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Decentralized Decision Making Process for Document Server Networks

A peer-to-peer server network system consists of a large number of autonomous servers logically connected in a peer-to-peer way where each server maintains a collection of documents. When a query of storing new documents is received by the system, a distributed search process determines the most relevant servers and redirects the documents to them for processing (compressing and storing at the right document base).

In this paper, we model this distributed search process as a distributed sequential decision making problem using a set of interactive Markov Decision Processes (MDP), a specific stochastic game approach, which represent each server's decision making problem. The relevance of a server to a document is regarded as a reward considering the capacity of the storage and the goodness score of a server. We show that using a central MDP to derive an optimal policy of how to distribute documents among servers leads to high complexity and is inappropriate to the distributed nature of the application. We present then interactive MDPs approach transforming this problem into a decentralized decision making process.

I. INTRODUCTION

The Web is real-world application of distributed environment where various entities are massively distributed and loosely connected. Documents become the basic element to manage in large document bases. Consequently their storage and search problems should be carefully considered to maintain a performant system. To alleviate these problems, distributed decision making systems formalize the problem of storing the huge web documents to a large number of autonomous local decision makers (servers) where each of the decision makers (servers) decides about how to store and how to retrieve documents [START_REF] Shen | An mdp-based peer-to-peer search server network[END_REF], [START_REF] Yuwono | Server ranking for distributed text retrieval systems on the internet[END_REF].

In this paper, we adopt a peer-to-peer distributed document storage and search server network, in which each server is autonomous and connected to only a small number of peer servers. The resource consumption for each document storage is probabilistic because of the uncertain output of the compression techniques. However, we assume that each storage technique has a probability distribution on resource consumptions (memory). To optimally store a set of documents, the system should decide how to distribute the documents among the servers. We present, first, how this decision making process can be formalized as an MDP from which a global optimal policy of servers can be derived. It, also, will be shown that using a centralized MDP is computationally high and unsuitable because of the distributed nature of the problem. Consequently, we present another approach based on a specific distributed decision making technique.

The distribution of the document decision making problem is, then, formalized as a decentralized decision making process, a specific stochastic game approach, among servers where each server should make a decision on which documents to store considering its capacity, the relevance of the documents and the ability of the other servers to store it. In order to model this problem, we consider a set of interactive MDPs for a cooperative game theoretic model where each server uses an MDP to compute its local policy which selects documents to store considering the abilities of the other agents.

The system we consider is a set of servers S = {a 1 , . . . a n } and queries q of searching and storing a set of documents {d 1 , . . . d T }. The problem is then how to optimally distribute documents d t among servers a j such that the resource consumption of the system is minimized and the relevance of documents to server is maximized.

To deal with this problem we transform it into a problem of task allocation in a multi-agent system [START_REF] Rothkopf | Computationally manageable combinatorial auctions[END_REF], [START_REF] Sandholm | Emediator: A next generation electronic commerce server[END_REF], [START_REF] Hanna | Task selection problem under uncertainty as decision-making[END_REF], [START_REF] Abdallah | Modeling task allocation using decision theoretic model[END_REF], a specific problem of distributed network resource allocation, where the set of servers becomes a set of agents (or players) A and the set of documents to store become a set of tasks T.

II. FRAMEWORK FOR STORAGE TASKS

The problem of distributing documents to store among servers can be formalized as a decentralized cooperative system which consists of a set of agents A = {a 1 , a 2 , • • • , a n } that have to allocate and to execute a set of tasks

T = {d 1 , d 2 , • • • , d T }.
Each agent a k has a bounded quantity of resources R a k that he uses to execute his allocated tasks. Tasks will be allocated and executed in a commonly known order: without loss of generality, we assume that this ordering is d 1 , d 

= l, D k ∩ D l = ∅ and ∪ a k ∈A D k ⊆ T. Definition 1: Each agent a k has a reward function G a k : T → R + such as, G a k (d t ) represents what the system gains if a k stores the document d t .
This function in the context of Peer-to-Peer document storage server architecture considers many criteria such as the memory capacity, the relevance, security and other criteria. In our context, we limit ourselves to memory capacity and the relevance of the server. To do that, we consider the goodness score of a server [START_REF] Baeza-Yates | Modern Information Retrieval[END_REF], [START_REF] Yuwono | Server ranking for distributed text retrieval systems on the internet[END_REF] which assesses the relevance to store a document in comparison with the ones already stored. If the terms of the document to store appear frequently in these documents, then we believe the server is more relevant to the document. In order to avoid considering all the terms of a document, we use a relative term frequency according to the greatest frequency in the document. We call this frequency the local index LI(x, d t ) of a term x in a document d t . More formally:

LI(x, d t ) = |tf (x, d t ) -max y∈dt tf (y, d t )| max y∈dt tf (y, d t )
where tf (x, d t ) is the term frequency of term x in document d t . This index allows us to consider only terms with LI greater than a threshold th (50% for example).

The relevance of a server to a term t is computed as a sum of LI values of all the documents d t in the server a:

Relevance(t, a) = dt∈a LI(t, d t )
The relevance of the server to a document d t is then:

Relevance(d t , a) = t∈dt,LI(t,dt)>th

Relevance(t, a)

This relevance is then used as the reward function gained by an agent (server) a k when it stores a document d t .

G a k (d t ) = Relevance(d t , a k ) = t∈dt,LI(t,dt)>th dt∈a k LI(t, d t )
In this paper, we will be concerned not only with the relevance but also with the utility to store a document d t in a server. This function will consider in addition to the relevance of the server, its capacity of storing new documents which is its available memory resource. The utility function W a k is, then, given by:

W a k (d t ) = G a k (d t ) + Available resource(a k )
the function Available resource gives the available resource of the server which is an observable information.

The uncertainty on task execution (resource consumption) can be expressed by the fact that an agent a k cannot exactly determine the quantity of resources which will be consumed when he executes a task d t . So, he does not know whether he could execute all tasks allocated to him or he will be obligated to ignore ones. To deal with this uncertainty, we use a discrete representation of the resource consumptions for each agent:

Definition 2: The execution of a task d t by an agent a k consumes one of p quantities of resources:

r 1 k , r 2 k , • • • , r p k .
The value of p can vary with the agent and the task.

Definition 3: Each agent a k has a probability distribution P r a k : {r j k : d t ∈ T, j = 1, ..., p} -→]0, 1], where P r a k (d t , r j k ) expresses the probability that the execution of the task d t by a k consumes the quantity of resources r j k . With a higher value of p, the agent handles the uncertainty in a better way. The different quantities r j k , k = 1, ..., n, j = 1, ..., p and the probability distribution P r a k are the knowledge of a k about his environment. The agents' aim is then to allocate tasks (respond to query) in a way which maximizes the system expected reward. We formalize this specific allocation of tasks as a MDP [START_REF] Hanna | Task selection problem under uncertainty as decision-making[END_REF] from which a task allocation policy is derived.

III. DOCUMENT STORAGE TASK AS AN MDP

The problem of distributing documents among servers is formalized as a sequential decision making process where at each step, we decide to which server the document should be allocated. We define the state of the system by the set of documents stored in each server and by the available resources (available memory of servers). In centralized systems, the controller constructs and solves one MDP in order to obtain an optimal distribution of documents among servers. In the following, we describe the MDP1 via: (1) the states, (2) the actions, (3) the transition model and (4) the expected reward.

A. State Representation

A state represents a situation of the task allocation and of the anticipation of resource consumption for all agents. We denote by S t = ((D 1 t , R 1 t ), ..., (D n t , R n t )) the state of the system at step t, where: D k t is the set of tasks allocated to a k up until step t (set of stored documents at a server). The sets D k t satisfy the conditions:

n ∪ k=1 D k t ⊆ {d 1 , ..., d t } and ∀k = l then D k t ∩ D l t = ∅ A task d j≤i belongs to D k
t if there were enough resources to execute it when the decision to allocate it to a k has been made (see next section). The construction of the MDP starts from the initial state: S 0 = ((∅, R 1 0 ), ..., (∅, R n 0 )). The system arrives to a terminal state S T when a decision has been made for all tasks or when agents have no more resources to store new documents. More formally,

S T = ((D 1 T , R 1 T ), ..., (D n T , R n T )) where n ∪ k=1 D k T ⊆ T and R k T ≥ 0, k = 1, • • • , n.

B. Actions and Transition Model

An action E(S t-1 , d t , a k ) consists in allocating, from S t-1 , a task d t to an agent a k (allocating a document to a server) and in anticipating the amount of resources which will be consumed when executing this task. For simplicity, let this action be

E(d t , a k ). When it is applied to S t-1 = ((D 1 t-1 , R 1 t-1 ), ..., (D n t-1 , R n t-1
)), the system moves to one of the p following states:

S j t = ((D 1 t , R 1 t ), ..., (D k t , R k t = R k t-1 -r j k ), ..., (D n t , R n t )) where j = 1, • • • , p, D l t = D l t-1 and R l t = R l t-1 , ∀l = k. • If r j k ≤ R k t-1 then D k t = D k t-1 ∪ {d t } and R k t = R k t-1 -r j k (agent a k has enough resources to store the document). • Otherwise (r j k > R k t-1 ), D k t = D k t-1 and R k t = 0 (agent a k lacks resources).
In fact, there are, at most, p possible states because the execution of d t can consume one of p different quantities of resources (Def. 2). When r j k > R k t-1 , the agent will consume all his resources (R k t-1 ) without achieving d t . So, this task does not belong to D k t . However, arriving to state S j t , where

r j k ≤ R k t-1
, means that a k has executed d t consuming the quantity r j k of resources and the system will gain W a k (d t ). The transition probability is expressed by the distribution P r a k because a k reaches state S j t if the execution of d t consumes the quantity r j k . In the other words, the probability to reach a state S j t is P r a k (d t , r j k ).

C. Expected Reward and Global Optimal Policy

The decision to apply an action depends on the reward that the system expects to obtain by applying this action. An allocation policy π is a mapping from states into actions: for each state S t-1 , π(S t-1 ) = E(d t , a k ) means that being in state S t-1 the action E(d t , a k ) will be applied.

We denote by V (E(d t , a k )) the expected reward associated to the action E(d t , a k ). Being in a state S t-1 , t = 1, • • • , T , the expected reward of a policy π(S t-1 ) = E(d t , a k ) is the expected reward obtained by executing π: V (E(d t , a k )). We define the expected reward EV [S t-1 ] associated with the state S t-1 as an immediate gain α t-1 that the system obtains being in this state (

α t-1 = W a k (d t-1 ), if d t-1 ∈ D k
t-1 , 0 otherwise), accumulated by the expected reward of the policy to come (reward-to-go). An optimal policy π * (S t-1 ) is the one which maximizes the expected reward at each state. This policy is obtained by solving Bellman's equation adapted to our former using value iteration [START_REF] Puterman | Markov Decision Processes[END_REF]:

• for each nonterminal state S t-1 : EV [S t-1 ] = α t-1 + max a k ∈A {V (E(d t , a k ))} (1) 
V

(E(d t , a k )) = p j=1 P r a k (d t , r k t ) • EV [S j t ] (2) 
• for every terminal state S T :

EV [S T ] = α T (3) 
Since the obtained MDP is a finite horizon with no loops2 , the policy guaranteed by Equation ( 1) is then optimal [START_REF] Puterman | Markov Decision Processes[END_REF]. Formally, π * (S t-1 ) = arg(max

a k ∈A {V (E(d t , a k ))}) (4) 
The operator arg returns the action whose expected reward is maximal.

An optimal task allocation P * can be obtained from a terminal state such as: S T = ((D 1 T , R 1 T ), ..., (D n T , R n T )) reached by applying the optimal policy at each state starting up from S 0 , thus:

P * = {D 1 T , D 2 T , • • • , D n T }.
Due to the MDP state space size, allocating tasks can only be performed when the number of tasks and agents is "small" (see Section VI). Since a state S t-1 = ((D 1 t-1 , R 1 t-1 ), ..., (D n t-1 , R n t-1 )), in the global MDP, globalizes information (allocated tasks and available resources task) of all agents. Using such a representation while dealing with large sets of servers and documents is not realistic since it quickly limits the size of the problems that can be considered. Furthermore, because of the distributed nature of the problem (peer-to-peer server network), the distribution of the decision making process is more suitable than a centralized process. Indeed, the number of states is exponential in the number of tasks and agents. Besides, the agent who solves the MDP should have precise knowledge about the uncertain behavior of the others. The high complexity of the problem and the distributed nature of the application thus reduce the applicative range of a global MDP for real-life peer-to-peer server architecture. Consequently, we propose to consider a system, more suitable, where each server is an autonomous agent able to make a decision locally about storing or not the document through a local MDP.

In the following, we introduce a new method allowing agents to act in a decentralized way to obtain an optimal task allocation similar to the one obtained by the MDP. We re-formalize the problem of task allocation as decentralized MDPs (decentralized Local-MDP) where each agent solves his local MDP which requires less computation than the global MDP.

IV. DOCUMENT STORAGE TASK AS LOCAL-MDPS

A Local-MDP consists of a set S of states, a set of actions ĀC and a transition model. In a k 's Local-MDP, each state is associated with a reward which represents what the system gains when a k is in this state. We associate each action with an expected reward which represents what the system expects to gain if a k applies this action. In the following, we describe the MDP locally developed by an agent a k .

A. State Representation

A state of S represents a local situation of task allocation and of the anticipation of resource consumption for the agent a k . We denote by: St = ( Dk t , Rk t ) the state of the agent a k at step t, where Dk t is the set of tasks allocated to a k up until step t, and Rk t is a k 's available resources. The development of the Local-MDP starts from the initial state: S0 = (∅, R k 0 ). The agent arrives to a terminal state ST when all tasks have been allocated or when he has no more sufficient resources to execute other tasks. Note that a k 's Local-MDPs state space does not contain any information about the states of the other agents. This loss of information will be covered (see next Section) using a specific action e ∅ which leads to some interactions between agents.

B. Actions and Transition Model

The action e( St-1 , d t , a k ) consists in the allocation of a task d t to a k and in the anticipation of the resource quantity which will be consumed when executing d t . The action e ∅ ( St- 

C. Distributed expected reward and joint optimal policy

We define the reward EV [ St-1 ] and the expected rewards associated to each action by a similar way as in the global MDP. We denote by V (e(d t , a k )) and V (e ∅ (d t , a k )) the expected rewards associated to the action e(d t , a k ) and to the action e ∅ (d t , a k ), respectively at a state St-1 . Being in a state St-1 , a policy to follow is an action e(d t , a k ) or e ∅ (d t , a k ) to apply. The expected reward of a policy is the expected reward of the corresponding action. The reward EV [ St-1 ] is defined as an immediate gain ᾱt-1 that the system obtains if a k is in the state St-1 accumulated by the expected reward of the used policy. The immediate gain ᾱt-1 to be in state St-1 is defined as follows:

ᾱt-1 = W a k (d t-1 ) if d t-1 ∈ Dk t-1
, 0 otherwise. In the following, we formulate the reward EV [ St-1 ] and the expected rewards V (e(d t , a k )) and V (e ∅ (d t , a k )) using Bellman's equations and value iteration:

• for each nonterminal state St-1 :

EV [ St-1 ] = ᾱt-1 + max{V (e(d t , a k )), V (e ∅ (d t a k ))} (5) 
V (e(d t , a k )) =

p j=1 P r a k (d t , r j k ) • EV [ St ] (6) 
V (e ∅ (d t , a k )) = max

a l =a k {V (e(d t , a l ))} (7) 
• for every terminal state ST = (D k T , R k T ):

EV [ ST ] = ᾱT (8) 
Agent a k uses Equation ( 5) to determine the reward of state St-1 . For that, he locally calculates the immediate gain ᾱt-1 using the definition described above, and the expected value V (e(d t , a k )) given in Equation ( 6). However, expected value V (e ∅ (d t , a k )) given in Equation ( 7) is calculated by receiving V (e(d t , a l )), a l = a k from the other agents via communication. On the other side, each agent a l ∈ A calculates V (e(d t , a l )) from his Local-MDP and sends it to the others. Since the obtained Local-MDP is a finite horizon with no loops, the policy guaranteed by Equation ( 5) is then locally optimal and it leads to a global optimality as it will be shown in Section V. Formally,

π * ( St-1 ) = arg(max{V (e(d t , a k )), V (e ∅ (d t , a k ))}) (9)

D. Coordination of distributed value calculation

As we have shown above, Equation ( 7) generates communication between agents. Indeed, an agent a l calculates V (e(d t , a l )) using Equation ( 6) and then sends it to the other agents. In order to obtain an optimal policy π * ( St-1 ), agents exchange the values V (e(d t , a l )), a l ∈ A that needs an exchange of the values V (e(d t+1 , a l )), a l ∈ A, and so on. At the end, agent a k can directly calculate V (e(d T , a k )) using Equation [START_REF] Yuwono | Server ranking for distributed text retrieval systems on the internet[END_REF]. After exchanging these values, the reward EV [ ST -1 ] can be calculated for any state ST -1 . By backward chaining, EV [ ST -1 ] allows to calculate EV [ ST -2 ], and so on up to state St-1 . Algorithm 1 describes how an agent a k derives his local policy from his local MDP.

COM(V (e(d t+1 , a k )), {V (e ∅ (d t+1 , a k )}) is a communication primitive allowing a k to communicate the value V (e(d t+1 , a k )) to agents a j =k which uses it for computing V (e ∅ (d t+1 , a j )) and to receive from them values V (e(d t+1 , a j )) allowing him to compute V (e ∅ (d t+1 , a k )).The function reachable k (t) returns all states St reached by agent a k using action e(d t , a k ) at step t. reachable k (t) also describes states reached by agent a k at step t.

The optimal policies obtained by the agents do not lead to conflicts between them (see next lemma).

Lemma 1: For any state St-1 , t = 1, ..., T , the optimal policies obtained by the agents according to Equation (9) are consistent. Formally, (eq.( 7))

∀a k ∈ A, t = 1, ..., T, π * k ( St-1 )=e(d t , a k ) =⇒ ∀a l = a k , π * l ( St-1 )=e ∅ (d t ,
=⇒ e(d t , a k ) = arg(max{V (e(d t , a k )), max

a l =k {V (e(d t , a l ))}}) =⇒ V (e(d t , a k )) > V (e(d t , a l )), ∀a l =k ∈ A
As the values V (e(d t , a h )), ∀a h ∈ A are identical in all Local-MDPs (each agent a h calculates the value of V (e(d t , a h )) and sends it to the others), from the precedent inequality we then have: ∀a l =k ∈ A, e(d t , a l ) = arg(max{V (e(d t , a l )), max

a h =l {V (e(d t , a h ))}})
because at least, we have: V (e(d t , a k )) > V (e(d t , a l )). Consequently, ∀a l =k ∈ A, e(d t , a l ) = arg(max{V (e(d t , a l )), V (e ∅ (d t , a l ))})

∀a l =k ∈ A, π * l ( St-1 ) = e ∅ (d t , a l ) ✷ Algorithm 1 Modified value iteration algorithm of M a k : Require: set of tasks (documents to store) Ensure: policy π * k of agent a k 1: for all ST ∈ reachable k (T ) do 2: EV [ ST ] = ᾱT 3: COM(EV [ ST ], {V (e ∅ ( ST -1 , a k ))}) 4: end for 5: for t = T-1 down to 1 do 6:
for all St ∈ reachable k (t) do 7:

EV [ St ] = ᾱ( St ) + max{V (e(d t+1 , a k )), V (e ∅ (d t+1 , a k ))} 8: COM(V (e(d t+1 , a k )), {V (e ∅ (d t+1 , a k )) }) 9:
end for 10: end for 11: for t = 1 to T do 12:

for all St ∈ reachable k (t) do 13: π( St ) = arg(max(ᾱ( St ) + {V (e(d t+1 , a k )), V (e ∅ (d t+1 , a k ))})) 14:
end for 15: end for 16: return π

V. AN OPTIMAL JOINT POLICY

In this section we prove that the optimality obtained in the MDP is saved in the coordinated Local-MDPs. Firstly, we show the relationship between the MDP state space and the Local-MDPs' state spaces. Secondly, we prove the equality between the optimal policy obtained by the MDP and the one obtained by the Local-MDPs.

Lemma 2: For each state S t ((D 1 t , R 1 t ), ..., (D n t , R n t )), t = 0, ..., T in the MDP, it exists a state St in the Local-MDP of each agent a k , where St = (D k t , R k t ), k = 1, ..., n. Proof For t = 0, the agents are in the initial state S 0 ((∅, R 1 0 ), ..., (∅, R n 0 )) in the MDP. The couple (∅, R k 0 ), k = 1, ..., n is the initial state S0 (∅, R k 0 ) in a k 's Local-MDP. Supposing now that the lemma is correct for a value t -1: ∀S t-1 ((D 1 t-1 , R 1 t-1 ), ..., (D n t-1 , R n t-1 )) ∈ MDP k = 1, ..., n, ∃ St-1 ∈ a k 's Local-MDP, where St-1 = (D k t-1 , R k t-1
). We show in the following that the lemma is also correct for the step t. In fact, every state S t , in the MDP, is produced by the application of an action e(d t , a k ), a k ∈ A in a step S t-1 . According to the transition model (see Section III-B), the action e(d t , a k ) has effects only on the set D k t-1 and on the resources R k t-1 . So, for a state S t = ((D 1 t , R 

= ((D 1 T -1 , R 1 T -1 ), ..., (D k T -1 , R k T -1 ), ..., (D n T -1 , R n T -1
)) in the MDP, and in the state

ST -1 = (D k T -1 , R k T -1 ) in a k 's Local-MDP.
According to Equation (2), we have:

V (E(d T , a k )) = p j=1 P r a k (d T , r j k ) • EV [S j T ]
(eq.( 3)

) =⇒ V (E(d T , a k )) = p j=1 P r a k (d T , r j k ) • α j T
where α j T is the immediate gain of state S j T . Since, the agent to whom the task d T is allocated by the action E(d T , a k ) is a k , then α j T = ᾱj T , (definitions of α and ᾱ). Moreover,

V (E(d T , a k )) = p j=1 P r a k (d T , r j k ) • ᾱj T (eq.( 8 
)) =⇒ V (E(d T , a k )) = p j=1 P r a k (d T , r j k ) • EV [ Sj T ]
(eq.( 6))

=⇒

V (E(d T , a k )) = V (e(d T , a k )).

Supposing now that the lemma is correct for t, formally:

∀S t ((D 1 t , R 1 t ), ..., (D k t , R k t ), ...(D n t , R n t )), V (e(d t+1 , a k )) = V (E(d t+1 , a k )), ∀a k ∈ A
where e is applied in the state St = (D k t , R k t ). We show in the following that the lemma also is correct for t -1.

For every state S t-1 ((

D 1 t-1 , R 1 t-1 ), ..., (D k t-1 , R k t-1 ) , ...(D n t-1 , R n t-1
)), we have:

V (E(d t , a k )) = p j=1 P r a k (d t , r j k ) • EV [S j t ]
(eq.( 1)

) =⇒ V (E(dt, a k )) = p P j=1 P ra k (dt, r j k )•[α j t + max a l ∈A {V (E(d t+1 , a l ))}]
As the lemma is supposed correct for t, then:

V (E(dt, a k )) = p P j=1 P ra k (dt, r j k ) • [ᾱ j t + max a l ∈A
{V (e(d t+1 , a l ))}]

V (E(d t , a k )) = V (e(d t , a k )). ✷ Lemma 4: The optimal policy obtained in the MDP is equivalent to the optimal policies obtained by the coordinated Local-MDPs, formally:

∀a k ∈ A, t = 1, ..., T, π * k ( St-1 ) = e(d t , a k ) ⇐⇒ π * (S t-1 ) = E(d t , a k )
Proof Let a k be the agent verifying that π * k ( St-1 ) = e(d t , a k ) at step t -1. According to Equation (9), we have: e(d t , a k ) = arg(max{V (e(d t , a k )), V (e ∅ (d t , a k ))}) (eq.( 7)) ⇐⇒ e(d t , a k ) = arg(max{V (e(d t , a k )), max

a l =k ∈A {V (e(d t , a l ))}}) ⇐⇒ V (e(d t , a k )) > V (e(d t , a l =k )), ∀a l ∈ A (lem.(3)) ⇐⇒ V (E(d t , a k )) > V (e(d t , a l =k )), ∀a l ∈ A ⇐⇒ E(d t , a k ) = arg(max a l ∈A
{V (e(d t , a l ))}) (eq.( 4)) ⇐⇒ π * (S t-1 ) = E(d t , a k ). ✷

VI. PERFORMANCE AND COMPLEXITY

A. Cost of Computation

We studied the computation time of a problem with different numbers of documents to store (from 10 to 160) and four servers. We recorded the computation time of cases where only one server solves the whole problem (large MDP), two servers (two interactive MDPs), three servers and 4 servers (Figure 1). We observe a gain in computation time when using many servers. The main reason is that the Local-MDP's state space size | S| is defined by: | S| = (p+1) T +1 -1 (p+1)-1 , while the MDP's state space size |S| is defined by |S| = 

(n•p) T +1 -1 (n•p)-1 .

C. Reducing communication

Equation 7 uses all information sent by all the other Local-MDPs. This Equation can be solved partially in a distributed way where each Local-MDP, instead of sending all values of reachable states, sends only the max of them. Then, Equation 7 can be solved using only the maximum values coming from all Local-MDPs and then computes their maximum. By this way, we reduce the number of messages and the size of the messages which contain only the maximum value.

There is no effect on the results of Lemma 1-4. Indeed, instead of applying max operator locally on values coming from different Local-MDPs, we apply max operator only on maximum values coming from the other Local-MDPs: V (e ∅ (d t , a k )) = max j =k V max j where V max j = max a∈Aj V (e(d t , a j ) computed in a j 's Local-MDP. This processing does not modify the result of Equation 7. Consequently, results of lemma 1-4 remain valid and the cost of communication is reduced to n.(n -1).Cost(size(message)).

Other techniques based on approximations can be considered such as sending the minimal values (pessimistic approach) or any combination of max and min values but these techniques have an immediate effect on the optimality since the result of Equation 7 should change and the claims could not be valid in these situations. The evaluation of these approximations will be considered in a short time future work.

Figure 2 shows the reduction of the cost of the communication using more local computation. When servers compute the max values, they reduce the communication cost while the quality of the solution remains optimal. In the same way, the computation time is reduced. Figure 1 shows the computation time results with the reduced mechanism of communication as explained in this section. The techniques presented above reduces the number of messages but the complexity is O(n 2 ). This complexity can be reduced by using some specific architectures. A solution is that each server a i communicates only with its neighbor server a i+1 and server a n communicates with server a 1 . This architecture reduces the complexity from polynomial to linear O(n) since the number of messages is 2 • n • T . This architecture presents a drawback because servers waste time waiting for the propagation of the max value. Further work, will be concerned with a grid architecture and the effect on the performance of the approach.

VII. CONCLUSION

In this paper, we presented an approach of applying MDP techniques for the problem of document storage and search using a server network architecture. We discussed the benefit of using a decentralized decision making technique.

This work opens a new direction in using decisiontheoretic techniques to control peer-to-peer server network architectures to improve the performance, the security and the robustness of these systems. Further work will also be concerned with the evaluation of this approach to the security and the fault tolerance. We will deal with problems where some servers are unavailable or become less and less safe and documents should be moved automatically to another server.

We also plan to develop a method allowing to reduce both the number of exchanged messages and the state space size. An agent can develop his Local-MDP considering only a subset of agents (but not all agents). Another one considers a different subset of agents. In this case, the problem of the coordination of the obtained task allocations has to be treated.
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  1 , d t , a k ) consists in ignoring the task d t by a k . It represents, in fact, the allocation of d t to another agent a l = a k . We introduce this action in order to represent what happens in the Local-MDPs of the other agents when a k ignores the task d t . For simplicity, we denote e( St-1 , d t , a k ) and e ∅ ( St-1 , d t , a k ) by e(d t , a k ) and e ∅ (d t , a k ). Let a k 's current state be St-1 = ( Dk t-1 , Rk t-1 ), then the application of the action e(d t , a k ) drives the agent a k to one of the p following states: Sj , means that d t has been achieved and the reward W a k (d t ) is obtained. Furthermore, the transition probability of the action e(d t , a k ) is expressed by the distribution P r a k because a k reaches a state Sj ) with probability 1 (no resource consumption). This state summarizes, in a k 's Local-MDP, all states generated, in the MDP, by actions e(d t , a l =k ), a l ∈ A.

	If r j k ≤ Rk t-1 , Dk t = Dk t-1 ∪ {d t } and Rk t = Rk t-1 -r j k . • Otherwise ( r j k > Rk t-1 ), Dk t = Dk t-1 and Rk t = 0.
	When r j k > Rk t-1 , the agent will consume all his resources ( Rk

t = ( Dk t , Rk t ), where j = 1, ..., p. • t-1 ) without achieving d t . So, this task does not belong to Dk t . However, arriving to a state Sj t , where r j k ≤ Rt-1 t if the execution of d t consumes the quantity r j k . On the other hand, the application of the action e ∅ (d t , a k ) drives to state St = ( Dk t = Dk t-1 , Rk t = Rk t-1

  a l ).

	Proof Based on Equations 7 and 9. Let π * k ( St-1 ) be e(d t , a k ): π * k ( St-1 ) = e(d t , a k ) (eq.(9))

=⇒ e(d t , a k ) = arg(max{V (e(d t , a k )), V (e ∅ (d t , a k ))})

  1 t ), ..., (D n t , R n t )) produced by this action, it exists in the a k 's Local-MDP a state St = (D k t , R k t ) produced by the action e(d t , a k ) in the state St-1 = (D k t-1 , R k t-1 ), and it exists in the Local-MDPs of the other agents a l =k ∈ A a state St = (D l t , R l t ) produced by the action e ∅ (d t , a l ) in the state )) in the MDP, the expected reward associated to an action E(d t , a k ), ∀a k ∈ A is equal to the one associated to the action e(d t , a k ) applied in the state St-1 = (D k t-1 , R k t-1 ) in a k 's Local-MDP. Proof We prove this lemma by induction. For the last decision step (t = T -1), we are in a state S T -1

	St-1 = (D l t-1 , R l t-1 ). ✷
	Lemma 3: For every state S t-1 = ((D 1 t-1 , R 1 t-1 ), ..., (D k t-1 , R k t-1 ), ..., (D n t-1 , R n t-1

The MDP described here is based on the MDP presented in[START_REF] Hanna | Task selection problem under uncertainty as decision-making[END_REF].

Being in a state S t-1 , the applicable actions are E(dt, a k ), a k ∈ A and no one can drive to a state S j≤t-1 .