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ABSTRACT

Over the past seven years, researchers have been trying to find

algorithms for the decentralized control of multiple agent un-

der uncertainty. Unfortunately, most of the standard methods

are unable to scale to real-world-size domains. In this paper, we

come up with promising new theoretical insights to build scal-

able algorithms with provable error bounds. In the light of the

new theoretical insights, this research revisits the policy itera-

tion algorithm for the decentralized partially observable Markov

decision process (DEC-POMDP). We derive and analyze the first

point-based policy iteration algorithms with provable error bounds.

Our experimental results show that we are able to successfully

solve all tested DEC-POMDP benchmarks: outperforming stan-

dard algorithms, both in solution time and policy quality.

1. INTRODUCTION
In recent years, there has been increasing interest in finding

scalable algorithms for solving multiple agent systems where agents

cooperate to optimize a joint reward function, while having dif-

ferent individual observations. To formalize and solve such prob-

lems, [3] suggest a model that enables a set of n agents to co-

operate in order to control a partially observable Markov deci-

sion process. This framework can model environments under

three constraints: uncertainty, partial observability and decen-

tralization: uncertainty relies on the fact that the agents are im-

perfectly informed about action effects during the simulation;

partial observability means that agents are imperfectly informed

about the state of the process during the execution; and decen-

tralization signifies that the agents are differently imperfectly in-

formed during the execution. An environment that concurrently

involves these three constraints is known as a decentralized par-

tially observable Markov decision process (DEC-POMDP). Un-

fortunately, finding either optimal or even ε-approximate solu-

tions of such problems has been shown to be particularly hard

[12].

While some important progress has been made for solving fi-

nite horizon DEC-POMDPs, we still lack efficient algorithms with

provable error bounds for the infinite horizon case. Indeed, the

unique ε-optimal algorithm for the infinite horizon case runs quickly

out of memory [2], as do optimal algorithms for the finite horizon

case. This is mainly because they require the exhaustive enumer-

ation of all possible joint policies at each time step, i.e., the ex-

haustive backup. Unfortunately, the resulting set of joint policies

requires an exponential space with respect to the number of joint
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observations and the number of agents. As a result, many at-

tempts to solve infinite horizon DEC-POMDPs rely on memory-

bounded algorithms [1, 4, 16]. These locally optimal algorithms

use a fixed amount of memory, i.e., the size of the solution is fixed

prior to the execution of the algorithm. Even though the size of

the solution is bounded, memory-bounded algorithms still suffer

from the proved complexity of the problem. Moreover, choosing

the right size for the solution is not obvious and dynamically ad-

justing it may raise non-negligible computation costs. Further-

more, though these algorithms tackle the space complexity ef-

ficiently, the time complexity remains too high and limits their

ability to scale to medium solution sizes. Even more importantly,

they fail to provide guarantees on the policy quality. Rather than

constraining the size of the solution prior to the execution of the

algorithm, it is equally possible to come up with a policy within a

bound of the optimal policy.

In this paper, we design policy iteration (PI) algorithms that

provide many desirable properties that current infinite horizon

solvers lacked. First of all, we define exact and approximate Dy-

namic Programming (DP) backup operators that enable us to com-

pute an improved value function. Secondly, we build up the joint

policy based on the improved value function, this circumvents

the problem of the exhaustive backup. Finally, we state and prove

approximation error bounds on the resulted policy quality. The

difficulty of this work lies in the definition of backup operators

that guarantee: (1) the decentralization is preserved over the up-

dates of the value function and the transformations of the cor-

responding policy while avoiding the exhaustive backup; (2) the

updates of the value function are essentially DP updates. To lever-

age the first issue, we introduce new multi-agent concepts namely

basis objects and sets, i.e., partial joint information of the team

that is sufficient to satisfy the decentralization. Even more im-

portantly, these concepts help circumventing the problem of the

exhaustive backup. To handle the second point, we perform es-

sentially a single-agent DP update and keep track only on the

value function that satisfies the decentralization.

2. BACKGROUND AND RELATED WORK
We review the DEC-POMDP model and the associated nota-

tion, and provide a short overview of the state-of-the-art algo-

rithms.

2.1 The DEC-POMDP Model

DEFINITION 1. A n-agent DEC-POMDP can be represented us-

ing a tuple (I ,S, {Ai },P, {Ωi },O,R), where: I is a finite set of agents

indexed by 1 · · ·n; S = {s} is a finite set of joint states; Ai denotes

a finite set of actions available for agent i , and A =⊗i∈I Ai is the



set of joint actions, where a = (a1, · · · , an ) denotes a joint action;

P : S × A →△S is a Markovian transition function. P (s′|s, a) de-

notes the probability of transiting from state s to state s′ when tak-

ing action a; Ωi defines a finite set of observations available for

agent i , and Ω = ⊗i∈I Ω
i is the set of joint-observations, where

o = (o1, · · · ,on ) is a joint observation; O : A × S → △Ω is an ob-

servation function. O(o|a, s′) denotes the probability of observing

joint observation o given that joint action a was taken and led to

state s′; R : A ×S →ℜ is a reward function. R(a, s) denotes the re-

ward signal received when executing action a in state s;

Optimization criterion. The DEC-POMDP model is param-

eterized by: b0 ∈△S, the initial belief distribution, i.e., the team

belief over its initial state. The belief state (belief for short) b ∈△S

defines a probability distribution of the team over the underlying

states. The next belief, denoted ba,o = τ(b, a,o), that incorpo-

rates the latest joint action-observation pair (a,o) and the cur-

rent belief b, is updated as follows:

ba,o (s′) = ηO(o|s′, a)
∑

s b(s)P (s′|s, a) (1)

where η is a normalizing constant. When the agents operate over

an unbounded number of time-steps, the DEC-POMDP has a dis-

count factor, γ ∈ [0,1). This model is coined by the term infinite-

horizon DEC-POMDP with discounted rewards. Solving such a

DEC-POMDP means finding a joint policy δ that yields the high-

est expected value V δ(b0) = maxδ E
[∑∞

τ=0 γτR(aτ, sτ)|b0,δ
]

where

V δ(b) denotes the expected sum of discounted rewards obtained

given that joint policy δ is executed starting in belief b. Given

the definition, the true value of a starting belief b at time step

τ, which we write Vτ(b), is just V δ∗τ (b) – where δ∗τ is an opti-

mal policy at time step τ. Since finding an ε-optimal joint pol-

icy is known to be intractable, we therefore state our optimiza-

tion criterion as finding the best joint policy based on a small

set of representative beliefs B and the amount of time that is al-

lotted to the algorithm. With this criterion, we want to design

novel infinite horizon DEC-POMDP algorithms that update al-

ternatively all, a belief set Bτ, the optimal value function Vτ over

Bτ and the corresponding joint policy δτ, until Bellman residual,

i.e., ‖Vτ−Vτ−1‖∞, is less or equal to 2εγ/(1−γ). That is the re-

turned joint policy is an ε-optimal policy with respect to belief

space B .

Policy representation. Throughout the paper, a policy for sin-

gle agent i , deterministic finite state controller (DFSC), can be

represented as policy graph δi = (X i ,π,η, xi
0), where X i = {xi }

denotes a set of machine states; π(xi ) is the individual action

ai selected in machine state xi ; η(xi ,oi ) is the successor ma-

chine state when individual observation oi is perceived in ma-

chine state xi ; and xi
0 is the starting machine state. We denote

a joint policy, deterministic joint finite-state controllers ( DJFSC

) by δ. A DJFSC can also be represented as joint policy graph

δ = (X ,π,η, x0), where: X := ⊗n
i=1

X i denotes a set of machine

states; π(x), η(x,o) and x0 are defined as for DFSCs. This con-

trasts with the standard representation based on policy vectors,

i.e., vectors of individual policies, one for each agent. Each joint

machine state x is associated to a hyperplane αx – that is the vec-

tor value that denotes the expected sum of discounted rewards

obtains when executing δ starting in machine state x.

2.2 Related Work
In this section, we first present POMDP relevant work that we

use as a foundation for our PI algorithms. Then, we discuss the

state-of-the-art ε-optimal approach to solving infinite horizon

DEC-POMDPs.

Policy Iteration for POMDPs. A special case of DEC-POMDP,

in which each agent shares its private information with its team-

mates at each time step, is called a multi-agent POMDP (MPOMDP).

Because all the information available to the team at each time

step is known, MPOMDPs can be solved using single-agent POMDP

techniques. Over the past few years, exact and approximate PI al-

gorithms have been proposed for POMDPs by [15, 6] and [8], re-

spectively. These algorithms, summarized in Algorithm 1, share

the same structure that consists of a threefold method: first, com-

pute the value function Vτ of the current DJFSC δτ (policy eval-

uation); secondly, update the value function Vτ represented by

a set Γτ+1 of hyperplanes into an improved value function Vτ+1

represented by a setΓτ of hyperplanes (policy improvement); and

finally, transform the current DJFSCδτ−1 into an improved DJFSC

δτ (policy transformation) with respect to Γτ+1. These processes

alternate until a convergence criterion is reached. The policy

evaluation step is straightforward when a policy is represented

as a DJFSC [6]. This can be achieved by solving the system of lin-

ear equations:

αx (s) = R(s,π(x))+γ
∑

s′,o P (s′|s,π(x))O(o|s′,π(x))αη(x,o) (2)

where x and η(x,o) are machine states. In addition, the policy

improvement step relies on the fact that a POMDP can be refor-

mulated as a belief MDP. Indeed, it is well-known that in POMDPs

the belief is a sufficient statistic for a given history. Therefore, the

value function Vτ can be updated using DP. [13] show how to im-

plement the DP update of a value function Vτ by exploiting its

piece-wise linearity and convexity. Because the value function is

a mapping over a continuous |S|-dimensional space, Vτ+1 can-

not be directly computed. Instead, the corresponding set Γτ+1

can be generated through a sequence of operations over Γτ.

Algorithm 1 Policy Iteration

1: procedure PI(initial policy: δ0, belief space: B)
2: Initialization: δτ+1 = δτ = δ0
3: repeat
4: % policy evaluation
5: Compute Γτ ← {αi }, i.e., value function of δτ

6: % policy improvement
7: Γτ+1 ← BACKUP(Γτ,B) where B may be △S

8: % policy transformation: δτ → δτ+1
9: Re-initialization: τ= τ+1
10: until ‖Vτ+1 −Vτ‖∞ ≤ 2εγ/(1−γ)

DP update. We now describe the straightforward implementa-

tion of DP update for POMDPs [14]. First, we generate intermedi-

ate sets Γa,∗ and Γ
a,o ∀a,o (Step 1): Γa,∗ ←αa,∗(s) = R(s, a) and

Γ
a,o ←α

a,o
i

(s) =
∑

s′ P (s′|s, a)O(o|s′, a)αi (s′), ∀αi ∈ Γτ. Next, we

create Γ
a (∀a ∈ A), the cross-sum over joint observations, which

includes one αa,o from each Γ
a,o (Step 2): Γa ← Γ

a,∗⊕o∈Ω Γ
a,o .

Finally, we take the union of Γa sets (Step 3): Γτ+1 = ∪a∈A Γ
a .

It is often the case that a hyperplane in Γτ+1 is completely domi-

nated by another hyperplane (α·b ≤α′ ·b, ∀b) or by combination

of other hyperplanes. Those hyperplanes can be pruned away at

each steps of the update without affecting the policy quality. Fi-

nally, [6] suggests a number of rules that enables us to transform

the current policy δτ into an improved one δτ+1. To the best of

our knowledge, there is no known techniques that extend com-

pletely this approach to multiple agent settings.

Policy Iteration for DEC-POMDPs. [2] proposed recently an

attempt to extend PI from single-agent into decentralized multi-

agent settings. This algorithm builds over a series of steps a vec-

tor of stochastic finite state controllers, one for each agent. Each



step consists of a twofold method: the exhaustive backup and the

pruning of dominated stochastic machine states. For each agent

i , the exhaustive backup takes as input the current set of stochas-

tic machine states X i
τ. Then, it builds new stochastic machine

states X i
τ+1 for all possible joint actions, such that the successor

links of the new stochastic machine state are associated only to

stochastic machine states that appear in the current sets. The re-

sulted set of stochastic machine states X i
τ+1 is exponential with

respect to the number of observation, i.e., |X i
τ+1| = |Ai ||X i

τ|
|Ωi |+

|X i
τ|. Thus, the joint stochastic controller grows by

∏n
i=1

|Ai ||X i
τ|
|Ωi |

, which grows exponentially with n. Thereafter, a pruning step

eliminates dominated stochastic machine states without loosing

the ability to eventually converging to an ε-optimal controller.

Performing this pruning step, however, can be extensive since

they require a linear program and its dual. While interesting,

this PI algorithm laks many desirable properties of the PI algo-

rithm in single-agent settings. Among many, the algorithm fails

to define a DP backup operator for the decentralized multi-agent

case. This would enable us to derive the Bellman residual ‖Vτ−

Vτ−1‖∞ – distance between two successive value functions and

even more importantly approximation error bounds. Further-

more, as already discussed in the POMDP section, dominated

stochastic machine states can be pruned away at earlier steps of

the backup. Doing so, would avoid the exhaustive generation of

all possible stochastic machine states which is expensive.

3. POLICY ITERATION REQUIEREMENTS
In order to extend PI algorithms along with its properties from

single-agent to the decentralized multi-agent settings, we need

to face two key issues. As we aim at finding a policy for DEC-

POMDPs, we need to make sure that our backup operator HB

transforms set Γτ into an improved set Γτ+1 while preserving the

decentralization – that is all hyperplanes α ∈ Γτ+1 and the im-

proved policyδτ+1 satisfy the decentralization constraint. On the

other hand, to inherit POMDP properties our backup operator

need essentially to be the DP backup operator – that is the value

Vτ+1(b) at belief b depends on values Vτ(b′) of its successor be-

liefs b′: Vτ+1(b) =HB Vτ(b) = maxa E
[

R(a,b)+γ
∑

o Vτ(τ(b, a,o))
]

.

3.1 Satisfying the Decentralization
In this section, we introduce new multi-agent planning con-

cepts namely basis objects and sets. These concepts help pre-

serving the decentralization while updating hyperplanes or trans-

forming policies.

Preliminary definitions. A set of basis joint observations also

called basis set and denoted Ω̊⊆Ω is a set of joint observations of

the smallest size where each individual observation of any agent,

e.g., oi ∈Ω
i , is included in at least one joint observation of the ba-

sis set, e.g., (· · · ,oi , · · · ) ∈ Ω̊. Because all individual observations

of all agents are represented in at least one joint observation of

the basis set, the cardinality of a basis set Ω̊, denoted κ(Ω) (κ for

short), is given by:κ= |Ω̊| = maxi∈I |Ωi |. This holds for any ba-

sis set and even more importantly for any number of agents. In

the remainder of the paper, we assume that each agent has the

same number of individual observations 1. Therefore, a straight-

forward way of building a basis set Ω̊ is to include the largest set

of joint observations such that any pair of joint observations is

component-wise different, e.g., (o1,o2) and (o2,o1). A basis object

is any object, e.g., policy or hyperplane, defined only over basis

1Fictitious individual observations are added to agents if neces-
sary such that the assumption always holds.

observations. A basis joint policy δB : Ω̊∗ → A is a DJFSC defined

only over basis joint observations. A basis hyperplane is a vec-

tor of hyperplanes, one for each basis joint observation. We call

the complement hyperplane, a vector of hyperplanes, one hyper-

plane for each non basis joint observation o ∈ Ω\Ω̊. Any object

that satisfies the decentralization constraint is said to be valid.

Valid policies. We introduce below a criterion that checks whether

a DJFSCδ satisfies the decentralization constraint, i.e., it is a valid

policy.

LEMMA 1. A DJFSC δ = (X ,π,η, x0) satisfies the decentraliza-

tion constraint if and only if it corresponds to a vector of DFSCs

(δ1, · · · ,δn ) such that: ∀x ∈ X , ∃(x1, · · · , xn ) : π(x) = (π(x1), · · · ,π(xn ))

and η(x,o) = (η(x1,o1), · · · ,η(xn ,on )) where o = (o1, · · · ,on ) and

δi = (X i ,π,η, xi
0).

This lemma states that the joint action taken for a given se-

quence of joint observations when the vector of DFSCs (δ1, · · · ,δn )

is executed is exactly the joint action taken when δ is executed af-

ter perceiving the same sequence of joint observations. Now we

are ready to claim our main theorem.

THEOREM 1. The basis DJFSC δB is the sufficient information

to build a DJFSC δ that is valid.
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Figure 1: Extraction of vector of DFSCs.

To prove this we suggest a constructive two-step method that

builds a unique DJFSC δ based on δB : first, we build the unique

vector of DFSCs associated with a basis δB . To do so, we extract

from δB the DFSC δi for each agent i = 1 · · ·n. This is achieved

by removing from δB the components related to the other agents,

such that only nodes and arcs that are labeled by individual ac-

tions and observations of agent i are kept. This step provides

us with the vector of DFSCs (δ1, · · · ,δn ). We then build DJFSC δ

based on the vector of DFSCs (δ1, · · · ,δn ) by using Lemma 1: ∀x ∈

X , π(x) = (π(x1), · · · ,π(xn )) andη(x,o) = (η(x1,o1), · · · ,η(xn ,on )),

where o = (o1, · · · ,on ) and X =⊗n
i=1

X i . One can merge together

machine states x ∈ X where the associated action π(x) and the

successor linksη(x,o) are the same. This two-step method proves

the existence of such a DJFSC . But, we still need to prove that δB

is the sufficient information to build δ. This is achieved by re-

moving either a node or an arc from δB . In that case, the vector

of DFSCs (δ1, · · · ,δn ) will consist of DFSCs δi that lack a node or

an arc. In accordance with this two-step method, we illustrate in

Figure 1 the vector of DFSCs (down) extracted from a basis DJFSC

(up) where the basis set is Ω̊= {o1 = (o1
1 ,o2

2),o2 = (o1
2 ,o2

1)}.

Valid hyperplanes. A similar result for a basis hyperplane can

be easily derived from the above theorem.



COROLLARY 1. Let {αo }
o∈Ω̊

be a basis hyperplane. There ex-

ists a unique complement hyperplane {αo }
o∈Ω\Ω̊

, such that hy-

perplane α=
∑

o∈Ωαo is valid.
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x1
2 x2

2

x1
1 x2

1 x1
1 x2

2

x1
2 x2

1

o1

o2

o3

o4

Figure 2: The construction of a valid hyperplane (in white) and

the complement of basis hyperplane hyperplane (in gray) given

the basis hyperplane (in black).

One can look at {αo }
o∈Ω̊

as a set of hyperplanes that represents

leaf nodes of a one-step basis joint policy δB . Therefore, using

Theorem 1, we are able to build the one-step joint policyδ associ-

ated to δB and thus the corresponding hyperplane. Consider the

example depicted in Figure 2, where each agent has observation

set Ωi = {oi
1,oi

2} for i = 1,2. Let Ω̊ := {o1 = (o1
1 ,o2

2),o2 = (o1
2 ,o2

1)}

be the basis set, therefore its complement isΩ\Ω̊ := {o3 = {o1
1 ,o2

1},

o4 = {o1
2 ,o2

2}}. We know α(x1
3 ,x2

3 ) is built based on basis hyper-

planes α(x1
2 ,x2

2 ) and α(x1
1 ,x2

1 ) that are associated to machine states

η(x,o1) = (x1
2 , x2

2) and η(x,o2) = (x1
1 , x2

1), respectively. Thus, using

Theorem 1, it turns out that the DFSC of agent 1 is transformed by

adding machine state x1
3 where η(x1

3 ,o1
2) = x1

2 and η(x1
3 ,o1

1) = x1
1 ,

and the DFSC of agent 2 is transformed by adding machine state

x2
3 where η(x2

3 ,o2
2) = x2

2 and η(x2
3 ,o2

1) = x1
2 . As a consequence, the

complement hyperplane {αη(x,o3),αη(x,o4)} is a vector of hyper-

planes associated to machine states (x1
1 , x2

2) and (x1
2 , x2

1), respec-

tively. For instance to determine the machine state associated to

αη(x,o3), we use η(x,o3) = (η(x1
3 ,o1

1),η(x2
3 ,o2

1)), i.e., (x1
1 , x2

2). We

call this procedure the construction of valid hyperplanes.

Preserving the decentralization. We are now ready to state the

update and transformation rules that preserve the decentraliza-

tion. It is straightforward to see that the construction of valid hy-

perplanes discussed above preserves the decentralization. There-

fore, an update that preserves the decentralization consists in

generating hyperplanes in Γτ+1 using the construction of valid

hyperplanes based on hyperplanes in the current set Γτ. On the

other hand, we identify two transformation rules that preserve

the decentralization. The first rule is to remove individual ma-

chine states xi along with all joint machine states x = xi x−i and

hyperplanes αx associated. The second rule is to replace an in-

dividual machine state xi by another one x̂i every where xi ap-

pears. Because these are essentially transformations of individ-

ual controllers, the resulting joint controller is still valid.

3.2 The Sufficient Statistic
In this section, we explain how planning only over reachable

beliefs allows the optimal policy of a DEC-POMDP to be found.

Planning over reachable beliefs. In order to be optimal, the

Markov assumption requires that a policy depends on all the in-

formation available to the team at each time step. In DEC-POMDPs,

at the execution time the agents are unaware of private informa-

tion of their team-mates. However, in simulation each agent can

divulge its private information to its team-mates. Therefore, the

agents can maintain a complete joint history trace of all joint ob-

servations and joint actions they ever simulated. This joint his-

tory can get very long as time goes on. A well-known fact is that

this joint history can be summarized via a belief. Unfortunately,

because of the decentralization constraint a belief alone is not

sufficient to condition the selection of a joint action. Neverthe-

less, we can still show that planning only over reachable beliefs

allows the optimal policy to be computed. To better understand

this, let b0 be an initial belief we need to compute the optimal

value. We know that the machine state x whose hyperplane αx

yields the highest value for belief b0 depends on machine states

whose hyperplanes {αη(x,o)}o∈Ω are selected for its successor be-

liefs {bπ(x),o }o∈Ω. Because of the decentralization constraint, the

hyperplanes selected for successor beliefs {bπ(x),o }o∈Ω are de-

pendent on each other – that is the selection of hyperplanes for

some successor beliefs in {bπ(x),o }o∈Ω constrains the selection of

hyperplanes for the remaining. As previously discussed, if we se-

lect a basis hyperplane for successor belief b′ ∈ {bπ(x),o }
o∈Ω̊

as-

sociated to basis joint observations, we determine directly the

hyperplanes that are assigned to the remaining successor beliefs

{bπ(x),o }
o∈Ω\Ω̊

. A similar argument can be used to show that suc-

cessor beliefs of beliefs {bπ(x),o }o∈Ω are also dependent on each

other, and so on. Thus, in the decentralized multi-agent settings,

the value of any belief bτ+1 depends on the value of all beliefs

reachable starting in its precedent belief bτ. It is worth noting

that because the initial belief b0 does not have a precedent be-

lief, its value depends only on all reachable beliefs starting in

b0. This permits us to claim that planning only over reachable

beliefs allow us to compute the optimal policy for a given ini-

tial belief. Although, the optimal value Vτ+1(b) cannot be com-

puted directly for each reachable belief (since it may depends on

infinitely many other beliefs), the corresponding set Γτ+1, that

includes the hyperplane that is maximal for b while satisfying

the decentralization constraint, can be generated through a se-

quence of operations on the set Γτ.

Selection of belief set B . Since the selection of a finite set of

beliefs B is crucial to the solution quality of all point-based al-

gorithms, we rely on sampling techniques whose efficiency has

been proven. In particular, [10] described a forward simulation

that generates the sample belief set. The procedure starts by se-

lecting the initial belief set B0 := {b0} including the initial belief

b0 at time τ= 0. Then, for time τ= 1,2, · · · , it expands Bτ to Bτ+1

by adding all possible ba,o produced, and this ∀b ∈ Bτ, ∀a ∈

A, ∀o ∈ Ω, such that pr (o|b, a) > 0. Then, the belief set △̄ :=

∪∞
τ=0Bτ is the set of beliefs reachable during the simulation time.

It is therefore sufficient to plan only over these beliefs in order to

find an optimal joint policy customized for a team of agents that

starts from belief b0, since △̄ constitutes a closed inter-transitioning

belief set. Unfortunately, it is likely that △̄ is infinitely large. Thus,

rather than keeping all possible ba,o we keep only a single ba,∗

that is the one that has the maximum L1 distance to the current

B . And we add it into B only if its L1 distance is beyond a given

threshold ε.

4. POLICY ITERATION FOR DEC-POMDPS
Our PI (HB -PI) algorithm is summarized in Algorithm 1, with

the principal structure shared with its POMDP counterparts [6,

8]. Similarly to the single-agent case, HB -PI consists of a three-

fold method: policy evaluation; policy improvement; and pol-

icy transformation. While the policy evaluation step is straight-

forward as previously discussed, processing the two later steps

while providing guarantees on the satisfaction of the decentral-

ization constraint is not trivial.

Policy Improvement. To show the importance of using basis



objects and sets for DP updates in decentralized multi-agent set-

tings, we first consider state-of-the-art alternative strategies from

either single-agent or multi-agent cases. In the single-agent case,

we need first to generate the whole set Γτ+1 and thereafter prune

non valid hyperplanes [14]. This approach is, of course, hope-

lessly computationally intractable, as it requires the generation

of |A||Γτ|
κn

hyperplanes which is doubly exponential in κ and n.

In the multi-agent case, we build first all possible individual poli-

cies, that induces set Γτ+1 of valid hyperplanes and thereafter

prune dominated hyperplanes [2]. While this approach is more

tractable than the previous one, the exhaustive backup limits its

scalability. Indeed, set Γτ+1 grows by |A|
∏n

i=1
|X i

τ|
|Ωi | , which

grows exponentially with n.

We are now ready to present the implementation of our backup

operator HB . Similarly to the single-agent case, we start by cre-

ating intermediate sets Γ
a,∗ and Γ

a,o , ∀a ∈ A, ∀o ∈ Ω̊ (step 1):

Γ
a,o ←α

a,o
i

(s) =
∑

s′ P (s′|s, a)O(o|s′, a)αi (s′), ∀αi ∈ Γτ andΓ
a,∗ ←

αa,∗(s) = R(s, a). Next we create Γ
a (∀a ∈ A), the cross-product

over basis joint-observations, which includes one αa,o from each

Γ
a,o (step 2): Γ

a =

(

⊗
o∈Ω̊

Γ
a,o

)

⊗Γ
a,∗. Then, we create for each

basis hyperplaneα= {αa,o1 , · · · ,αa,oκ ,αa,∗} ∈ Γ
a its complement

hyperplane {αa,oκ+1 , · · · ,αa,o|Ω| } with respect to Corollary 1 dis-

cussed above. We therefore replace in Γ
a , the hyperplane α by

the hyperplane built as a cross-sum over hyperplanes in (step

3): ∀α ∈ Γ
a , Γa ← Γ

a \{α} and Γ
a ←α′ =αa,∗+γ

∑

o α
a,o . After-

wards, we take the union of Γa sets (step 4): Γτ+1 =∪a Γ
a . Fi-

nally, we include the initial set of hyperplanes (step 5): Γτ+1 =

Γτ+1 ∪ Γτ to preserve the integrity of the solution. In practice,

many of the hyperplanes αi in the final set Γτ+1 may be com-

pletely dominated by another hyperplane. To prune away those

hyperplanes while preserving the decentralization, we rely on an

individual machine state dominance criterion:

THEOREM 2. Let X i and X−i be sets of machine states of agent

i and the other agents except agent i , respectively. A machine state

xi ∈ X i is dominated iff: ∃x̂i ∈ X i \xi : αx̂i x−i ·b ≥αxi x−i ·b, ∀b ∈

B ,∀x−i ∈ X−i .

PROOF. We rely on a proof by contradiction. Assume (1) ma-

chine state xi ∈ X i is non dominated and (2) ∃x̂i ∈ X i \xi : αx̂i x−i ·

b ≥αxi x−i ·b, ∀b ∈ B ,∀x−i ∈ X−i . From the first claim, we derive

that some of the reachable beliefs yield their optimal values un-

der the decentralization constraint at hyperplanes αxi x−i , where

x−i ∈ X−i . From the second argument, we derive that there exists

a machine state x̂i ∈ X i such that hyperplane αx̂i x−i point-wise

dominates hyperplane αxi x−i for any machine state x−i ∈ X−i .

In addition, by replacing machine state xi by machine state x̂i

the decentralization constraint still holds. As a result, this mod-

ification transforms the initial policy into a policy with a value

function that increases for at least one belief state b ∈ B and de-

creases for no b ∈ B – which is a contradiction.

The pruning then alternates from one agent to another until no

more machine states are pruned. We extend the machine state

dominance criterion to prune successively intermediate setsΓa,o

and Γ
a , for all a ∈ A and o ∈ Ω̊ and set Γτ+1. As κ and |Γτ| grow

the overhead of performing these pruning mechanisms is non-

negligible.

The point-based B&B backup H̄B . This method aims at build-

ing the next set of hyperplanesΓτ+1 using hyperplanes inΓτ. The

problem of finding the next set of hyperplanes Γτ+1 given a finite

set of beliefs B and intermediate sets Γ
a,∗ and Γ

a,o (∀a ∈ A and

∀o ∈ Ω̊), corresponds to the problem of finding basis hyperplane

(α
a,o1

b
, · · · ,α

a,oκ

b
) such that the corresponding valid hyperplane

αb ∈ Γτ+1 is maximal for belief b, and this for each belief in B .

One may suggest to solve such a problem using essentially the

single-agent point-based backup operator while preserving the

decentralization. That is, solving the problem by selecting hy-

perplane α
a,o
b

that is maximal at b, one hyperplane for each ba-

sis joint observation. Then, we build the corresponding valid hy-

perplane. Unfortunately, the resulting hyperplane yields a lower-

bound value. This is because its complement hyperplane can

provide poor rewards. As a result, the overall contribution of the

basis hyperplane is diminished by the poor contribution from its

complement hyperplane. If we relax the problem by skipping

the decentralization constraint, we build hyperplane αb that is

an upper-bound value at belief b and potentially a non valid hy-

perplane. Hence, applying single-agent point-based methods do

not lead to the best valid hyperplane for each belief. As this is

essentially a combinatorial problem, we rely on a point-based

branch-and-bound backup operator.

To describe this method, the following definitions are required:

(a) ~αa is a vector of hyperplanes one for each joint-observation;

(b) ~αa (o) is the selected hyperplane α
a,o
i

∈ Γ
a,o . The forward

search in the space of vectors of hyperplanes can be considered

as an incremental construction of the best vector of hyperplanes

based on optimistic evaluations of only partially completed vec-

tors of hyperplanes. In each step of the search, the most promis-

ing partially completed vector of hyperplanes is selected and fur-

ther developed, hence the best first approach. For a completely

defined vector of hyperplanes ~αa , we are able to find the corre-

sponding hyperplane α = αa,∗ +γ
∑

o ~α
a (o). We then state our

maximization problem as follows: αb = argmaxα (α · b). No-

tice that a partially completed vector of hyperplane is a vector

where ~αa is only partially defined. Moreover, any partially com-

pleted vector of hyperplanes can be completed by assigning hy-

perplane αa,o ∈ Γ
a,o that yields the highest value for belief b at

points ~αa (o) where ~αa is not constrained. In order to determine

whether or not to expand the leaf node of the search tree cor-

responding to a partially completed vector of hyperplanes, we

compute an upper-bound value of any partially completed vec-

tor of hyperplanes for a given belief b. We define the upper-

bound based on the decomposition of the exact estimate into

two estimates. The first estimate, G(~αa ,b), is the exact estimate

coming from points ~αa (o) where ~αa is constrained. The second

estimate, H(~αa ,b), is the upper-bound value coming from points

~αa (o) where ~αa is not constrained. We introduce sets of joint-

observations Ω1 and Ω2 (such that Ω=Ω1∪Ω2) that correspond

to joint-observations that lead to constrained points and non-

constrained points, respectively.

V̄ (~αa ,b) =

(

αa,∗
+γ

∑

o∈Ω1

~αa (o)

)

·b

︸ ︷︷ ︸

G(~αa ,b)

+

(

γ
∑

o∈Ω2

max
αa,o

(αa,o
·b)

)

︸ ︷︷ ︸

H(~αa ,b)

In the following, we draw our attention to a single search tree

of our point-based B&B backup operator with the following en-

tries: a belief b; a joint action a and intermediate sets Γa,o (∀o ∈

Ω), see Algorithm 2. We start by initializing the pool of live nodes

with a partially defined vector~αa
0 where none of the points~αa

0 (o)

(∀o ∈ Ω) is defined, and the value hereof is used as the value

(called incumbent) of the current best solution (line 1). In each it-

eration of the heuristic, the node~αa
i

that yields the highest upper-

bound is selected for exploration from the pool of live nodes (lines

3−4). Then, a branching is performed: two or more children of

the node are constructed through the definition of a single point



~αa
i

(o) (line 5), for o ∈ Ω̊. Furthermore, for each of the gener-

ated child nodes ~αa
i

, points ~αa
i

(o) for o ∈ Ω\Ω̊ that can be de-

fined based on already constrained points are defined and the

upper-bound is calculated. In case the node corresponds to a

completely defined vector of hyperplanes its upper-bound is its

exact estimate value, the value hereof is compared to the incum-

bent, and the best solution and its value are kept (lines 7− 10).

If its upper-bound is not better than the incumbent, the node is

discarded, since no completely defined descendant nodes of that

node can be better than the incumbent. Otherwise the possibil-

ity of a better solution in the descendant nodes cannot be ruled

out, and the node is then joined to the pool of live nodes (line 11).

When the search tree has been completely explored, the heuristic

starts a new search tree with a new joint-action and the current

best solution, until all joint-actions have been processed and this

for each belief b ∈ B .

Algorithm 2 Point-based branch and bound backup

1: procedure H̄B -BACKUP(a,b, {Γa,o }o∈Ω)
2: Initialize: Incumbent :=V (b); Live :=

{
~αa

0

}

3: repeat
4: Select ~αa

i
∈ Live : ∀~αa

j
∈ Live, V̄ (~αa

j
,b) ≤ V̄ (~αa

i
,b)

5: Live := Live \ {~αa
i

}

6: Branch on ~αa
i

generating ~αa
1 , · · · ,~αa

ik
7: for 1 ≤ p ≤ k do
8: if V̄ (~αa

ip
,b) > Incumbent then

9: if ~αa
ip

is completely defined then

10: Incumbent := V̄ (~αa
ip

,b)

11: Solution :=αa,∗+
∑

o ~α
a
ip

(o)

12: else Live := Live ∪ {~αa
ip

}

13: until Live =;

14: return Solution

Policy Transformation. [6] describes a policy transformation

mechanism based on a simple comparison of Γτ+1 and Γτ, for

the single-agent case. These rules are extended here for multiple

agent settings. The procedure below iterates between agents un-

til no more machine states can be eliminated. Notice that these

transformation rules preserve the decentralization and decrease

the value for no b ∈ B .

For all y i ∈ X i
τ+1:

• rule 1: If the action and successor links associated with y i dupli-

cate those of a machine state of δi , then keep that machine state

unchanged in δi
τ+1;

• rule 2: Else if the machine y i dominates a machine state xi ∈

X i
τ associated with a machine state in δi

τ, change the action and

successor links of that machine state to those that correspond to

xi ;

• rule 3: Else add a machine state to δi
τ+1 that has the action and

successor links associated with y i ;

Finally, prune any machine state for which there is no corresponding

hyperplane in Γτ+1, as long as it is not reachable from a machine state

to which an hyperplane in Γτ+1 does correspond.

Transformation rules

♣

5. THEORETICAL ANALYSIS
This section presents convergence, error bound and the com-

plexity arguments that draw on earlier approaches in single agent

settings.

Convergence Properties. Point-based PI algorithms, despite

being approximate methods, inherit many desirable properties

of PI algorithms from POMDPs [6, 8], including: (1) If a DJFSC

has not converged, the policy improvement transforms it into a

DJFSC with a value function that increases for at least on belief

b ∈ B and decreases for no b ∈ B ; (2) Point-based PI algorithms

converge to an approximate DJFSC after a finite number of iter-

ations; (3) the exact PI H-PI algorithm (B =△S) converges to an

ε-optimal policy.

Error bounds. We now show that the error between Vτ and the

optimal value function V ∗ is bounded. The bound depends on

how densely B samples the belief set △̄; with denser sampling,

Vτ converges to V ∗. Cutting off the point-based PI (HB -PI) iter-

ations at any sufficiently large time step, we know that the dif-

ference between Vτ and the optimal value function V ∗ is not too

large. The overall error in HB -PI, ‖Vτ −V ∗‖∞, is bounded by:

‖Vτ−V ∗
τ ‖∞+‖V ∗

τ −V ∗‖∞. Because, H (resp. HB ) is a contraction

mapping, HVτ(b) = maxa E
[

R(a,b)+γ
∑

o V ∗
τ (ba,o )

]

, the second

term ‖V ∗
τ −V ∗‖∞ is bounded by γτ‖V ∗

0 −V ∗‖ (see [5]). The re-

mainder of this section states and proves a bound on the first

term ‖Vτ−V ∗
τ ‖∞. We prove that [10]’s bound stated for POMDPs

holds for DEC-POMDPs. in the remainder of this paper, we state

εB = maxb′∈△̄ minb∈B ‖b−b′‖1, and ‖r‖∞ = maxs,a R(s, a). First

of all, let us prove the following lemma:

LEMMA 2. The error introduced inHB -PI when performing one

iteration of value function update over B, instead of △̄, is bounded

by: η≤
‖r‖∞
1−γ εB

PROOF. To have an intuition of the proof we provide an illus-

trative example Figure 3. Let b′ ∈ △̄\B be the belief where HB -

PI makes its worst error in the value function update, and b ∈ B

be the closest (L1 norm) sampled belief to b′. Let αy the hyper-

plane that would be maximal at b′, where y = {y i } and y 6∈ X . Let

αx be the hyperplane that is maximal for b′, where x = {xi } and

x ∈ X . By failing to include αy in its solution set, HB -PI makes

an error of at most αy ·b′−αx ·b′. On the other hand, we know

that αx · b ≥ αy · b. This is mainly because in order to remove

hyperplane αy Theorem 2 requires each machine state y i to be

dominated or equal to machine state xi over belief set B . So,

η ≤ αy ·b′−αx ·b′

= αy ·b′−αx ·b′+ (αy ·b −αy ·b) add zero

≤ αy ·b′−αx ·b′+αx ·b −αy ·b αx maximal at b′

= (αy −αx ) · (b′−b) collect terms

≤ ‖αy −αx‖∞‖b′−b‖1 Holder inequality
≤ ‖αy −αx‖∞εB definition of εB

≤
‖r‖∞
1−γ εB

The remainder of this section states and proves a bound for

HB -PI algorithm.

THEOREM 3. For any belief set B and any time step τ, the error

of the HB -PI algorithm ητ = ‖Vτ−V ∗
τ ‖∞ is: ητ ≤

‖r‖∞
(1−γ)2 εB .

PROOF.

ητ = ‖Vτ−V ∗
τ ‖∞ (definition of ητ)

= ‖HB Vτ−1 −HV ∗
τ−1‖ (definition of HB and H)

≤ ‖HB Vτ−1 −HVτ−1‖∞+‖HVτ−1 −HV ∗
τ−1‖∞

≤ η+‖HVτ−1 −HV ∗
τ−1‖∞ (definition of η)

≤ η+γ‖Vτ−1 −V ∗
τ−1‖∞ (contraction)

≤ η+γητ−1 (definition of ητ−1)

≤
‖r‖∞

(1−γ)2 εB (series sum)

Notice that a tighter approximation error bound of HB -PI can

be derived. Indeed, we estimate only the pruning error that in-

curs during the policy improvement step and ignore the policy
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Figure 3: Errors made on a 2-states DEC-POMDP by HB -PI for

beliefs b′ with respect to their closest belief b.

evaluation step as well as hyperplanes from the earlier updates

that are kept for the integrity of the controller.

6. EXPERIMENTAL RESULTS
As memery-bounded algorithms, NLP and BPI, are known to

perform better than other approximate solvers, we compare H̄B -

PI. only to NLP and BPI. The comparison is made according to

DEC-POMDP benchmarks from the literature: the multi-access

broadcast channel (MABC) problem [7], the multi-agent tiger prob-

lem [9], the MEETING GRID problem [4], and the COOPERATIVE

BOX-PUSHING problem [11]. The COOPERATIVE BOX-PUSHING prob-

lem provides an opportunity for testing the scalability of differ-

ent algorithms. The reader can refer to the references above for

an exact specification of the benchmarks. The performances of

memory-bounded algorithms where sent by the authors, and run

on an Intel(R) Pentium(R) 4 CPU 3.4GHz with 2GB of memory.

Our algorithm was run on a Intel Core Duo 2.4GHz with 2GB of

memory.

Results. Figure 4 presents our experimental results. For each

problem and solver, we report: the value V δ(b0) at the initial be-

lief b0, the CPU time (in seconds) and the size |B | belief set B

used for H̄B -PI. We depict for each benchmark two graphs. On

the right-hand side, we show the runtimes of all solvers over iter-

ations. As performance results of memory-bounded solvers are

built based on the solution size, we report on the x-axis the in-

dividual controller size. On the other hand, since H̄B -PI is an

iterative algorithm we report on the x-axis the number of iter-

ations performed so far. As a result, we use iteration – that is

the label of the x-axis, either for the size of individual controllers

or the number of iterations performed so far, depending on the

solver. Because all solvers do not have the same x-axis, the reader

should mostly focus on the best value obtained by the solver and

the amount of time it takes to reach that value. On the left-hand

side, we illustrate the value at the initial belief over the iterations.

Overall it appears that H̄B -PI outperforms all NLP and BPI in all

tested DEC-POMDP domains and in both computation time and

solution quality. For problem of small-size, H̄B -PI reaches a fixed

point quite fast while neither NLP nor BPI were able to even reach

the same solution quality for TIGER-A, MEETING-GRID, and COOP-

ERATIVE BOX-PUSHING. As an example, H̄B -PI takes 11.5 seconds

to converge into a DJFSC of value 1.91 for the TIGER-A problem.

The best memory-bounded solver, NLP, takes 1059 seconds to

find its best joint stochastic controller of value −2.36. For this

same problem, BPI could not find a stochastic joint controller

of value higher than −52.63, this also explains why it does not

appear in the graph. Even more importantly, H̄B -PI converges

into a fixed-point for MABC, TIGER-A, and MEETING-GRID bench-

marks. This suggests that it inherited some of the properties of

single-agent solvers.

7. CONCLUSION AND FUTURE WORK
We have derived and analyzed the first PI algorithms with prov-

able error bounds. This research also provides interesting new

theoretical insights, including the ability to perform DP updates

while preserving the decentralization. Even though the experi-

ment results demonstrate impressive improvement over the cur-

rent standard methods, we are still far from being able to deal

with real-world-size DEC-POMDPs. To this end, we are plan-

ning to use the new theoretical insights exhibited in this paper

as foundations of more scalable algorithms facing some of the

bottlenecks of our approach.
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Figure 4: Performance results for DEC-POMDP benchmark problems from the literature.


