l10n']['Invalid email address'] =
'Adresse email invalide';

Figure 3: a PHP array with localized messages

Advantages. It is possible to reuse the same
message in different Web pages. Also, contrary to
the gettext technique, there is no need to install
the gettext tools to compile the messages files.

Inconvenients. With this technique, the whole
context is also missing. Furthermore, the use of an
array increases the execution time of the scripts.

2.2 Inside localization of Web pages

How to improve Web sites localization? We will
first compare some localization techniques.

2.2.1 The template technique

A template is the analog of a format for a whole
Web page. We take as example our Jibiki
platform, which is based on the Enhydra Java Web
Server. Each Web page is compiled from an
HTML template (.po) into a java class. At
runtime, the display method of the java class is
called and creates what is displayed to the user.

Figure 4: localization with the template technique

In order to internationalize the platform, we
developed a java method that chooses at runtime
which template to display, depending on the user’s

preferred language and the language templates
available. Every page has a default template. Some
templates are translated into one or several
languages. The template of the preferred language
is chosen first. If it is not available, the default
template is used.

In theory, someone who wishes to translate a
template can do so by editing it with an HTML
editor, without having to know HTML. In practice,
however, this method is rarely used because of
several problems. (1) Many HTML editors such as
DreamWeaver modify the structure of the template
while editing it. It is then impossible to compile it.
(2) A Web page is often built with a combination
of several templates: it may be difficult to translate
them, because it is not possible to see the entire
Web page when translating. (3) It is not possible to
recreate all the conditions in which a Web page is
seen online, for example when error messages
appear, because the templates are edited offline.

Advantages. Because the whole template is
translated, there are no problems with the variables
contained in the messages. It is also possible to
translate javascript messages if their code is inside
the templates.

Inconvenients. There may be inconsistencies in the
translations because it is not possible to reuse
already translated messages or parts: the same
button with the same functionality can be translated
differently depending on the page and the author.

Remaining problems. Some parts of the code are
still difficult to translate, for example internal java
messages targeted to the user (mainly error and
feedback messages).

Also, there is no mechanism to automatically send
a newly created template to the appropriate
translators to translate it into all target languages.

2.2.2 Language Negociation

The choice of the language at run time can be
negociated by the Apache (or Tomcat) server, or by
geolocalization, as done by Google.

Apache Web server. The LN module serves the
page matching the browser’s preferred language.

Geolocalization. The results of a request depends
on the user’s location. If a user queries google.com
from France, s/he will be redirected to the google.fr
engine, etc. and the results of the same query can
thus be different from one country to another.

Conclusion. Even if the LN or geolocalization
choice is adequate in most cases, a multilingual
Web site must always display on each page a link
to its translations in the other available languages.

Furthermore, if it is technically feasible, it should
memorize the choice of the user during the
navigation on the site and remember it when the
user comes back later.

2.2.3 Organization of resources

Another crucial aspect is the physical organization

of the textual resources in the different languages.
Here is an example for the Chuwiki CMS:

Figure 5: languages resources in Chuwiki

Figure 6: resource file in Chuwiki

There are many techniques for localizing the
interface elements of Web sites (called glossary by
people working on the translation of large software
products, such as FrameMaker or InDesign).
In Chuwiki, the glossary is very small, and one
edits in effect a simple script that assigns values to
variables. In Dokuwiki, the organization is more
complex (see Figure 8). The glossary is larger, and
is stored in an associative table. Elements contain
variables, to be substituted on the fly. In PHP, the
problem of change of order of parameters is solved
if one numbers them by writing '%s1\$',

'%s2\$', etc., thanks to an extension of the
vsprintf function.

Figure 7: language resources in Dokuwiki

$lang['subscribe_success'] =
'Ajout de %s à la liste d\'abonnés de %s';

$lang['subscribe_error] = 'Erreur à
l\'ajout de %s à la liste d\'abonnés de %s';

$lang['subscribe_noaddress] =
'Aucune adresse associée à votre nom
d'utilisateur, impossible de vous abonner';

$lang['unsubscribe_success'] = 'Suppression de
%s de la liste d\'abonnés de %s';

$lang['unsubscribe_error] =
'Erreur à la suppression de %s de la liste
d\'abonnés de %s';

Figure 8: resource file for messages in DokuWiki

Figure 9: text with variables in wiki transcription

(Dokuwiki)

Linking resources from Web pages through special
links appearing always or on demand is a way to
"turn around" the problem of context, so that one
can navigate in a Web site, find the resource(s)
used in the current page, and translate or correct
them, knowing the context.

2.3 Localization in context

A more natural approach is to localize from the
Web application itself. We have developed a piece
of PHP code, easy to integrate in Web sites to do
that. In management mode, a text area appears next
to each localizable element. Clicking outside it lets
the page appear with the updated text.

Figure 10: normal view of a Web page

Figure 11: page in management mode, for edition

Discussion. It is frequent for a Web site to be
translated by several localization techniques. For
example, some CMS software use one technique
for the core and other techniques for the plugins.

If someone wants to modify a translation, it is
sometimes very difficult to find where it is stored:
in a template, in the database, in a localization file,
etc. It even may not be possible to find it when for
example, the software is translated with gettext
and the source file is not distributed.

If someone writes a translation into a new language
or corrects an existing translation, there is no
simple mechanism to submit the new translation to
the developer of the software. Sometimes,
developers provide a way to submit translation
files, e.g. via a post in a forum. It would be more
efficient to be able to send back automatically a
new translation to the developers of the software
via a standardized protocol.
None of these techniques allows a user to translate
dynamically on the fly and to easily send back the
translation result to the developers of the software.
It is also not possible to reuse existing translated
chunks of messages like with a translation memory.

3 Outside automated contributive

localization & quality improvement

3.1 Call to a translation gateway

Yahoo!, Voilà, Google Translator, Systranbox and
Babelfish are examples of MT translation
gateways. The incoming Web page is segmented,
segments are translated by the online MT server,
links are modified so that accessed pages come
back to the gateway, and a target Web page is sent
on the fly to the user’s browser. It is enough to
copy the url of the original page into the gateway,

but it is also possible for a Web site developer to
add a button to some or all of the Web pages.

Advantages. The module is external so there is no
need to install or compile anything.

Inconvenients. The translation engine is not tuned
to a specific domain, thus the quality is usually not
very good, or rather low. However, that technique
is generally used only for getting an overall idea of
the source page at the price of a short delay (about
0.5 to 1 second per page for Systran). Finally,
there are actually not many acceptable available
language pairs (of the 35 Systran pairs available
around 2000, 8 were said to be usable by the EC).

3.2 Combining translation gateways

(VoTrung 2004) has produced a system to translate
a possibly multilingual text, not necessarily a Web
page) into a specified target language tl. For that,
he first segments the text into parts homogeneous
with respect to language and coding, and converts
it into an utf-8 text with tags indicating the
language and original coding of each part. Each
part is then submitted to MT, after another
encoding conversion if necessary.

If no MT system exists from a source language sl
into tl, a double translation is attempted through an
intermediate language, in general English (it may
be shown to the user). The results are then
assembled and a target text is produced. A Web
service allows to see several translations produced
by different routes, in the hope that errors of one
system may be compensated by other systems.

One could continue along these lines, e.g. by
allowing the user to correct the intermediate
English form, if any, to get a better result in his
language, but the quality limitations cannot be
overcome.

Another approach has been developed, which
concerns only the content of documents distributed
through a CMS. Y. Bey has developed te
BEYTrans prototype, which is a Web service for
communities of volunteer translators (Bey & al.
2006, 2007) offering linguistic helps (online
dynamic dictionary and translation memory, call to
MT systems, online translation editor).

3.3 The iMAG concept

We propose to replace the problem of HQ certified
translation by that of multilingual access, with

quality increasing over time thanks to contributive
post-edition.

To implement that idea, we build iMAGs
(interactive Multilingual Access Gateways). An
iMAG is a translation gateway, like Systranbox or
Google Translator, which replaces on the fly a Web
page by its pre-translation, and allows to browse a
site in the chosen target language, by prefixing the
links in the page by the url of the gateway.

Figure 12: Source and target Web page parallel display (SECTra_w)

Contrary to usual translation gateways, an iMAG is
dedicated to an elected Web site or domain. That is
the key to enable improvements in translation
quality over time. The iMAG has a translation
memory in which, ultimately, the full set of
information of its elected Web site, divided into
segments, the minimal translation units, will be
stored. For each segment, we store translations at 5
estimated quality levels, with scores in each level:

• word for word (*),

• MT result (**),
and then translation or post-edition by

• a native speaker of the target language (***),

• a professional translator (****),

• a translator certified by the elected site (*****).

A score can be added. For example, a post-editor
may want to tell that he has doubts or is sure about
his work on one particular segment.

An iMAG contains a terminological and phraseo-
logical dictionary specialized to the texts of its
elected site, and built from them and from the
contributions of post-editors. And, last but not
least, it offers an online editor, tightly integrating
the linguistic helps, and offering them in a
proactive way: when a segment is edited,

suggestions from the dictionaries and the TM are
precomputed, and MT has already been performed.

3.4 Current prototype built on SECTra_w

The scenario is as follows. Suppose a user wants to
get access to page P (originally in source language
sl) of site W in target language tl. S/he pastes the
url of P in the iMAG dedicated to W and submits
it. P is segmented into segments or translation
units (TUs), which is often not trivial. Each
segment is looked for in the translation memory
(exact match or fuzzy match above a certain
threshold). If no exact match is found, MT systems
are called. If the language pair is not provided by
any of the available MT, a word by word
translation may be provided (*), and/or a double
MT through English is produced (** with low
score!), to get something rather than nothing.
Having translated each segment with a known a
priori quality level, the iMAG constructs a new
HTML page by replacing each source segment with
its best translation, thereby adding javascript code
and other information (the source text in
particular). The constructed page is sent to the user
(see Figure 12). As in GoogleTranslate, added
javascript code enables users to switch seamlessly

to the online translation editor, and all links are
changed to allow navigation in the target language.

The difference is that translations improved by
post-edition, if any, are added to the TM, and
immediately available if a page containing them is
consulted. Another advantage (for the future) is
the possibility to build an MT system from the
collected specialized data.

3.5 Towards mixed outside/inside contributive

& incremental localization

Preparatory Work. There is a possibility to
increase the quality of the iMAG translations by
doing some preparatory work. For example, the
translation memory can be bootstrapped with the
existing site textual material.

Figure 13: post-edition interface in SECTra_w

Incremental Improvements. Once a first version
of the Web iMAG site is settled, it is possible to
increase the quality of the translations during the
life of the elected Web site.
In the background, the iMAG could query some
shared terminological resources in order to find
High Quality translated segments and to transmit
them to the elected Web Site.

Conclusion

Classical inside localization techniques are hard to
apply to Web sites, in particular because
developers are often not “hard” programmers.
Moreover, the organization of textual resources and
of the localization process varies enormously, even
between instances of the same generic CMS (like
Chuwiki, Dokuwiki, Xwiki, Joomla…). We have
proposed and developed a technique allowing even
users to localize a Web site in context, while using
the site, in a special management mode.
We have also prototyped the new iMAG concept to
perform contributive outside localization. Both are
very promising directions for the future.

References

Bellynck V., Boitet C. & Kenwright J. 2007. Bilingual
Lexical Data Contributed by Language Teachers Via a
Web Service: Quality vs. Quantity. Proc. CICLING-
2007, 19-23 Feb. 2007, UPM, A. Gelbukh, ed., 12 p.

Berment V. 2004. Méthodes pour informatiser des
langues et des groupes de langues « peu dotées ».
Thèse, UJF (thèse préparée au GETA, CLIPS),
18/5/04, 277 p.

Bey Y., Kageura K. & Boitet C. 2006. Data Management
in QRLex, an Online Aid System for Volunteer
Translators. International Journal of Computational
Linguistics and Chinese Language Processing, 11/pp.
349—376.

Bey Y., Kageura K. & Boitet C. 2006. BEYTrans: A
Wiki-based Environment for Helping Online Volunteer
Translators. In "Selected and revised papers from
LR4Trans-III/LREC-06 (3rd International Workshop
on Language Resources for Translation Work,
Research & Training)", E. Yuste, ed., Springer, 12 p.

Blanc E. 1999. PARAX-UNL: a large scale hypertextual
multilingual lexical database. Proc. NLPRS'99: the 5th
Natural Language Processing Pacific Rim Symposium,
Beijing, China, Nov. 5-7, 1999, 4 p.

Blanchon H. & Boitet C. 2008. Pour l'évaluation externe
des systèmes de TA par des méthodes fondées sur la
tâche. TAL, numéro spécial sur l'évaluation, pp. 1-33.

Boitet C. 2005. Message Automata for Messages with
Variants, and Methods for their Translation. Proc.
CICLING-2005, A. Gelbukh, ed., Springer (LNCS
3406), pp. 352—371.

Boitet C. 2007. État de l’art en traduction de l’écrit
(rapport actualisé v3). Projet TRANSAT, D-1.1.2.C,
GETA, CLIPS, IMAG, jan. 2007, 68 p.

Hutchins J., Hartman W. & Hito E. 2005. Compendium
of Translation Software (directory of machine
translation systems and computer-aided translation
support tools. EAMT (on behalf of IAMT),
TIM/ISSCO, Geneva, 127 p. http://ourworld.compu-
serve.com/homepages/WJHutchins/compendium.htm

Mozilla. 2000. French Mozilla 2000. Official Web site
for French Mozilla Project: Open Software
Localization. http://frenchmozilla.online.fr (last
accessed 09/05/2007)

Nguyen H.-T., Boitet C. & Sérasset G. 2007. PIVAX, an
online contributive lexical database for heterogeneous
MT systems using a lexical pivot. Proc. SNLP-07,
Pattaya, 13-16/12/07, Kasetsart University, ed., 6 p.

Sénellart J., Boitet C. & Romary L. 2003. XML Machine
Translation. Proc. MTS-IX (Machine Translation
Summit), New-Orleans, 23-28 September 2003, 9 p.

W3C. 1998. W3C Specification Translation.
http://www.w3.org/Consortium/Translation
(last accessed 09/05/2007)

