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Abstract: Integrating continuous spatial data IBOLAP systems is a new research challenge. Morgover
representation of field data at different scalesesolutions is often mandatory for an effectivalgsis.
Thus, in this paper, we propose a logical modéhtiegrate spatial dimensions representing incoragletd
data at different resolutions in a classical SOlakéhitecture.

1 INTRODUCTION discrete (vector) and continuous field (Mennis,
Viger et al. 2005). Continuous fields (also called

. ., continuous spatial data) represent physical
Spatial Data Warehouse (SDW) and Spatial phenomena that continuously change in space

OLAP (SOLAP) systems play an important role in (pagjing, Sebillo et al. 2010), for example the
helping decision-makers obtain the maximum temperature, population, etc. Two representatidns o
benefits of these large amounts of geographic datafield data have been proposed: incomplete and
(Bedard, Merrett et al. 2001). These technologies complete (Paolino, Sebillo et al. 2010). Incomplete
extend Data Warehouse (DW) and OLAP systems torepresentations store a sample of points and need
integrate spatial data with warehoused classical da additional functions to calculate the field in non-
to achieve the on-line analysis of large sampled areas (e.g. grid of points, TIN, etc.).(e.g
georeferenced data sets. SOLAP systems integratéigure 2). Complete representations associate
advanced OLAP and Geographic Information estimated vaIu_es to regions _an(_:i assume_that these
Systems (GIS) in a unique framework usually b(,:lsedvalues are valid for each point in the regions.(e.g

: . . raster). For those representations some ad-hoc
on the relathnal storage (i.e. Oracle, etc,) aitigp . analysis operators have been defined that allow a
data according to the vector model, and their

, . point by point analysis (i.e. map algebra (Mennis,
analysis through SOLAP operators (Spatial Roll-Up, viger et al. 2005)). Representation of geographic
Spatial Slice, etc.) implemented by the SOLAP (ata at different scales or resolutions (e.g. R
server (e.g. Map4Decision, etc.) and visualized by b) is mandatory for an effective analysis of spatia
means of tabular, graphical and cartographic complex phenomena since it represents a
displays (Gomez, Gomez et al. 2012). SDW are geovisualization method (Camossi, Bertino et al.
modeled according to the spatio-multidimensional 2009). Consequently, these resolutions or scales
model that extends the traditional multidimensional represent decision-makers analysis needs thatdshoul

model to define spatial dimensions (i.e. analysisa P€ explicitly represented in any data and query
with spatial attributes) and spatial measures (i.e.M0d€l- Indeed, in the context of Geographic

analysis subjects) that integrate coara hiCInformation Systems and Spatial Databases
analysis ) Y _ 9cograp Management Systems (SDBSM), several works
information using the vector model (Bédard, Rivest

VWESt addresses this issue by proposing conceptual,dbgic

et al. 2007). SOLAP technology can be applied in 5nq physical data models and analysis techniques

different domains (e.g. archeology, public health, (Parent, spaccapietra et al. 2006).

etc.). Motivated by the important analysis capabilities
Geographic information can be represented by offered by the continuous field representation of

two models, depending on the nature of data: geographic data when integrated in SOLAP systems
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(visualization, querying, etc.) recently some works to apply a spatial slice operator on the spatial
investigated the extension of the spatio- dimension (i.e. using a spatial predicate to sedect
multidimensional model and SOLAP operators with subset of warehoused data) (Figure 2-d). In order t
complete and incomplete field data (cf. Section 6). answer to these last two queries spatial interjpoiat
In the same way, handling multi-resolutions of methods are necessary, since in incomplete field
spatial data into spatial multidimensional models h  only the values provided by the simulation model
been proposed in few works (Yvan, Proulx et al. are stored. Spatial interpolation is the process of
2002) (Gascuefia and Guadalupe 2009) that proposgrediction of almost exact values of attributes at
conceptual models to represent SDW with severalunsampled locations from measurements made at
representations (scales, resolutions, etc.) ofiadpat control points within the same area (O'Sullivan and
dimensions and measures. J.Unwin 2002). In our case the interpolation fumcti

However, to best of our knowledge existing used is the bilinear interpolation, which is a loca
works concerning field data and multi-resolutions deterministic method. It uses the 2 * 2 grid sample
lack of a complete implementation in a full-featire points closest to the unknown point and calculates
SOLAP architecture, or in other terms they do not distance weighted average which determines in what
propose a coupled relational and SOLAP server proportion the value of a neighbour impact on the
model for a generic SOLAP architecture allowing (i) value of the point to be estimated (Figure 1).
the map algebra operators, (ii) the multi-resohutio Finally, as stated in the previous section, since
and (iii) a continuous view of the field. visualization of spatial data at different resalas is

In order to handle the spatio-multidimensional mandatory for the exploration/analysis process,
analysis of incomplete regular grid field data at decision-makers should be able querying spatial
different resolutions, we propose in this papéra(i  warehoused data at different resolutions. It ig/ve
specific logical model, extending the well-know important to note that for each spatial phenomemon
relational star schema; (i) and some new MDX- set of useful known resolutions exist, so they doul
based defined functions. We validate our proposal be predefined according to data and users needs.
using a real case study concerning the odorMoreover, in order to calculate values at finer
monitoring, and we provide some experiments resolutions spatial interpolation functions as
showing the feasibility also in terms of storagel an previously described can be used.
computation performances. To summarize, spatio-multidimensional analysis

of field data impliessupporting (i) OLAP classical
operators as Map Algebra, (ii) continuous view of

spatial data, (iii) spatial slice operators usingléi
2 MODELING AND ANALYSIS data, and (iv) visualizing and querying data at
REQUIREMENTS different predefined resolutions

In order to show our proposal, we present a case . o .

study based on data issued from the monitoring of3  Spatio-multidimensional model
urban odor. For each 15 minutes and type of odor for incompletefield data

(e.g. NO2) a regular grid map (field) is produced b

means of some sample points and a simulationIn this section we describe our spatio-

medelf(ADMShS)l ' Tge S|mulat|03 mogel es“fggiigomuItidimensional model for handling incomplete
odors Tor a wnole urban aréa and produces fields at different resolutions. Our model extetius

_the_ma'uc grids. Examples of points grid are prodide classical spatio-multidimensional models to gererat
in figure 2-a (odor values are represented by color the continuity of the phenomena over the studied
green, yellow, red) for 10:00 19-2-2012 and 10:15 area, and represents pre-defined levels of resoluti
19-2-2012. Let us now suppose that _the user wants | particular, a “Cube” is composed of “Facts” and
to aggregate data along a temppral dimension (year"Dimensions”. A “Dimension” is composed of
month, day, hour, minute) using the average 0.0 chies” which are composed of “Levels’. A
obtaln_an aggregated odor map. Th'$ IS an OLAP “Level” can be spatial or conventional. This means
operation of RollUp on the temporal dlmer_13|on _that that it can contain “Spatial attributes” (e.g. fsin
corresponds to a Ipcal map alge_bra operation (E_lgur etc.), or contain only alphanumerical attributes
2-g. Moreover, since space is represented in arespectively. “Facts” is composed of “Spatial
continuous way, decision-makers should be able Opreasures” or “Conventional Measures”. Moreover
ask for the result of any OLAP query in any poifito "o iension defines a “Field level” as a special
the spatial dimension (for example, s/he should betype of spatial level where each member has a

interested in the odor value at 10:00 in the area : : : wna
behind the building) (Figure 2-c). It is also pirsi geometric attribute (e.g. point), a “neighbourhood
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relationship” association, and asolution level t
which it belongs.

(©

10:00 10 Hour
19-9-2012 19-5-2012
Figure 2: a) local map algeb aggregation ove

incomplete field. b) multiresolutiorrepresentation ove
incomplete field c) querying an nsampled point c
querying an unsampled zone

Indeed, as described in therevious section
spatial interpolation foction use a set of point:
which depend on the function (¢ bilinear functior
uses a 2*2 grid), to estimate : unknown value
Thus, in our approach valuese represented t
measures, the “Neighbourhoodlation” links eact
detailed "Field level" tots neigibours in the les
detailed level. As soon as ttvalue of a higt
resolution "Field level" is requireits neighbours ar
found through the “Neighbwhood relation”
However, this type of relionship can b
implemented in different waysiependingon the
intended purpose as shown in2 next section. |
our case, we want to estimate t/alue of any poin
(x, y) of a Field level, so neighurs are found o
the fly by the relation "Neighbohood relation”. Ir
the case of a change in the leof resdution, the
members of a high resolution.g. 200*200), ar
predefined and therefore, heir respective
neighbours, which belongs the resolutiol
100*100, can be prstored as attnutes.

As described in the modea hierarchy cal
contain several field levels representing th
phenomena at different resolutis. This means thi
changing resolutions implies vigating into the
hierarchy and calculating valueby means of th
interpolation function or an aldoc aggregation

function when we move frorless dtailed resolution
to more detailed one, or viciersa.

The odor SDW of our casstudy using our spar
multidimensional model is 9wn in Figure &

This instance describes thenensions and facts th
constitute our cube.

In addition to the dimensits (Source, Tracer and
Time), the "Facts" class Is a classical meast
“odorMeasure” and a derived measur
“EstimatedOdorMeasure”. e derived measure
calculated according to twonctions:
a)"Interpolatepoint’€ontinuitr).b)"InterpolateBiline
ar" (multiresolution) In our case, the interpolatic
function used is the "bilirar interpolatior. The
relationship whose cardinal:s are "2, 4" represer
the “Neighbourhood relatit”. A member of the
"Incomplete Field Level" can have 2 or
neighbours, dependimn its position in the grid 2*;
that surrounds it. The “Neiourhood relation” ca
be used to retrieve neighbe of a location (x,y) t
estimate the value in that ption (continuity), or tc
retrieve a high resolution 2mber’s neighbours i
the lower evel of resolutio to estimate its valt
(multiresolution on the fly).

4 Relational and OLAP models

In this section we presethe implementation ¢

our spatiomultidimensional model in a typica
relational SOLAP architecte based on SQL (it
Relational DBMS standardlanguage) and MDX
which is the ddacto stanard of OLAP Server:
This provides a generality aracter to our approac
being possible to be implemted in any architectu
of this kind.
Let us suppose to ha one “Field level
representingpoints at the rsolution 100*100, an
then the logical model * our case study |
represented as in fig. 4. It i classical star schen
This model is composed a fact table containin
measures with foreign ke to dimension table
Each dimension tabél is cenormalized, and h
attributes representing levels.

Let us also suppose tcave a classical OLA
model based on that logl schema, where ti
spatial level is calledField].H].[res100] . As we
can see, the dimensions t constitute the mod
are: thetemporal dimensiorwhich consists of fivi
levels of granularity (Yearmonth, day, hour ar
minute); the Source dimelon that expresses t
source of the pollutant .g. cars); the Trac
dimension is the type of patant (eg NO2), whicl
is also defind by its identiler and name; and tF
“Field dimension” that repisent a regular grid «
points and consists of onlevel representing tt
regular grid at the 100*1¢ resolution, which i
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composed of an identifier and a geometry representation of incomplete field data in the
representing a point. The measure «Concentration ofmultidimensional model allows making queries as
odor» represents the values for all members Map Algebra operators (point by point aggregation)

representing the field at a 100*100 resolution.sThi

izl ST

such as the following:

—

Source Lewel Sour ce
“Marme :I]menslon_;

1

il Facts
-odorivieasure : nurreric
- Estimreted Odorhdeasure : nurmeric

|-+Estimate Biln 2ar( member : hoomplete Feld Lewel
3 numeric
+interpolate Poirt Point | Georetry ) @ numeric

2.4 |

— R - —
| Grid 100%00 | Grid 2000200 | | Grid 4o0%00 |

| Traeer | Time | [ ép_ati-ai-re-gulaf ;;riw:l-i
|Dimension |Bimension | Cimension

T - = __Ti_

jiiescer|ewel | | ¥ear level _Hcom piu‘a‘ie-ﬁe-ld -I-_evel_:
| |

-year | .
B2 -point : geametry

[Wort ievar ] [Fesofmen "~ |
| -rrorrth |

B - -y -

; v 24

[[ayievel |
-day |

]
| Hour level .

{-hour |

I Mirute level |

- rminute

Figure 3: Odor SDW multi-dimensional model

Query 1. select average odor for each field

member during 2012

SELECT [Field].[res100]. Members ON
ROWS, {[time].[2012] } ON COLUMNS
FROM [odorCube] WHERE
[Measures].[value]

4.1  Incompletefield

In order to implement field levels we have
defined a GeoMDX user-defined function that

represents a spatial interpolation as:
NumericType InterpolatePoint(Geometry)

This function takes as input a geometry (point) and
returns a numerical value, which is a derived
measure in the OLAP model, representing an
estimated value calculated using the neighbourhood
values of the point given in input. Thus, let us
suppose that we want to retrieve a value of thd fie
in a location whose geometric property is set ® th
geometric coordinates POINT(-72.1235 42.3521).
Then in order to answer to that need using the
Bilinear interpolation function, decision-makers
have to simply use a GeoMDX function in the

following way: InterpolatePoint(POINT(-
72.1235 42.3521)).

Thus, the function will look for the neighbours
of the point given as a parameter, in the fielcelev
([Field].[res100]), on the basis of the distanced a

table, evaluate the value of the point to estimate
using these values, and then return an estimated
derived measure. Here is an example query that uses
the "InterpolatePoint" function:

Query 2: select a field member's value at
coordinates 721148 3140020) for the year 2012.
With member [Measures].[value] as'
InterpolatePoint(ST_GeomFromText("
POINT (721148 3140020)"))'
SELECT [Measures].[value]ON ROWS,

[time].[2012] ON COLUMNS
FROM [odorCube]
Year
Month
Day
Hour e [ souces |
Minute pic H 0" Minute FK ! source  PK
0,0 /idPoint FK Name
Source FK n
Tracer FK On
Concentration of odor

1 Tracer PK

Name
idPoint 1

geometry

Figure 4: Classical star schema integrating regutiar of
points

Note that generally MDX allows defining user-
defined functions in several programming languages
(i.e. Java, .NET, etc.) depending of the OLAP Serve

then find neighbours’ respective values in the fact ysed. In this work we have used a Java-based



ICEIS 2013 INSTICC International Conference on Enterprise Information Systems, July 3-7, 2013, Angeg

implementation in GeoMondrian (see Sec. 5). In fact table is associated, classically, to the most
particular, the interpolation is done using an txgs detailed level of the field dimension.
interpolation Java API “javax.media.jai api” (JAI). In this way, decision-maker can explore
. Ién éh's way We.achlevle thef.C(I)Stmuous V|evc\j/ of \varehoused field data at different resolutions ryri
leld data using incomplete fields as stated In o gome analysis MDX-based session. Only need to
Section 2. S

change the level of resolution in the query to dean
4.2 Multiresolution the Ievel_of details of the result. Using th_is apgh,

we use in an MDX query, the appropriate level of

Theoretica”y' we can measure a value of a field resolution of the field dimension as in the fO”MI

at every position inside a geographic space.where the Query 1 becomes:

However, not all resolutions are necessarily reieva Query 3: select average (_)dor fo_r each field
Indeed, according to the type of analysis performed member at the 400*400 resolution during 2012
by the user, a more or less detailed resolutionbean SELECT [Field].[res400]. Members ON

requested. The multiresolution is an approach thatROWS, {[time].[2012] } ON COLUMNSFROM
consists in defining resolution levels likely to [odorCube]

improve the rendering of the requests made by theWHERE [Measures].[valug]

user. To model an incomplete field at several

resolutions in a multi-dimensional model, we . .

propose two Approaches based on the “Classical®2-2 Field Interpolation Star-Schema
Star Schema”: The “fieldiggregationstar-schema”  Approach

approach and the “fielthterpolation star schema”
agBroach. P As stated in Section 2, in order to provide field

data at finer resolutions, spatial interpolation

methods can be used. Then, here we propose a
4.2.1 Field Aggregation Star-Schema variation of the previously proposed schema for
Approach handling multiple field resolution levels, by
associating the fact table to the field at lessuikt

Baseq on the star SChe”.‘a model  previously resolution as shown on figure 5-b. In our approach
described, we propose a logical schema where the

ial di . ts diff ¢ field level moving from fact table values to finer spatial
zgfa a t|men|5|tc?n pre:en; '_ﬁrfn Ied Ievt sda members’ values implies applying spatial
erent resolutions (fig. : -a). IS modet exten interpolation functions. Note that this approach is
the spatial dimension of figurewlith 2 other levels

h . diff level of luti possible only when dealing with spatial data,
eac representing a di ere_nt evel of resolution po.q e according to the Tobler law geographical
([Field].[res200] and [Field].[res400] )

, ) S j osition of data can be used for estimating missin
Each level of the field dimension is composed of an \F/)alues g 9

identifier and a geometry representing a palifte

Time |
[Time ______ =
Year Month
Month Day
Day Hour ffacs | o M|
Hour _ Minute P 1 S0 Minute FK , Source PK
Minute PK 3 40 Minute FK ! source PK 05,/ Resl00 FK Name
on Resd0o FK Name Source FK o
Saurce FK on Res100 PK 1 Tracer FK (2]
Res100 Tracer FK on Geometryl Concentration of odor m
gearmetiyl Concentration of odor Tiaca Res200 1 Tracer PK
Geometry2 Mame
Res200 1 Tracer PK Nelghbours2
Geometry2 Name Resd0
Resd400 PKE 1 et
g=ometry3 Neighbours3

@ (b)
Figure 5:(a) Field Aggregation Star Schema (FASS), (b) Fietdrpolation Star Schema (FISS)
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We have implemented a GeoMDX function in the follows the Simple Features for SQL specification

same way of the function defined in Section 4.1: ~ from the Open Geospatial Consortium (OGC); we
Numeric-type  InterpolateBilinear (Field use GeoMondrian as a SOLAP server; and JPivot as
Member) a client. GeoMondrian is an Open Source Spatial

However, this function, named "InterpolateBilinear Online Analytical Processing Server. , .
In order to test our proposal we define different

IS prepared 1o receive as input a f'_EId level membe cases where the spatial dimension presents: olde fie
instead of geometry and return an interpolatedevalu level at the 100*100 resolution: two levels at the

of this member. We can also see that in this dbse,  asolutions 100100 and 200*200: and finally three
neighbors of each member of a higher resolution levels at the resolutions 100*100, 200*200 and
than the original one are also stored in the “Pield 400*400. We also vary the size of the temporal
(Neighbours2, Neighbours3), since members of eachdimension in order to understand impact of the
resolution are pre-defined in advance, but their spatial and non spatial dimension on performances.
values are not since they depend on other Figure 6-a shows the size of the fact table

dimensions. measured in function of the number of spatial and
Calling this function as follows: temporal members (spatial finest resolution /
InterpolateBilinear temporal finest granularity) using the two
([Field].[res400].CurrentMember) in the approaches. We can easily see two important

formula of a derived measyrallows to find the  differences: i) the field aggregation approach is
values of all the members of the level “res400” expensive in terms of storage than the field
(incomplete field at a 400*400 resolution) using interpolation one since the latter stores only sact
their neighbors “Neighbors3” . Thus, the query 8 ca Values at a less detailed spatial granularityiniighe

be performed as follows: field interpolation approach the size of the fadil¢
SELECT only varies depending on the size of the non spatia
{[Field].[res400].Members} ON ROWS, dimensions. Thus, even increasing the size of the
{ [time].[2012] } ON COLUMNS spatial dimension, the fact table does not change
FROM [odorCube] since it contains only measures related to the firs
Where [Measures].[EstimatedValue] level of resolution.

In order to evaluate computation performance
While in the multidimensional SOLAP schema, we execute the queries previously cited, where we
the "InterpolateBilinear" function is called in the combine roll-up operation on non spatial
“EstimatedValue” calculated measure formula as:  dimensions, and spatial slice operators over differ
formula="  InterpolateBilinear([Field].[ field resolutions.
res400].CurrentMember) " Figure 6-b represents the execution time of theyjue
As we can see in the previous query, the call of 3, which consists in generating values of the
the calculated measure enables to find the valuas a members at different resolutions taking into ac¢oun
given scale transparently to the decision makeat as different sizes of the time dimension. This figure
classical aggregation (SQL). This approach is shows a certain degree of approximation in
motivated by performance issues as described in theexecution time between the two approaches to a
next section. certain level. Beyond this level, we note that gl
widens considerably. Thus, minimizing storage and
_ ) relations has allowed the field interpolation
5 Experimentations approach we propose to have better execution time
than the field aggregation approach at all resoituti
In this section we detail the performances of levels (100*100, 200200 and 400*400). Figure 9

the two approaches proposed in Section 4.2 (FAssShows that the execution time in the “field

and FISS) in terms of storage and time computation, 299régation approach” increases depending on the
The computer used for the following tests has the number of spatial and temporal members, whereas in

followi f - ® ™ i3 the *“field interpolation approach”, it increases
ollowing configuration: processor Intel® core ™ i mainly depending on the number of temporal

2,20 GHz, RAM 4 Go, Operating system Windows 7 mempers. Indeed the size of the spatial dimension
professional, System OS 64 bits. does not influence much on performance, since there

In particular, spatial data is stored in PostGIS js no relationship between the fact table and the
Spatial DBMS. PostGIS is an open source software members who belong to high resolutions.

that adds support for geographic objects to
the PostgreSQL object-relational database. PostGIS
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6 Related work

In order to integrate fields ata in a SOLAF
model, @Ahmed and Miquel '00%) propose a
multidimensional model for hadling continuou
discrete fields, storing a samplé points as spatit
members, to create a discr cube which i
interpolated in the cliendide to simulate
continuity. (McHugh 2008)defires new types c
dimensions handling fields as regular grid o
squares (raster): “hybrid dimena”, “mixed hybrid
dimension”, “mixed matrix dimension” anc
“geometric matrix dimension”. $halso defines th
“matrix cube” where facts are:lls of the matri
grid. The “field aggregation apgach” presented i
section 4.2.1 is based on this rk. However, the
“field interpolation approach” wepropose, althoug
it gives the same result, it isome efficient in term:
of storage and execution tim&dmez, Gomez et a
2012)presents a discrete data =l for representin
continuous fields and an algebthat makes use «
OLAP operators (e.g. DiceSlice, Rol-up, Drill-
down ...). However, the discretnodel the author
propose does not support the tinuous aspect ¢
the field, which consists to retrie a value for eac
point with coordinates x and in the map. Ir

(Gomez, Vaisman et al. 201Q@he atthors propose a

multidimensional model hanag fields. They
define two types of fields, “fielt and “tempfield”
(spatial field and temporal fieldand semantics fc
the operators associated to thidata types. The
include the notion of field dirnsion and field
measures. Thegefine the “field dimension” as
dimension containing at least orevel that is a fiel
(temperature, precipitation...the “field measure
as a measure represented by :ld and the “field

hierarchy” as a set of reld field evels, which
allows a field to be seeiat different levels o
granularity .They also propee a physical model fi
data warehouses with coruous fields. Howeve
no implementation has kn proposed and tl
hierarchical relationship beten field levels as not
been brought to light.Bimonte and Myoung 20.)

provide a multidimensionamodel that integrates
field data independently fra their implementatior
as measures and dimensi. They also present

formal representation of thepatic-multidimensional
model schema where thejefine the concepts
field dimensions, field meases, and eld views. To
our knowledge, no impleentation including thi
continuous appearance ofcomplete field or th
multiresolution over incomnlete fields has bee
proposed.

Representation of multmensional data undt
different resolution levels or scales maybe
considered as multirepresation. (Bernier, Bédard
et al. 2005)proposes an &roach to provide ¢
Demand multiscale maps. Ithough this approac
models maps features at erent scales by usin
spatial hierarchies, but it dé not contain measure
(Yvan, Proulx et al. 2002)lefines a UMI-based
conceptual model that inte¢tes multiple geometri
and semantic representati; properties of spati
levels. However, this wol does not present
complete multidimensionamodel with facts an
hierarchies.

Moreover (Bédard et al., 302) suggests (withol
providing details) using edifferent spatial dat
warehouse for each re:sentation. Therefor
changing the representatioorresponds to move
another spatial data waroust. (Gascuefa and
Guadalupe 2009ropose a onceptual model with
multi-representation of spal members. They als
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propose a physical schema, but any implementation
into a classical ROLAP architecture is presented.

.Lecture Notes in Computer Science Volume
6295, 2011, pp 58-72

Finally, (McGuire, Gangopadhyay et al. 2008)define camossi, E., E. Bertino, et al. (2009). " Adaptive

a snowflake schema for an environmental
application where three dimensions represent the
same spatial members at different resolutions.

7 Conclusion and futurework

In this paper we present a multidimensional
model for incomplete fields at several resolutions
and its implementation in a SOLAP architecture Gomez,
based on standards (e.g. SQL and MDX). We are
working on using spatial data mining to speed-up
map algebra operations and implement a SOLAP
visualization client. We also work in integrating
other interpolation functions to generalize the
proposed approach.
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