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Let A and B be non-negative self-adjoint operators in a separable Hilbert space such that their form sum C is densely defined. It is shown that the Trotter product formula holds for imaginary parameter values in the

for each element h of the Hilbert space and any T > 0. This result is extended to the class of holomorphic Kato functions, to which the exponential function belongs. Moreover, for a class of admissible functions:

where R+ := [0, ∞), satisfying in addition ℜe (φ(y)) ≥ 0, ℑm (φ(y) ≤ 0 and ℑm (ψ(y)) ≤ 0 for y ∈ R+, we prove that s-lim

holds true uniformly on [0, T ] ∋ t for any T > 0.

Introduction

We open the present paper with a short survey of the main results on the Trotter-Kato product formula for imaginary times, and reformulate some of them in a form suitable for further generalizations. This allows us to extend the L 2 -convergence of the imaginary-time Trotter product formula to holomorphic Kato functions. Using the concept of admissible functions introduced in [START_REF] Exner | Zeno product formula revisited[END_REF] we prove this result also for the Trotter-Kato product formula.

It is a longtime open problem to prove that for non-negative self-adjoint operators A and B in a separable Hilbert space H the strongly convergent Trotter product formula s-lim n→∞ e -itA/n e -itB/n n = e -itC (1.1) holds uniformly in t ∈ [0, T ] for any T > 0, where C is the form sum of A and B, cf. [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Problem 11.3.9]. Apart from a pure mathematical interest such a product formula is tightly related to certain physical problems. In particular, the Trotter formula provides a natural way to define Feynman path integrals [START_REF] Exner | Open quantum systems and Feynman integrals[END_REF][START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]. Note that extensions of such a definition beyond the essentially self-adjoint case allows one to treat in this way Schrödinger operators for a much wider class of potentials.

In order to put our message into a proper context we recall first some known results relevant for our presentation. Let -A and -B be two generators of contraction semigroups in the Banach space X. In the seminal paper [START_REF] Hale | On the product of semi-groups of operators[END_REF] Trotter proved that if the operator -C, where C := A + B, is a generator of a contraction semigroup on X, then the formula e -tC = s-lim n→∞ e -tA/n e -tB/n n , (

holds for all t ∈ [0, T ] and any T > 0. The formula is usually called Trotter, or Lie-Trotter product formula. The result was generalized by Chernoff in [START_REF] Paul | Note on product formulas for operator semigroups[END_REF] to Banach spaces X in the following form: Let F (•) : R + -→ B(X) be a strongly continuous operator-valued family of contractions such that F (0) = I and the strong derivative F ′ (+0) exists being a densely defined operator in X. If -C, C := -F ′ (+0), is a generator of a C 0 -contraction semigroup, then the generalized Lie-Trotter product formula e -tC = s-lim n→∞

F (t/n) n , (1.3) 
holds for t ≥ 0. In [START_REF] Paul | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF]Theorem 3.1] it was shown that the strong convergence in the last formula is in fact uniform in t ∈ [0, T ] for any T > 0. Moreover, in [START_REF] Paul | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF]Theorem 1.1] this result was generalized as follows: Let F (•) : R + -→ B(X), where R + = [0, ∞), be a family of linear contractions on a Banach space X. Then the generalized Lie-Trotter product formula (1.3) holds uniformly in t ∈ [0, T ] for any T > 0 if and only if there is a λ > 0 such that

(λ + C) -1 = s-lim τ →+0 (λ + S τ ) -1 ,
where

S τ := I -F (τ ) τ , τ > 0 .
Using these results, Kato [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] was able to prove the following claim: let A and B be two non-negative self-adjoint operators in a separable Hilbert space H. Assume that the intersection dom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H. If C := A . + B is the form sum of the operators A and B, then Lie-Trotter product formula, e -tC = s-lim n→∞ e -tA/n e -tB/n n , (1.4) holds uniformly in t ∈ [0, T ] for any T > 0. In fact, the Lie-Trotter formula was extended by Kato to more general products of the form (f (tA/n)g(tB/n)) n , where f (and similarly g) is a real valued Borel measurable function f (•) : R + -→ R + obeying 0 ≤ f (t) ≤ 1, f (0) = 1 and f ′ (+0) = -1, which we call Kato functions in the following. Usually the product formulae of that type are known under the name Lie-Trotter-Kato or Trotter-Kato.

It is a longstanding open question whether the Lie-Trotter product formula (1.4) remains valid for imaginary times t under the same assumptions which justify the formula (1.2), see [START_REF] Paul | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF]Remark p. 91], [START_REF] William | The product formula for semigroups defined by Friedrichs extensions[END_REF], [START_REF] Ichinose | A product formula and its application to the Schrödinger equation[END_REF] and [START_REF] Nelson | Feynman integrals and the Schrödinger equation[END_REF]. Note that if A and B are non-negative self-adjoint operators in H and the limit in the left-hand side of (1.1) exists for all t ∈ R, then dom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H, see [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Proposition 11.7.3]. Hence, we assume in the following that dom(A 1/2 )∩dom(B 1/2 ) is dense in H. Furthermore, applying Trotter's result [START_REF] Hale | On the product of semi-groups of operators[END_REF] one immediately gets that formula (1.1) is valid if the operator C := A + B is self-adjoint. However, if A + B is not essentially self-adjoint, then all attempts to verify the Lie-Trotter product formula (1.1) for imaginary times have failed so far. A somewhat weaker result is proved in [START_REF] Michel | The problem of the Trotter-Lie formula for unitary groups of operators. Séminaire Choquet: Initiation à l'Analyse[END_REF]Proposition 3.2], see also [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Proposition 11.7.4]. It was shown there that

s-lim n→∞ R ϕ(t) e -itA/n e -itB/n n dt = R ϕ(t)e -itC dt , C := A . + B , (1.5) 
holds for all ϕ ∈ L 1 (R).

In [START_REF] Ichinose | A product formula and its application to the Schrödinger equation[END_REF] Ichinose proposed a modified Trotter-type product formula. He proved in that paper that

e -itC = s-lim n→∞ e -itA/n (E A ([0, nδ/t]) + e -ita/n E A ((nδ/t, ∞) × e -itB/n (E B ([0, nδ/t]) + e -itb/n E B ((nδ/t, ∞) n , t ≥ 0 , (1.6)
where E A (•) and E B (•) denote the spectral measures of the operators A and B, respectively, and a ≥ 0, b ≥ 0, 0 < δ < π/2. If one introduces the functions

f (λ) := e -iλ χ [0,δ] (λ) + χ (δ,∞) (λ), λ ≥ 0, (1.7) 
then the result of [START_REF] Ichinose | A product formula and its application to the Schrödinger equation[END_REF] for a = b = 0 acquires the form s-lim

n→∞ (f (tA/n)f (tB/n)) n = e -itC (1.8) 
for any t ≥ 0. Notice that the above function f (λ) is admissible in the sense of [START_REF] Exner | Zeno product formula revisited[END_REF], i.e.

|f (x)| ≤ 1, x ∈ [0, ∞), f (0) = 1 , and f ′ (+0) = -i,
and satisfies in addition the conditions ℜe (f (x)) ≥ 0 and ℑm (f (x)) ≤ 0, x ∈ R + .

In [START_REF] Ichinose | A product formula and its application to the Schrödinger equation[END_REF]Section 3] this result was generalized to functions ζ(t, λ) from a class denoted as F ν,µ (τ, γ, ε), 0 < τ ≤ ∞, 0 < µ < ν ≤ 1, γ ∈ R and ε = ±1, defined in a slightly cumbersome way.

Consider a particular case. Let f be an admissible function. Choosing γ = 0 and ε = -1 one can verify that ζ(t, λ)

:= f (tλ) ∈ F ν,µ (τ, 0, -1) if and only if f (•) is continuous, ℑm (f (x)) ≤ 0 and |1 -f (x)| ≤ min 2µ, 1 ν |ℑm (f (x))| , x ∈ R + . (1.9)
In particular, there exists a δ > 0 such that the conditions (1.9) are satisfied for

f (x) = 1 1 + ix χ [0,δ] (x) + χ (δ,∞) (x) , x ≥ 0 , which yields e -itC = s-lim n→∞ (f (tA/n)f (tB/n)) n , t ≥ 0 .
In [START_REF] Lapidus | Formules de moyenne et de produit pour les résolvantes imaginaires d'opérateurs auto-adjoints[END_REF], see also [START_REF] Michel | Product formula for imaginary resolvents with application to a modified Feynman integral[END_REF] or [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Corollary 11.3.5], Lapidus showed a slightly stronger result, namely that e -itC = s-lim

n→∞ (I + itA/n) -1 (I + itB/n) -1 n (1.10) holds uniformly in t ∈ [0, T ], T > 0.
Averaging formulas were proposed in [START_REF] Michel | Generalization of the Trotter-Lie formula[END_REF] for real times for the cases of linear and non-linear semigroups. It was Cachia who for the first time linked the imaginary-time averaging formulas to the L 2 -convergence. In [START_REF] Cachia | On a product formula for unitary groups[END_REF] he proved that

lim n→∞ T 0 e -2itA/n + e -2itB/n 2 n h -e -itC h 2 dt = 0
holds for any h ∈ H and T > 0. In fact, the notion of holomorphic Kato functions also appeared for the first time in [START_REF] Cachia | On a product formula for unitary groups[END_REF]. A Kato function f (•) is called holomorphic, if it admits a holomorphic extention to the right complex half-plane, C right := {z ∈ C : ℜe (z) > 0}, such that |f (z)| ≤ 1, z ∈ C right . For holomorphic Kato functions the limit f (iy) := lim ǫ→+0 f (ǫ + iy) exist for a.e. y ∈ R. In the following we are going to show that there is a Borel measurable function f (•) : iR -→ C satisfying | f (iy)| ≤ 1, y ∈ R, such that f (iy) = f (iy) for a.e. y ∈ R, cf. Lemma 3.2. Since the f (•) is Borel measurable the expression f (isA) is well defined by the functional calculus for any s ∈ R. Moreover, one has f (isA) ≤ 1 for s ∈ R. It was shown in [START_REF] Cachia | On a product formula for unitary groups[END_REF] that if f and g are holomorphic Kato functions, then

lim n→∞ T 0 f (2itA/n) + g(2itB/n) 2 n h -e -itC h 2 dt = 0
holds for any h ∈ H and T > 0. Before we close this introductory survey, let us mention another family of related results. Note that the paper [START_REF] Cachia | On a product formula for unitary groups[END_REF] was inspired, in fact, by results obtained by Ichinose and by one of us in [START_REF] Exner | A product formula related to quantum Zeno dynamics[END_REF]. This article was devoted to the so-called Zeno product formula, which can be regarded as a kind of degenerated Lie-Trotter product formula. In this formula one replaces the unitary factor e -itA by an orthogonal projection onto some closed subspace h ⊆ H and defines C as the self-adjoint operator associated with the quadratic form k(h, k)

:= √ Bh, √ Bk , h, k ∈ dom(k) := dom( √ B) ∩ h,
where it is assumed that dom(k) is dense in h. It was proved in [START_REF] Exner | A product formula related to quantum Zeno dynamics[END_REF] that lim n→∞ T 0 P e -itB/n P n h -e -itC h dt = 0 holds for any h ∈ h and T > 0, where P is the orthogonal projection from H onto h. Subsequently, an attempt was made in [START_REF] Exner | Zeno product formula revisited[END_REF] to replace the strong L 2 -topology of [START_REF] Exner | A product formula related to quantum Zeno dynamics[END_REF] by the usual strong topology of H. For admissible functions φ satisfying ℑm (φ(x)) ≤ 0, x ∈ R + , it was shown in [START_REF] Exner | Zeno product formula revisited[END_REF] that

e -itC = s-lim n→∞ (P φ(tB/n)P ) n ,
holds uniformly in t ∈ [0, T ] for any T > 0. We would like to stress that the function φ(x) = e -ix , x ∈ R + , is admissible but does not satisfy the condition ℑm (e -ix ) ≤ 0 for x ∈ R + , thus the question about convergence of the Zeno product formula in the strong topology of H remains open.

Our present paper is organized as follows. In Section 2 we show that the Trotter product formula makes sense in L 2 -topology, that is, it holds

lim n→∞ T -T e -itA/n e -itB/n n h -e -itC h 2 dt = 0 (1.11)
for h ∈ H and any T > 0 without any additional assumptions, cf. Theorem 2.2. This observation follows directly from the Lapidus result (1.5). Of course, it does not solve under our hypotheses the strong convergence problem of (1.1). Nevertheless, (1.11) implies the existence of a subsequence n k such that one has pointwise (i.e., the strong) convergence along it for a.e. t ∈ [-T, T ]. From the physical point of view our result seems to be quite satisfactory, see a discussion on that point in [8, Section 11].

Using the concept of the holomorphic Kato functions we prove the Trotter-Kato product formula in the L 2 -topology in Section 3, that is,

lim n→∞ T -T f (itA/n) g(itB/n) n h -e -itC h 2 dt = 0 (1.12)
for h ∈ H and any T > 0, where f, g are holomorphic Kato functions and f , g are Borel measurable extensions of f and g on the imaginary axis, see Lemma 3.2 and Theorem 3.3. Moreover, we propose a characterization of the class of holomorphic Kato functions. Finally, in Section 4 we give a generalization of the results due to Ichinose [START_REF] Ichinose | A product formula and its application to the Schrödinger equation[END_REF], to the class of admissible functions defined above. We show that s-lim

n→∞ (φ(tA/n)ψ(tB/n)) n = e -itC , (1.13) 
where φ and ψ are admissible functions such that ℜe (φ(y)) ≥ 0, ℑm (φ(y) ≤ 0 and ℑm (ψ(y)) ≤ 0 for y ∈ R + , cf. Theorem 4.7. Choosing φ(y) = ψ(y) = (1 + iy) -1 , y ∈ R, one recovers Lapidus' result (1.10), see [START_REF] Michel | Product formula for imaginary resolvents with application to a modified Feynman integral[END_REF] and [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Corollary 11.3.5]. Moreover, it turns out that admissible functions can be always slightly modified so that the Trotter-Kato product formula is valid, see Corollary 4.9. In particular, it follows from Corollary 4.9 that the modified Trotter product formula,

s-lim n→∞ e -itA/n E A ([0, πn/2t])e -itB/n E B ([0, πn/2t]) n = e -itC , (1.14) 
holds uniformly in t ∈ [0, T ], T > 0, cf. (1.7) and (1.8). Notice that (1.14) is similar to (1.6).

Lapidus' results revisited

We start by proving the following important technical lemma. 

(i) For each ϕ ∈ L 1 (R) one has w-lim n→∞ R ϕ(t)F n (it)dt = R ϕ(t)e -itC dt . (2.1) 
(ii) For each h ∈ H and T > 0 it holds

lim n→∞ T -T F n (it)h -e -itC h 2 dt = 0 . (2.2) (iii) For each ϕ ∈ L 1 (R) one has s-lim n→∞ R ϕ(t)F n (it)dt = R ϕ(t)e -itC dt . (2.3) Proof. (i) =⇒ (ii) Since F n (it)h -e -itC h 2 ≤ 2 h 2 -2ℜe (F n (it)h, e -itC h), t ∈ R, and 
e -itC h = ∞ k=0 (-it) k k! C k h, t ∈ R , for h ∈ E C ([a, b])H, -∞ < a < b < ∞, we find F n (it)h -e -itC h 2 ≤ 2 h 2 -2ℜe ∞ k=0 i k t k k! (F n (it)h, C k h) for a.e. t ∈ R, which leads to T -T F n (it)h -e -itC h 2 dt ≤ 4T h 2 -2ℜe ∞ k=0 i k k! T -T t k (F n (it) n h, C k h)dt or T -T F n (it)h -e -itC h 2 dt ≤ 4T h 2 -2ℜe ∞ k=0 i k k! T -T t k F n (it)h dt, C k h for t ≥ 0. From (2.1) we get lim n→∞ T -T t k F n (it)h, C k h = T -T t k e -itC h dt, C k h . (2.4) Hence T -T F n (it)h -e -itC h 2 dt ≤ 4T g 2 -2ℜe ∞ k=0 i k k! T -T t k e -itC h dt, C k h . Therefore lim sup n→∞ T -T F n (it)h -e -itC h 2 dt ≤ 4T h 2 -2ℜe T -T (e -itC h, e -itC h)dt = 0 which proves (2.2). (ii) =⇒ (iii)
The following estimate holds:

T -T ϕ(t) F n (it) -e -itC h dt ≤ T -T |ϕ(t)| F n (it)h -e -itC h dt .
From (1.11) we obtain the convergence in measure, that is, for each ε > 0 one has

lim n→∞ {t ∈ [-T, T ] : F n (it)h -e -itC h ≥ ε} = 0 . Setting ∆ ε,n := {t ∈ [-T, T ] : F n (it)h -e -itC h ≥ ε} we find the estimate T -T ϕ(t) F n (it) -e -itC h dt ≤ ε [-T,T ]\∆ε,n |ϕ(t)| dt + 2 ∆ε,n |ϕ(t)|dt, n ∈ N .
In view of (2.2) we obtain in the limit n → ∞ the inequality

lim sup n→∞ T -T ϕ(t) F n (it) -e -itC h dt ≤ ε R |ϕ(t)|dt
for any ε > 0. Hence for any ε small enough we have

lim sup n→∞ R ϕ(t) F n (it) -e -itC h dt ≤ ε R |ϕ(t)|dt + 2 R\[-T,T ] |ϕ(t)|dt .
Since T can be chosen sufficiently large and ε was arbitrary we get Proof. We set

lim sup n→∞ R ϕ(t) F n (it) -e -itC h dt = 0 , which yields s-lim n→∞ R ϕ(t)F n (it)h = R ϕ(t)e -itC h dt, h ∈ H .
F n (it) := e -itA/n e -itB/n n , n ∈ N, t ∈ R .
From [17, Proposition 3.2] we get (1.5), which yields (2.1). Applying now Lemma 2.1 we obtain (1.11).

We note that Theorem 2.2 partially solves the question posed in [13, Problem 11.3.9] by a slight change of topology. Indeed, from Theorem 2.2 we get that (1.1) holds in measure, that is, for any η > 0, h ∈ H and T > 0 one has 

lim n→∞ t ∈ [-T, T ] : e -itA/n e -itB/n n h -e -itC h ≥ η = 0 , (2.5 
F t TP (V ) := s-lim n→∞ e -itH0/n e -itV /n n
where H 0 := -1 2 ∆ and -∆ is the Laplacian operator in L 2 (R d ) defined in the usual way. From [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Corollary 11.2.22] one gets that the Feynman integral exists if V : R d -→ R is Lebesgue measurable, non-negative, and satisfies V ∈ L 2 loc (R d ). With Theorem 2.2 in mind it is possible to extend the Trotter-type definition of Feynman integrals if one replaces the L 2 (R d )-topology by the L 2 ([-T, T ] × R d )topology. Indeed, let us define the generalized Feynman integral F t gTP (V ) by

lim n→∞ T -T e -itH0/n e -itV /n n h -F t gTP (V )h 2 dt = 0 for h ∈ L 2 (R d ) and T > 0.
Obviously, the existence of F t TP (V ) yields the existence of F t gTP (V ) while the converse is in general not true. By Theorem 2.2 one can immediately conclude that the generalized Feynman integral exists if V : R d -→ R is Lebesgue measurable, non-negative, and satisfies V ∈ L 1 loc (R d ). This substantially extends the class of admissible potentials. The same class of potentials is covered by the so-called modified Feynman integral F t M (V ) defined by

F t M (V ) := s-lim n→∞ [I + i(t/n)H 0 ] -1 [I + i(t/n)V ] -1 n ,
see [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Definition 11.4.4] and [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF]Corollary 11.4.5]. However, in this case the exponents are replaced by resolvents which leads to loss of the typical structure of Feynman integrals and the related physical insights.

Lapidus' result generalized

The Lapidus result (1.5) relies on the so-called Vitali's classical theorem and the Vitali extended theorem, cf. [13, Theorem 11.7.1]. We reformulate them in application to our situation as follows: Let Φ n (z), n ∈ N be a sequence of contractive holomorphic function in C right which for x ∈ R + converges to a function Φ(x), that is, lim n→∞ Φ n (x) = Φ(x) for x ∈ R + . Then Φ(x) admits a contractive holomorphic continuation Φ(z) to C right such that Φ(z) = lim n→∞ Φ n (z). Since Φ n (z) and Φ(z) are contractive holomorphic functions the limits Φ n (iy) := lim ǫ→+0 Φ n (ǫ+iy), n ∈ N, and Φ(iy) := lim ǫ→+0 Φ(ǫ + iy) exist for a.e. y ∈ R. The Vitali extended theorem now yields that lim n→∞ R ϕ(y)Φ n (iy)dy = R ϕ(y)Φ(iy)dy for any ϕ ∈ L 1 (R). Notice that this conclusion cannot be deduced from Theorem 11.7.1 of [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF], since it is required that the functions Φ n (z) and Φ(z) must admit continuous extension to C right . However, applying Lemma 2 of [START_REF] Cachia | On a product formula for unitary groups[END_REF], which is a slight generalization of Theorem 11.7.1 from [START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF], one gets that the conclusion holds.

Let us make precise the notion of holomorphic Kato functions (cf. Section 1) in the following way:

Definition 3.1. Let f (•) : R + -→ R + be a Kato function. The function is called a holomorphic Kato function if f (•) admits a holomorphic continuation to C right such that |f (z)| ≤ 1, z ∈ C right .
Standard holomorphic Kato functions are f k (x) := (1+x/k) -k , x ∈ R + , and, of course, f (x) = e -x , x ∈ R + . At the end of this section we give a description of holomorphic Kato functions and indicate some non-standard examples of holomorphic Kato functions. It turns out that for standard holomorphic functions the limit to the imaginary axis exists everywhere. This yields f (tA) = s-lim ǫ→+0 f ((ǫ+it)A) for any t ≥ 0. However, if f is a holomorphic Kato function, then in general the relation f (itA) = s-lim ǫ→+0 f ((ǫ + it)A) cannot be expected. Indeed, this is due the fact that the limit f (iy) = lim ǫ→+0 f (ǫ + iy) exists only for a.e. y ∈ R. Hence the limit function f (iy) is not in general Borel measurable which makes it impossible to apply the functional calculus for self-adjoint operators. However, the limit function f (iy), defined for all those y ∈ R for which the limit f (iy) exists, admits an extension to the whole real axis which is Borel measurable.

Lemma 3.2. Let f (•) : R + -→ R + be a holomorphic Kato function. Then there is a Borel measurable function f (•) : iR -→ C satisfying | f (iy)| ≤ 1, y ∈ R, such that f (iy) = lim ǫ→+0 f (ǫ + iy) for a.e. y ∈ R. Proof. We set f R (z) := ℜe (f (z)) and f I (z) = ℑm (f (z)), z ∈ C right . Since |f (z)| ≤ 1, z ∈ C right , we find |f R (z)| 2 + |f I (z)| 2 ≤ 1, z ∈ C right . Further we set f ± R (z) := max{0, ±f R (z)} ≥ 0 and f ± I (z) := max{0, ±f I (z)} ≥ 0, z ∈ C right . Since the function f (•) is holomorphic the functions f ± R (•) and f ± I (•) are Borel measurable. Obviously, we have f (z) = f + R (z) -f - R (z) + i(f + I (z) -f - I (z)), z ∈ C right , and |f + R (z)| 2 + |f - R (z)| 2 + |f + I (z)| 2 + |f - I (z)| 2 ≤ 1, z ∈ C right . We set f ± R (iy) := lim inf ǫ→+0 f ± R (ǫ + iy) and f ± I (iy) := lim inf ǫ→+0 f ± I (ǫ + iy), y ∈ R. Since f ± R (z) and f ± I (z), z ∈ C right ,
are Borel measurable functions, the functions f ± R (iy) and f ± I (iy) are also Borel measurable. From inf

0<η≤ǫ f ± R (η + iy) ≤ f ± R (ǫ + iy) and inf 0<η≤ǫ f ± I (η + iy) ≤ f ± I (ǫ + iy), y ∈ R , we find j=± inf 0<η≤ǫ f j R (η + iy) 2 + inf 0<η≤ǫ f j I (η + iy) 2 ≤ |f + R (ǫ + iy)| 2 + |f - R (ǫ + iy)| 2 + |f + I (ǫ + iy)| 2 + |f - I (ǫ + iy)| 2 ≤ 1 , y ∈ R, which yields | f + R (iy)| 2 + | f - R (iy)| 2 + | f + I (iy)| 2 + | f - I (iy)| 2 ≤ 1, y ∈ R . Setting f (iy) := f + R (iy) -f - R (iy) + i( f + I (iy) -f - I (iy)), y ∈ R , we define a Borel measurable function. From | f (iy)| 2 = | f + R (iy) -f - R (iy)| 2 + | f + I (iy) -f - I (iy)| 2 ≤ | f + R (iy)| 2 + | f - R (iy)| 2 + | f + I (iy)| 2 + | f - I (iy)| 2 ≤ 1, y ∈ R . The relation f (iy) = lim ǫ→+0 f (ǫ + iy) for a.e. y ∈ R is obvious. Since | f (iy)| ≤ 1, y ∈ R, the expression f (iτ A), τ ∈ R, is well defined for any self-adjoint operator A.
Setting F (z) := f (zA)g(zB), z ∈ C right , it turns out that the operatorvalued family F (z) is contractive and holomorphic, if f and g are holomorphic Kato functions. Proof. We set

F n (z) := F (z/n) n , z ∈ C right , n ∈ N. We note that if z = t ∈ R + , then F n (t) := (f (tA/n)g(tB/n)) n = e -tA/n e -tB/n n , t ∈ R + , n ∈ N .
From [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] (I + itA/kn) -k (I + itB/kn) -k n h -e -itC h dt = 0 for any h ∈ H and T > 0. We note that for the particular case k = 1 Lapidus demonstrated in [START_REF] Lapidus | Formules de moyenne et de produit pour les résolvantes imaginaires d'opérateurs auto-adjoints[END_REF] that (1.10) holds uniformly in t ∈ [0, T ] for any T > 0. By Theorem 3.3 one gets that formula (1.10) is valid in a weaker topology than in [START_REF] Lapidus | Formules de moyenne et de produit pour les résolvantes imaginaires d'opérateurs auto-adjoints[END_REF]. This discrepancy will be clarified in the next section.

lim n→∞ R ϕ(t)Φ n (it) dt = R ϕ(t)Φ(it) dt for all ϕ ∈ L 1 (R). The last relation yields w-lim n→∞ R ϕ(t)F n (it) dt = R ϕ(t)e -itC dt for all ϕ ∈ L 1 (R) where F n (it) := s-lim ǫ→+0 F n (ǫ + it) for a.e. t ∈ R, cf. [21, Section V.2]. Applying Lemma 2.1 we obtain lim n→∞ T -T F n (it)h -e -itC h 2 dt = 0 for T > 0. It remains to show that F n (it) can be replaced by f (itA/n) g(itB/n) n for each n ∈ N. We find T -T dt f ((ǫ + it)A/n)h -f (itA/n)h 2 = T -T dt [0,∞) d(E A (λ)h, h) |f ((ǫ + it)λ/n) -f (itλ/n)| 2 = [0,∞) d(E A (λ)h, h) T -T dt |f ((ǫ + it)λ/n) -f (itλ/n)| 2 for each n ∈ N and h ∈ H. For any λ ∈ [0, ∞) we have lim ǫ→+0 T -T dt |f ((ǫ + it)λ/n) -f (itλ/n)| 2 = 0 which yields lim ǫ→+0 T -T dt f ((ǫ + it)A/n)h -f (itA/n)h 2 = 0 for each n ∈ N and h ∈ H. Since also lim ǫ→+0 T -T dt g((ǫ + it)B/n)h -g(itB/n)h 2 = 0 holds for each n ∈ N and h ∈ H we immediately find that lim ǫ→+0 T -T dt (f ((ǫ + it)A/n)g((ǫ + it)B/n)) n h -f (itA/n) g(itB/n) n h 2 = 0 for each n ∈ N and h ∈ H. Hence 0 = lim ǫ→+0 T -T dt F n (ǫ + it)h -f (itA/n) g(itB/n) n h 2 = T -T dt F n (it)h -f (itA/n) g(itB/n) n h 2 for each n ∈ N and h ∈ H which yields F n (it) = f (itA/n) g(itB/n) n for a.e. t ∈
The set of holomorphic Kato functions was characterized in [START_REF] Exner | Trotter-Kato product formula for unitary groups[END_REF]. For the sake of completeness we recall these results here: Theorem 3.4 ([7, Theorem 5.1]). If f is a holomorphic Kato function, then (i) there is an at most countable set of complex numbers {ξ k } k , ξ k ∈ C right with ℑm (ξ k ) ≥ 0 satisfying the condition

κ := 4 k ℜe (ξ k ) |ξ k | 2 ≤ 1 (3.1)
(ii) there is a Borel measure ν defined on R + = [0, ∞) obeying ν({0}) = 0 and

R+ 1 1 + t 2 dν(t) < ∞ such that the limit β := lim x→+0 2 π R+ 1
x 2 +t 2 dν(t) exists and satisfies the condition β ≤ 1κ; (iii) the Kato function f admits the representation

f (x) = D(x) exp - 2x π R+ 1 x 2 + t 2 dν(t) e -αx , x ∈ R + , (3.2) 
where α := 1κ -β and D(x) is a Blaschke-type product given by

D(x) := k x 2 -2xℜe (ξ k ) + |ξ k | 2 x 2 + 2xℜe (ξ k ) + |ξ k | 2 , x ∈ R + . (3.3) 
The factor D(x) is absent if the set {ξ k } k is empty; in that case we set κ := 0. Conversely, if a real function f admits the representation (3.2) such that the assumptions (i) and (ii) are satisfied and the condition α + κ + β = 1 holds, then f is a holomorphic Kato function and its holomorphic extension to C right is given by 

f (z) = D(z) exp - 2z π R+ 1 z 2 + t 2 dν(t) e -αz ,
f (z) = z 2 -2zℜe (ξ) + |ξ| 2 z 2 + 2zℜe (ξ) + |ξ| 2 e -αz , z ∈ C right , where ξ ∈ C right is such that α + 4 ℜe (ξ) |ξ| 2 = 1 .
This gives the representation

f (z) = z 2 -2η z -2 1-α z 2 + 2η z + 2 1-α e -αz , z ∈ C right , 0 < η ≤ 4 1-α , 0 ≤ α ≤ 1
, where we have denoted ξ = η + iτ , η > 0, and

τ = 4 (1-α) 2 -η -2 1-α 2
. We have

f (iy) = lim ǫ→+0 f (ǫ + iy) = y 2 + 4η 1 1-α + 2iηy y 2 -4η 1 1-α + 2iηy e -iαy , y ∈ R .
3. If a holomorphic Kato function f (z) has no zeros and the measure ν is atomic, then f (z) admits the representation

f (z) = exp - 2z π l 1 z 2 + s 2 l ν({s l }) e -αz , z ∈ C right ,
where {s l } l is the point where ν({s l }) = 0. In the particular case when dν(t) = cδ(t -s)dt, s > 0, we have

f (z) = exp - 2zc π 1 z 2 + s 2 e -αz ,
and α + 2c 

dν(t) = h(t)dt, h(t)(1 + t 2 ) -1 ∈ L 1 (R + ), then f (z) admits the representation f (z) = exp - 2z π ∞ 0 h(t) z 2 + t 2 dt e -αz , z ∈ C right , such that α + lim x→+0 2 π ∞ 0 h(t) x 2 + t 2 dt = 1 . If h(•) is Hölder continuous, then lim ǫ→+0 2(ǫ+iy) π ∞ 0 h(t)
(ǫ+iy) 2 +t 2 dt exists for each y ∈ R and one gets

f (iy) = exp -lim ǫ→+0 2(ǫ + iy) π ∞ 0 h(t) (ǫ + iy) 2 + t 2 e -iy , y ∈ R . In particular, if f (x) = (1 + x k ) -k , x ∈ R + , k ∈ N, then f (z) = exp - kz π R+ 1 z 2 + t 2 ln 1 + t 2 k 2 dt for z ∈ C right and f (iy) = (1 + iy/k) -k , y ∈ R, k ∈ N.

Ichinose's result revisited

Recall that the notion of admissible functions was introduced in [6, Definition 1].

Definition 4.1. A Borel measurable function φ : R + -→ C is called admissible if the conditions |φ(y)| ≤ 1, y ∈ [0, ∞), φ(0) = 1, φ ′ (0) = -i are satisfied.
We set φ R (y) := ℜe (φ(y)) and φ I (y

) := ℑm (φ(y)), y ∈ R + . Obviously we have |φ R (y)| ≤ 1, y ∈ R + , φ R (0) = 1 and φ ′ R (0) = 0 as well as |φ I (y)| ≤ 1, y ∈ R + , φ I (0) = 0 and φ ′ I (0) = -1 . Let Σ := {y ∈ R + : φ(y) = 0} and Ω := R \ Σ. We set ϕ(y) := 1 φ(y) , y ∈ Ω 1, y ∈ Σ .
Notice that χ Ω (y) = ϕ(y)φ(y), y ∈ Ω, where χ Ω (•) is the characteristic function of Ω. The function ϕ obeys

|ϕ(y)| ≥ 1, y ∈ R + , ϕ(0) = 1, ϕ ′ (0) = i .
Moreover, we find

ϕ R (y) := ℜe (ϕ(y)) = φR(y) |φ(y)| 2 , y ∈ Ω 1, y ∈ Σ and ϕ I (y) := ℑm (ϕ(y)) = -φI (y) |φ(y)| 2 , y ∈ Ω 0, y ∈ Σ. as well as ϕ R (0) = 1, ϕ ′ R (0) = 0 and ϕ I (0) = 0, ϕ ′ I (0) = 1 . Let E τ := χ Ω (τ A), τ > 0.
Obviously, E τ is an orthogonal projection. We consider the operator-valued function

K(τ ) := ϕ(τ A) -I τ + E τ I -ψ(τ B) τ E τ , τ > 0 .
We note that

K R (τ ) := ℜe (K(τ )) = ϕ R (τ A) -I τ + E τ I -ψ R (τ B) τ E τ and K I (τ ) := ℑm (K(τ )) = ϕ I (τ A) -E τ ψ I (τ B)E τ τ . (4.1)
If φ I (y) ≤ 0 and ψ I (y) ≤ 0, y ∈ R + , then K I (τ ) ≥ 0. Furthermore, we set

L γ (τ ) := γK R (τ ) + K I (τ ), γ ∈ [0, 1] .
Let us introduce the functions

f γ (y) := γ(ϕ R (y) -1) + ϕ I (y), y ∈ R + , (4.2) 
and

g γ (y) := γ(1 -ψ R (y)) -ψ I (y), y ∈ R + , (4.3) for γ ∈ [0, 1]. If φ(•) and ψ(•) are admissible functions, then f γ (0) = 0, f ′ γ (0) = 1 and g γ (0) = 0, g ′ γ (0) = 1. (4.4)
Using the functions f γ (•) and g γ (•) one gets the representation 

L γ (τ ) = f γ (τ A) τ + E τ g γ (τ B) τ E τ (4.
f (0) = 0, f ′ (0) = 1 and g(0) = 0, g ′ (0) = 1 , (4.6 
)

and 0 ≤ g(y) ≤ 1, y ∈ R + , (4.7 
) then s-lim τ →+0 (µI + L(τ )) -1 = (µI + C) -1 (4.8)
for µ > 0 where

L(τ ) := 1 τ f (τ A) + 1 τ E τ g(τ B)E τ , τ > 0 . (4.9 
)

and E τ := χ Ω (τ A), Ω ⊇ supp(f ) ∪ {0}, supp(f ) := {y ∈ R + : f (y) > 0}.
Proof. Since f (•) takes only finite values the operator f (τ A), τ > 0, is densely defined. Moreover, the operator g(τ B) is bounded. Hence the operator L(τ ) is well-defined. We set

p(y) := 1 1 + f (y)
and q(y) := 1 -g(y), y ∈ R + .

We note that 0 ≤ p(y) ≤ 1, y ∈ R + , p(0) = 1, and p ′ (0) = -1 as well as 0 ≤ q(y) ≤ 1, y ∈ R + , q(0) = 1, and q ′ (0) = -1 .

Hence p(•) and q(•) are Kato functions. We have

L(τ ) = p(τ A) -1/2 I -p(τ A) τ + p(τ A)E τ I -q(τ B) τ E τ p(τ A) p(τ A) -1/2 . Let F (τ ) := p(τ A) 1/2 E τ q(τ B)E τ p(τ A) 1/2 , τ ≥ 0 . Since p(y) = 1 for y ∈ Σ := R \ Ω ⊆ ker(f ), ker(f ) := {y ∈ R + : f (y) = 0}, we find L(τ ) = p(τ A) -1/2 E τ S τ E τ p(τ A) -1/2 , (4.11) 
where

S τ := I -F (τ ) τ , τ > 0 .
Hence the representation

(µI + L(τ )) -1 = p(τ A) µp(τ A) + E τ S τ E τ -1 p(τ A) holds. Since 0 ≤ p(τ A) ≤ I we obtain p(τ A) µI + E τ S τ E τ -1 p(τ A) ≤ (µI + L(τ )) -1 (4.12) 
for µ > 0. By the formula

(µI + E τ S τ E τ )) -1 = 1 µ E ⊥ τ + E τ (µE τ + E τ S τ E τ ) -1 E τ (4.13)
we get

p(τ A)E τ µE τ + E τ S τ E τ -1 E τ p(τ A) ≤ (µI + L(τ )) -1
for τ > 0. Setting p (y) := p(y)χ Ω (y), y ∈ R + , we find the representation F (τ ) = p (τ A)q(τ B) p (τ A), τ > 0. Since p (•) and q(•) are Kato functions we obtain s-lim

τ →+0 (µI + S τ (τ )) -1 = (µI + C) -1
for µ > 0 using [START_REF] Paul | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF] and [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF]. Taking into account formula (4.13) we find s-lim

τ →+0 E τ (µE τ + E τ S τ E τ ) -1 E τ = (µI + C) -1 (4.14) 
for µ > 0. From (4.12) and (4.14) we finally get

((µI + C) -1 h, h) ≤ lim inf τ →+0 (µI + L(τ )) -1 h, h -1
for h ∈ H, µ > 0. Moreover, from (4.5) we find

L(τ ) ≥ f (τ A) τ E A ([0, a)) + E τ g(τ B) τ E B ([0, b))E τ , a, b ∈ (0, ∞) ,
which gives the estimate

(µI + L(τ )) -1 ≤ µI + f (τ A) τ E A ([0, a)) + E τ g(τ B) τ E B ([0, b))E τ -1 for µ > 0 and a, b ∈ (0, ∞). Using s-lim τ →+0 E τ = I we obtain lim sup τ →+0 (µI + L(τ )) -1 h, h ≤ (µI + AE A ([0, a)) + BE B ([0, b))) -1 h, h . for h ∈ H, µ > 0 and a, b ∈ (0, ∞). Since a, b ∈ (0, ∞) are arbitrary we obtain lim sup τ →+0 (µI + L(τ )) -1 h, h ≤ (µI + C) -1 h, h for h ∈ H, µ > 0. Hence w-lim τ →+0 (µI + L(τ )) -1 = (µI + C) -1 (4.15) 
for µ > 0, and consequently, w-lim τ →+0

(µI + L(τ )) -1/2 = (µI + C) 

φ R (y) ≥ 0, φ I (y) ≤ 0 and ψ I (y) ≤ 0, y ∈ R + , (4.17) 
then the self-adjoint operators L γ (τ ), τ > 0 are well-defined and non-negative, and it holds s-lim

τ →+0 (µI + L γ (τ )) -1 = (µI + C) -1 (4.18)
for µ > 0 and γ ∈ [0, 1].

Proof. One easily verifies that the functions f γ (•) and g γ (•) defined by (4.2) and (4.3) satisfy the assumptions (4.6) and (4.7) for each γ ∈

[0, 1]. Setting Ω := supp(φ) := {y ∈ R + : φ(y) = 0} we find Ω ⊇ supp(f γ ) ∪ {0} for γ = [0, 1].
Moreover, the definition of L γ (τ ) given by (4.5) coincides with that one of L(τ ) for each τ > 0 and γ ∈ [0, 1], see (4.9). Applying Lemma 4.2 we arrive at the sought conclusion.

For purposes of the next statement we introduce the operators Proof. We note that M γ (τ )

M γ (τ ) := L γ (τ ) + (1 + γ)ϕ R (τ A) + (1 -γ)ϕ I (τ A) (4.
≥ L γ (τ ) + (1 + γ)ϕ R (τ A) ≥ 0 for τ > 0 and γ ∈ [0, 1]. Let Ω (n) R := {y ∈ R : ϕ R (y) ≤ n}. We set ϕ (n) R (y) := ϕ R (y), y ∈ Ω (n) R n, y ∈ R + \ Ω (n) R
for any n ∈ N. Obviously we have 0 ≤ ϕ

(n) R (y) ≤ n, y ∈ R + , and 0 ≤ ϕ (n) R (y) ≤ ϕ R (y), y ∈ R + . Therefore one obtains M γ (τ ) ≥ L γ (τ ) + (1 + γ)ϕ (n) R (τ A) ≥ 0 for τ > 0 and γ ∈ [0, 1] which yields (µI + M γ (τ )) -1 ≤ (µI + L γ (τ ) + (1 + γ)ϕ (n) R (τ A)) -1 , for µ > 0 and γ ∈ [0, 1]. Since s-lim τ →+0 ϕ (n) R (τ A) = I we obtain from Lemma 4.3 that s-lim τ →+0 (µI + L γ (τ ) + (1 + γ)ϕ (n) R (τ A)) -1 = ((1 + µ + γ)I + C) -1 . Hence lim sup τ →+0 (µI + M γ (τ )) -1 h, h ≤ ((1 + µ + γ)I + C) -1 h, h (4.21) 
for µ > 0 and γ ∈ [0, 1]. Furthermore, we note that

M γ (τ ) ≤ (1 + γ)I + L γ (τ ) + (1 + γ)ρ(τ A) ,
where ρ(y) := ϕ R (y) + ϕ I (y) -1, y ∈ R + . One has ρ(0) = 0 and ρ ′ (0) = 1. Hence we find

M γ (τ ) ≤ (1 + γ)I + L γ (τ ) + τ 0 (1 + γ) ρ(τ A) τ for 0 < τ ≤ τ 0 . By 1 + ρ(y) = φ R (y) -φ I (y) |φ(y)| 2 ≥ φ 2 R (y) + φ 2 I (y) |φ(y)| 2 ≥ 1 , y ∈ R + ,
we find ρ(y) ≥ 0, y ∈ R + . We set

f γ (y) := 1 (1 + τ 0 + τ 0 γ) (f γ (y) + τ 0 (1 + γ)ρ(y)) , y ∈ R + , τ 0 > 0 ,
where f γ (y) is given by (4.2). It holds f γ (0) = 0 and f ′ γ (0) = 1 as well as f γ (y) = 0 for y ∈ Σ. One gets

L γ (τ ) + τ 0 (1 + γ) ρ(τ A) τ ≤ (1 + τ 0 + γτ 0 ) f γ (τ A) τ + E τ g γ (τ B) τ E τ
for γ ∈ [0, 1] and τ ∈ (0, τ 0 ] where g γ (y) is given by (4.3). Setting

L γ (τ ) := f γ (τ A) τ + E τ g γ (τ B) τ E τ , τ > 0, γ ∈ [0, 1] ,
we obtain

M γ (τ ) ≤ (1 + γ)I + (1 + τ 0 + γτ 0 ) L γ (τ ), τ > 0, γ ∈ [0, 1] ,
which yields

((1 + µ + γ)I + (1 + τ 0 + γτ 0 ) L γ (τ )) -1 ≤ (µI + M γ (τ )) -1 , µ > 0, 0 < τ ≤ τ 0 ,
and γ ∈ [0, 1]. Let λ := 1+µ+γ 1+τ0+γτ0 , we find (λI + L γ (τ )) -1 ≤ (1 + τ 0 + γτ 0 )(µI + M γ (τ )) -1 for µ > 0, 0 < τ ≤ τ 0 and γ ∈ [0, 1]. Applying Lemma 4.2 we immediately get that

((λI + C) -1 h, h) ≤ (1 + τ 0 + γτ 0 ) lim inf τ →+0 ((µ + M γ (τ )) -1 h, h)
for µ > 0, τ 0 > 0, γ ∈ [0, 1] and h ∈ H. Since τ 0 > 0 is arbitrary we finally obtain (µI

(((1 + µ + γ)I + C) -1 h, h) ≤ lim inf τ →+0 ((µI + M γ (τ )) -1 h, h) (4 
+ M α (τ )) -1/2 = ((1 + µ + γ)I + C) -1/2
for µ > 0 which yields s-lim

τ →+0 (µI + M α (τ )) -1/2 = ((1 + µ + γ)I + C) -1/2
for µ > 0. The last relation proves (4.20).

Let us introduce the operator-valued function T (τ ) := 1

I + M 0 (τ ) (K R (τ )+ϕ R (τ A)-ϕ I (τ A)) 1 
I + M 0 (τ ) , τ > 0 , (4.24)
where M 0 (τ ) = K I (τ ) + ϕ R (τ A) + ϕ I (τ A) ≥ 0, see (4.1), (4.5) and (4.19).

Lemma 4.5. Let A and B be non-negative self-adjoint operators in a separable Hilbert space H such that dom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H. If φ and ψ are admissible functions such that the conditions (4.17) are satisfied, then T (τ ) ≥ -I, τ > 0, and s-lim

τ →+0 (iI + T (τ )) -1 = (iI + (2I + C) -1 ) -1 , (4.25) 
where T (τ ) is defined by (4.24).

Proof. Since M γ (τ ) ≥ 0 for γ ∈ [0, 1] and τ > 0 we find I + T (τ ) ≥ 0, which yields T (τ ) ≥ -I. Hence γT (τ ) ≥ -γI holds for γ ∈ [0, 1], and therefore the operator I + γT (τ ) is boundedly invertible for γ ∈ [0, 1) and we have the representation

(I + M γ (τ )) -1 = 1 I + M 0 (τ ) (I + γT (τ )) -1 1 I + M 0 (τ )
for γ ∈ [0, 1). Setting γ = 0 we find from Lemma 4.4 that s-lim τ →+0

1 (νI + T (τ )

I + M 0 (τ ) = (2I + C) -1/2 . Since s-lim τ →+0 (I + M γ (τ )) -1 = ((2 + γ)I + C) -1 for γ ∈ [0,
) -1 = 2I + C I + ν(2I + C) = (νI + (2I + C) -1 ) -1 , ν ∈ (1, ∞).
However, in standard manner we obtain from this relation s-lim

τ →+0 (νI + T (τ )) -1 = (νI + (2I + C) -1 ) -1 , ν ∈ (1, ∞) ,
which immediately implies (4.25).

Finally, for technical reasons we need the following lemma. First we recall that a bounded operator X is called accretive, if ℜ(Xh, h) ≥ 0 for any h ∈ H. Lemma 4.6. Let {X(τ )} τ >0 be a sequence of bounded accretive operators on H. If there is self-adjoint operator Y such that

w-lim τ →+0 (X(τ ) -ξ) -1 = (iY -ξ) -1 for some ℜe (ξ) ≤ 0, then s-lim τ →+0 (X(τ ) -ξ) -1 = (iY -ξ) -1 .
Proof. We set W (τ ) := (X(τ ) + ξ)(X(τ ) -ξ) -1 and W := (iY + ξ)(iY -ξ) -1 , τ > 0. One easily verifies that {W (τ )} τ >0 is a family of contractions. Obviously, we have w-lim τ →+0 W (τ ) = W . By

W (τ )h -W h 2 = W (τ )h 2 + h 2 -2ℜe ((W (τ )h, W h)), τ > 0 , we find lim sup τ →+0 W (τ )h -W h 2 ≤ 2 h 2 -2 lim τ →+0 (W (τ )h, W h) = 0 ,
which completes the proof. Theorem 4.7. Let A and B be non-negative self-adjoint operators such that the intersection dom(A 1/2 )∩dom(B 1/2 ) is dense in H. If φ and ψ admissible functions such that the conditions (4.17) are satisfied, then (1.13) holds uniformly for t ∈ [0, T ] and T > 0.

Proof. Taking into account the representation 1

I + M 0 (τ ) (iI + T (τ )) -1 1 I + M 0 (τ ) = (iI + (1 + i)ϕ(τ A) + K(τ )) -1
we find 1

I + M 0 (τ ) (iI + T (τ )) -1 1 I + M 0 (τ ) = φ(τ A)(Z(τ ) -ξ 0 ) -1 φ(τ A) (4.26) for τ > 0, where φ(y) := 1 ϕ(y) , y ∈ R + , ξ 0 = -(1 + i), Z(τ ) := i φ(τ A) + S τ , τ > 0 , and 
S τ := φ(τ A)K(τ ) φ(τ A), τ > 0 . A straightforward computation shows that S τ = E τ I -φ(τ A) τ + φ(τ A) I -ψ(τ B) τ E τ = E τ S τ E τ τ > 0 , (4.27) 
where

S τ := I -F (τ ) τ , τ > 0 ,
and F (τ ) := φ(τ A)ψ(τ B) φ(τ A), τ > 0. Since for each τ > 0 the operators S τ are accretive and ℜe ( φ(τ A)) ≥ 0, τ ≥ 0, the operator Z(τ ) is accretive and the inverse operator (Z(τ ) -ξ 0 ) -1 exists and its norm is bounded by one for τ > 0.

From the representation (4.26), Lemma 4.4 and Lemma 4.5 we get w-lim

τ →+0 (Z(τ ) -ξ 0 ) -1 = (iC -ξ) -1 , ξ = -1 -2i , (4.28) 
where we have used s-lim τ →+0 φ(τ A) = I. Since S τ is accretive we find

(iI + S τ -ξ 0 ) -1 -(Z(τ )-ξ 0 ) -1 = i(iI + S τ -ξ 0 ) -1 ( φ(τ A)-I)(Z(τ )-ξ 0 ) -1 (4.29)
for τ > 0. From (4.28) and (4.29) we get w-lim

τ →+0 ( S τ -ξ) -1 = (iC -ξ) -1 .
Applying Lemma 4.6 we find s-lim

τ →+0 ( S τ -ξ) -1 = (iC -ξ) -1 which yields s-lim τ →+0 (µI + S τ ) -1 = (µI + iC) -1 , µ > 0 . (4.30) Since S τ = - 1 τ (I -E τ ) + S τ , τ > 0 , we have (µI + S τ ) -1 -(µI + S τ ) -1 = (µI + S τ ) -1 ( S τ -S τ )(µI + S τ ) -1 = 1 µτ (µI + S τ ) -1 (I -E τ ), τ > 0 . Let ∆ = [0, d), d > 0, then we have (µI + S τ ) -1 E A (∆)h -(µI + S τ ) -1 E A (∆)h = 1 µτ (µI + S τ ) -1 (I -E τ )E A (∆)h
for τ > 0. Since (I -E τ )E A (∆)h = 0 if τ is sufficiently small we find from (4.30) that s-lim τ →+0

(µI + S τ ) -1 = (µI + iC) -1 , µ > 0 .

From [START_REF] Paul | Note on product formulas for operator semigroups[END_REF] we get s-lim n→∞ F (t/n) n = e -itC uniformly in t ∈ [0, T ], T > 0, which completes the proof. The function φ(y) = e -iy , y ∈ R + , does not satisfy the conditions ℜe (φ(y)) ≥ 0 and ℑm (φ(y)) ≤ 0. However, its modification φ(y) := e -iy χ [0,π/2] (y), y ∈ R + , obeys ℜe (φ(y)) ≥ 0 and ℑm (φ(y)) ≤ 0, y ∈ R + . In particular, the function (1.7) satisfies the conditions ℜe (f (y)) ≥ 0 and ℑm (f (y)) ≤ 0. The last observation leads to the following claim. = -1 where φ R := ℜe (φ(y) and φ I := ℑm (φ(y)), y ∈ R + . Hence there is a δ φ > 0 such that φ R (y) ≥ 0 and φ I (y) ≤ 0 for y ∈ [0, δ φ ], and consequently, the function φ(y)χ [0,δ φ ] (y) satisfies the assumptions of Theorem 4.7. Similar considerations are valid for ψ. Corollary 4.9 shows that the modified Trotter product formula (1.14) mentioned in the introduction is valid.

Concluding remarks

To conclude the paper let us list some open problems related to the Trotter-Kato product formula:

(i) The relation between holomorphic Kato and admissible functions is an open question. Of course, the class of admissible functions is (in some sense) larger than the class of holomorphic Kato functions, even if the conditions (4.17) are satisfied. This follows from the fact that far from zero an admissible function can be chosen arbitrarily, in particular, one can extend it by zero. However, a holomorphic Kato function, which is zero on a set of positive Lebesgue measure, equals zero identically. On the other hand, it is not clear whether a holomorphic Kato function satisfies the conditions of admissible functions at zero, cf. Definition 4.1.

(ii) Is it possible to verify the Trotter-Kato product formula (1.13) for admissible functions if one strengthens slightly the hypotheses made in Section 4, for instance, supposing that dom(B 1/2 ) ⊆ dom(A 1/2 )?

(iii) Are there non-negative self-adjoint operators A and B such that the Trotter-Kato product formula (1.13) does not hold for a pair of holomorphic Kato functions φ and ψ? (iv) What can be said about the operator norm convergence of the Trotter-Kato product formula (1.13)? It is known that for the real time there are several conditions, which guarantee the operator norm convergence, see [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF][START_REF] Neidhardt | Trotter-Kato product formula and operator-norm convergence[END_REF] and references therein. For imaginary times, however, the available results are rather restricted, see [START_REF] Ichinose | Note on the norm convergence of the unitary Trotter product formula[END_REF].

(

  iii) =⇒ (i) Obviously(2.3) implies (2.1). Lemma 2.1 allows us to reformulate the Lapidus result of [17, Proposition 3.2], mentioned as (1.5) above, in the following form: Theorem 2.2. Let A and B two non-negative self-adjoint operators on the Hilbert space H. If the form sum C := A . + B is densely defined, then (1.11) holds for any h ∈ H and T > 0.

Remark 2 . 3 .

 23 )where | • | denotes the Lebesgue measure, while[START_REF] Johnson | The Feynman integral and Feynman's operational calculus[END_REF] Problem 11.3.9] requires a uniform convergence of t ∈ [-T, T ], i.e. for any η > 0, h ∈ H and T > 0 one has lim n→∞ sup t∈[-T,T ] e -tA/n e -tB/n n h -e -tC h = 0. Notice that convergence in measure (2.5) takes place if and only if any subsequence of e -itA/n e -itB/n n n∈N contains a subsequence e -itA/n k e -itB/n k n k k∈N which converges strongly almost everywhere to e -itC , i.e s-lim k→∞ e -itA/n k e -itB/n k n k = e -itC holds for a.e. t ∈ [-T, T ]. From the viewpoint of physical applications, the formula (1.11) allows us to extend the Trotter-type definition of Feynman integrals for Schrödinger operators to a wider class of potentials. Following [13, Definition 11.2.21] the Feynman integral F t TP (V ) associated with the potential V is the strong operator limit

Theorem 3 . 3 .

 33 Let A and B two non-negative self-adjoint operators on the Hilbert space H. Assume that C := A . + B is densely defined. If f and g are holomorphic Kato functions, then (1.12) holds for any h ∈ H and T > 0.

  R and n ∈ N.Using the standard Kato function f k (x), see above, we get lim

  z ∈ C right . Above we have indicated several standard holomorphic Kato functions such as f (z) = e -z , f k (z) = (1 + iz/k) -k , k ∈ N, z ∈ C right . The last theorem allows us to give examples of some non-standard holomorphic Kato functions. 1. If a holomorphic Kato function f (•) has no zeros in C right and ν ≡ 0, then f (z) = e -z , z ∈ C right , where α = 1 follows from condition α = 1κ -β where κ = β = 0. Obviously, we have f (iy) = lim ǫ→+0 f (ǫ + iy) = e -iy for y ∈ R . 2. If a holomorphic Kato function f (•) has zeros and the measure ν ≡ 0, then f (•) is of the form f (z) = D(z)e -αz , where the Blaschke-type product D(z) is given by (3.3). In particular, if n = 1 we find the representation

π 1 s 2 = 1 ,

 121 which yields c = 1 2 (1 -α)πs 2 and f (z) := exp -z(1 -α) s 2 z 2 + s 2 e -αz , z ∈ C right . One gets f (iy) = lim ǫ→+0 f (ǫ + iy) = exp iy(1 -α) s 2 y 2 -s 2 e -iαy y = ±s 0 y = ±s where y ∈ R. 4. If a holomorphic Kato function f (z) has no zeros and the measure ν is absolutely continuous, that is,

5 ) 2 ,

 52 If φ R (y) ≥ 0 and φ I (y) ≤ 0 for y ∈ R + , then f γ (y) = γφR(y)(I-φR(y))-φI (y)(1+γφI (y)) |φ(y)| f γ (y) ≥ 0 for y ∈ R + and γ ∈ [0, 1]. Hence f γ (τ A) ≥ 0 for τ > 0 and γ ∈ [0, 1]. Similarly, if ψ I (y) ≤ 0 for y ∈ R + , then g γ (y) ≥ 0 for y ∈ R + which implies g γ (τ B) ≥ 0 for τ > 0 and γ ∈ [0, 1]. Hence one has L γ (τ ) ≥ 0 and τ > 0 and γ ∈ [0, 1], which shows that (µI + L γ (τ )) -1 exists and is bounded for µ > 0, τ > 0 and γ ∈ [0, 1]. Lemma 4.2. Let A and B be non-negative self-adjoint operators such that the intersection dom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H. If f (•) : R + -→ R and g(•) : R + -→ R are finite-valued non-negative Borel measurable functions satisfying

Lemma 4 . 4 .

 44 [START_REF] Neidhardt | Trotter-Kato product formula and operator-norm convergence[END_REF] with τ > 0 and γ ∈[0, 1]. Since L γ (τ ) ≥ 0, ϕ R (τ A) ≥ 0 and ϕ I (τ A) ≥ 0 we get M γ (τ ) ≥ 0 for γ ∈ [0, 1]. Let A and B be non-negative self-adjoint operators such that the intersection dom(A 1/2 ) ∩ dom(B 1/2) is dense in H. If φ and ψ are admissible functions such that the conditions (4.17) are satisfied, then M γ (τ ) ≥ 0 and s-limτ →+0 (µI + M γ (τ )) -1 = ((1 + µ + γ)I + C) -1 (4.20)holds for µ > 0 and γ ∈ [0, 1].

. 22 )

 22 for µ > 0, γ ∈ [0, 1] and h ∈ H. From (4.21) and (4.22) we deduce that w-limτ →+0 (µI + M α (τ )) -1 = ((1 + µ + γ)I + C) -1(4.23) holds for µ > 0 and γ ∈ [0, 1]. Since the relation (4.23) is valid for every µ > 0 we get w-lim τ →+0

  1], byLemma 4.4 we get that w-lim τ →+0 (I + γT (τ )) -1 exists for γ ∈ [0, 1) and is given by w-limτ →+0 (I + γT (τ )) -1 = 2I + C (2 + γ)I + C, γ ∈ [0, 1) .

Corollary 4 . 8 (

 48 [START_REF] Michel | Product formula for imaginary resolvents with application to a modified Feynman integral[END_REF]). Let A and B be non-negative self-adjoint operators such thatdom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H. If φ(y) = ψ(y) = (1 + iy) -1 , y ∈ R + , then s-lim n→∞ (I + itA/n) -1 (I + itB/n) -1 n = e -itC uniformly in t ∈ [0, T ], T > 0.Proof. One easily verifies that φ(•) and ψ(•) are admissible functions. Moreover, one hasφ R (y) = ψ R (y) = 1 1 + y 2 ≥ 0 and φ I (y) = ψ I (y) = -y 1 + y 2 ≤ 0which shows that the assumptions (4.17) are satisfied. Applying Theorem 4.7 we arrive at the sought conclusion.
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 49 Let A and B non-negative self-adjoint operators in a separable Hilbert space H such that dom(A 1/2 ) ∩ dom(B 1/2 ) is dense in H. Let φ and ψ be admissible functions. Then there are real numbers δ φ > 0 and δ ψ > 0 such thats-lim n→+∞ (φ(tA/n)E A (([0, nδ φ /t])ψ(tB/n)E B (([0, nδ ψ /t])) n = e -itCholds uniformly in t ∈ [0, T ], T > 0.Proof. If the function φ is admissible, then φ(0) := lim y→+0 φ(y) = 1 and φ ′ (0) = lim y→+0 φ(y)-1 y = -i. In particular, this yields ℜe (φ(0)) = lim y→+0 φ R (y) = 1 and ℑm (φ(0)) = lim y→+0 φ I (y) = 0 as well as ℜe (φ ′ (0)) = lim y→+0 φR(y)-1 y = 0 and ℑm (φ ′ (0)) = lim y→+0 φI (y) y
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