
HAL Id: hal-00968419
https://hal.science/hal-00968419

Submitted on 31 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Estimation of Graph Laplacian Eigenvalues
by the Alternating Direction of Multipliers Method

Thi-Minh-Dung Tran, Alain Kibangou

To cite this version:
Thi-Minh-Dung Tran, Alain Kibangou. Distributed Estimation of Graph Laplacian Eigenvalues by
the Alternating Direction of Multipliers Method. IFAC WC 2014 - 19th IFAC World Congress, Aug
2014, Le Cap, South Africa. �hal-00968419�

https://hal.science/hal-00968419
https://hal.archives-ouvertes.fr


Distributed Estimation of Graph Laplacian
Eigenvalues by the Alternating Direction of

Multipliers Method

Thi Minh Dung Tran, Alain Y. Kibangou

Gipsa-Lab, CNRS, University Joseph Fourier,
11 rue des Mathématiques, Grenoble Campus, France.

(e-mail: thi-minh-dung.tran@gipsa-lab.fr, alain.kibangou@ujf-grenoble.fr).

Abstract: This paper presents a new method for estimating the eigenvalues of the Laplacian matrix as-
sociated with the graph describing the network topology of a multi-agent system. Given an approximate
value of the average of the initial condition of the network state and some intermediate values of the
network state when performing a Laplacian-based average consensus, the estimation of the Laplacian
eigenvalues is obtained by solving the factorization of the averaging matrix. For this purpose, in contrast
to the state of the art, we formulate a convex optimization problem that is solved in a distributed way
by means of the Alternating Direction Method of Multipliers (ADMM). The main variables in the
optimization problem are the coefficients of a polynomial whose roots are precisely the inverse of the
distinct nonzero Laplacian eigenvalues. The performance of the proposed method is evaluated by means
of simulation results.

Keywords: Graph Laplacian, Eigenvalues, Distributed optimization, Alternating Direction of
Multipliers Method, Average Consensus.

1. INTRODUCTION

Investigating the relationship between the structure of a graph
and its eigenvalues is the central topic in the field of algebraic
graph theory, Merris (1994); Chung (2012). In particular, the
spectrum of the Laplacian matrix has a direct connection to
the behavior of several networked dynamical processes. For
example, the second smallest eigenvalue of a Laplacian matrix,
i.e., the graph algebraic connectivity of the graph, Friedler
(1973), is known to have the main role in the convergence
time of various distributed algorithms. It is also a critical
parameter that influences on the performance and robustness
properties of dynamical systems operating over an information
network. From the spectrum of the graph Laplacian matrix,
we can also infer bounds on the graph diameter and state the
connectedness of the graph, Friedler (1973). Moreover, it can
be utilized for checking the controllability and observability of
the system, Franceschelli et al. (2010). A comprehensive survey
on properties of Laplacian of undirected graphs can be found in
Merris (1994).

In the recent literature devoted to multi-agent dynamic systems,
several issues are formulated as a consensus problem, which is
to design a network protocol based on the local information
obtained by each agent, such that all agents finally reach an
agreement on certain quantities of interest. The network proto-
col is an interaction rule, which ensures that the whole group
can achieve a consensus on the shared data in a distributed
manner, i.e. without the coordination of a central authority. In
the study of consensus problems, the speed of convergence is
usually an important index to evaluate the efficiency of the
corresponding protocol. For networks modeled with undirected
graphs, when using Laplacian-based consensus matrices, also
known as constant edge weights protocol, it has been shown

that, for speeding up the convergence in an average consensus
problem, the optimal consensus matrix depends on both the
largest and the smallest nonzero Laplacian eigenvalues, Xiao
and Boyd (2004). More recently, it has been shown that all the
spectrum of the Laplacian matrix can also be used for designing
consensus matrices in order to achieve the average consensus in
a finite number of steps, Kibangou (2011, 2012). Such a conclu-
sion is based on the fact that the averaging matrix, JN = 1

N 11T ,
can be written as a product of Laplacian-based consensus matri-
ces parameterized by the inverse of the Laplacian eigenvalues.
Therefore, computing the eigenvalues of the Laplacian matrix
is an important issue and solving this problem in a distributed
way is particularly challenging.

During the current decade, various studies have been carried
out on decentralized algorithms for estimating the Laplacian
eigenvalues. For instance, in Yang et al. (2008), the second
smallest Laplacian eigenvalue was estimated by resorting to a
decentralized power iteration method. In Aragues et al. (2012),
the algebraic connectivity was estimated by counting on the
distributed computation of the powers of a deflated Laplacian
matrix. In Sahai et al. (2012) and Franceschelli et al. (2013),
Fast Fourier Transform (FFT)-based methods were suggested.
The main idea in these works is to make the state of each agent
oscillate only at frequencies corresponding to the eigenvalues
of the Laplacian matrix associated with the network topology.
The problem is then mapped into a signal processing one that
can be efficiently and independently solved by each agent in
applying the Fast Fourier Transform (FFT). The approach in
Franceschelli et al. (2013) involved twice communication bur-
den compared to that in Sahai et al. (2012). However, both
methods inherit the limitations of the FFT-based algorithm.
In particular, the resolution of the estimated eigenvalues is
strongly dependent on that of the FFT-based method and the



accuracy depends on the amount of stored data. In contrast,
in Kibangou and Commault (2012), the authors resort to an
algebraic method using observability properties of the network.
With this method, the eigenvalues of the network matrix can be
recovered by solving a local eigenvalue decomposition on an
appropriately constructed matrix of observed data. In addition,
this approach also provides multiplicities of Laplacian eigen-
values. However, this method is only applicable to networks
having nodes with sufficient storage and computation capabil-
ities. In Tran and Kibangou (2013), the authors have proposed
a method for estimating the distinct nonzero Laplacian eigen-
values by solving the factorization of the averaging matrix as
a product of Laplacian-based consensus matrices. Precisely, an
equality constrained consensus problem, which turns to be a
non-convex optimization problem, was formulated. A gradient
backpropagation method was proposed. Despite the efficiency
of that method, only convergence towards local minima can in
fact be guaranteed. In addition, speed of convergence was par-
ticularly slow. It is worth noting that the authors assumed that
the number of the distinct nonzero Laplacian eigenvalues was
known, which is a strong assumption fulfilled by few families
of graphs such as strongly regular graphs (two nonzero distinct
Laplacian eigenvalues) and distance regular graph (the number
of nonzero distinct Laplacian eigenvalues equals the diameter
of the graph), Kibangou (2014).

In this paper, we propose a novel method to deal with the
distributed estimation of the Laplacian eigenvalues. Herein, the
number of distinct Laplacian eigenvalues is unknown. Further-
more, the proposed method is shown to be efficient for solv-
ing the problem when the exact average value is not known.
The proposed solution results on solving a convex optimization
problem in a distributed way. The Alternating Direction of Mul-
tipliers Method (ADMM), that has received a great attention
from the community due to its easy implementation, fast con-
vergence, and good accuracy, is adopted to solve the problem,
Boyd et al. (2011); Erseghe et al. (2011).

The remainder of this paper is organized as follows: in Section
2, we recall some properties of the graph Laplacian and its
connections with the average consensus problem. Then, the
proposed method is described in Section 3 for solving a con-
strained optimization problem. The performance of the pro-
posed method is evaluated in Section 4 by means of simulation
results before concluding the paper.

2. LAPLACIAN SPECTRUM AND AVERAGE
CONSENSUS

2.1 Average consensus

Consider a network of N agents characterized by local values
xi ∈ ℜ, i = 1, · · · ,N. The interactions between these agents are
modeled by means of a connected undirected graph G(V,E),
where V and E denote the node set (vertex set) and the link
set (edge set) respectively. Average consensus algorithms can
be seen as the distributed solution of an optimization algorithm
whose goal is the minimization of the disagreement between
the nodes in a given network, Olfati-saber et al. (2010). In
other words, average consensus resorts to minimizing the cost
function

ΦG(x) = xT Lx =
1
2 ∑
(i, j)∈E

(x j − xi)
2, (1)

where x = [x1,x2, ...,xN ]
T denotes the network state whereas L

stands for the Laplacian matrix, which is a double stochastic
matrix whose entries are given by lii = di, li j =−1 if (i, j) ∈ E,
and li j = 0 elsewhere, where di stands for the degree of agent i,
i.e. the number of agents that are adjacent to agent i.

Starting from an initial state xi(0) = xi and using a steepest de-
scent method, the following linear iteration scheme is obtained:

xi(t) = xi(t −1)−α ∑
j∈Ni

(xi(t −1)− x j(t −1)), (2)

where Ni = { j ∈ V : (i, j) ∈ E} denotes the neighborhood of
node i. In matrix form, we get:

x(t) = (IN −αL)x(t −1), (3)
or equivalently

x(t) = (IN −αL)tx(0) =
t

∑
i=0

(
t
i

)
(−1)iα iq(i), (4)

where q(i) = Lix(0). By appropriately selecting the stepsize
α,(0 < α < 1

dmax
), with dmax = max{di}, all nodes converge

asymptotically to the same value that is the average of the initial
ones, Xiao and Boyd (2004):

lim
t→∞

x(t) = x̄ =
1
N

11T x(0).

Let Sp(L) = {λ m1
1 ,λ m2

2 , · · · ,λ mD+1
D+1 } be the Laplacian spectrum

(the set of Laplacian eigenvalues), where mi stands for the

multiplicity of the i-th eigenvalue,
D+1
∑

i=1
mi = N, λ1 = 0, m1 = 1,

and λ1 < λ2 < · · · < λD+1. It is well known that the speed of
convergence of (3) depends on the smallest nonzero Laplacian
eigenvalue λ2. In Xiao and Boyd (2004), it was shown that by
selecting the step-size α of the average consensus algorithm
as 2

λ2+λN
, the fastest Laplacian-based consensus algorithm is

obtained.

Let Λ= {λ2,λ3, · · · ,λD+1} be the set of nonzero distinct Lapla-
cian eigenvalues. It has been shown that the averaging matrix
can be factorized as, Kibangou (2012):

J =
1
N

11T =
D

∏
t=1

(I−αtL) , αt1 ̸= αt2 if t1 ̸= t2,
1
αt

∈ Λ,

as a product of D Laplacian-based consensus matrices param-
eterized by the inverse of a given Laplacian eigenvalue. There-
fore, the averaging matrix is a polynomial of the Laplacian
matrix:

J = Pc(L) =
D

∑
t=0

ctLt ,

with
cr = (−1)r ∑

i< j<...<r
αiα j . . .αr,r = 0, . . . ,D (5)

and specifically c0 = 1 and cD = (−1)D ∏D
t=1 αt . As a conse-

quence, by following the linear iteration scheme x(t) = (I −
αtL)x(t − 1), with αt given by the inverse of Laplacian eigen-
values, average consensus is achieved in D steps and

x(D) =
D

∑
j=0

ctq(t) = Jx(0) = x̄. (6)

To summarize, a constant step-size α gives rise to an average
consensus protocol with asymptotic convergence, which can be
accelerated by using min{Λ} and max{Λ}, the smallest and
the greatest nonzero Laplacian eigenvalues, whereas all the
elements of Λ yield a finite-time average consensus protocol.



2.2 Inferring the Laplacian spectrum from average consensus
measurements

Equation (6) gives some insights on how estimating Laplacian
eigenvalues from average consensus measurements. Indeed, as-
suming that the (D+1) measurements q(t), t = 0,1, · · · ,D, are
stored along with the final value x̄ of a standard average consen-
sus algorithm, the coefficients of the polynomial Pc can be re-
trieved by solving Qc = x̄, where Q = (q(0) q(1) · · · q(D)) ∈
ℜN×(D+1). Then the Laplacian eigenvalues can be deduced as
the inverse of the roots of the polynomial Pc. Obviously, the
initial condition q(0) = x(0) should be selected so that Q be
full column rank. For instance, the entries of x(0) should not
be all equal. Assuming that x(0) is randomly generated from a
continuous distribution then one can deduce that almost surely
Q is full column rank.

In these conditions, a distributed least square algorithm can
be devised to solve the problem. However, this presupposes
that the following assumptions are fulfilled: D, the number of
distinct nonzero Laplacian eigenvalues, is known and the actual
average consensus value x̄ is also known. The later assumption
means that several iterations of the average consensus proto-
col have been run prior to the distributed estimation of the
Laplacian eigenvalues. Based on these assumptions, in Tran and
Kibangou (2013), the authors proposed to solve the following
problem in a distributed way:

min
αααt∈ℜN×1,t=1,2,...,D

1
2

D

∑
t=1

∑
i∈V

∑
j∈Ni

(αt, j −αt,i)
2. (7)

subject to x(D) = x̄.

This problem is a constrained consensus one and allows obtain-
ing directly the inverse of the Laplacian eigenvalues. However,
as formulated, it is a non-convex optimization problem. Solving
this problem with a descent gradient approach suffers slow
convergence, strong dependence of convergence with the ini-
tialization of the algorithm and no guarantee of convergence to
the global minimum. In what follows, we propose an alternative
formulation giving rise to a convex optimization problem while
relaxing the conditions on the perfect knowledge of D and x̄.

3. CONVEX DISTRIBUTED OPTIMIZATION APPROACH
FOR LAPLACIAN SPECTRUM ESTIMATION

The only thing we know about the number D is the fact that it is
lower bounded by the diameter 1 d(G) of the graph and upper
bounded by N − 1. The lower bound comes from the fact that
d(G) characterizes the time necessary for a given information
to reach all the agents in the network while the upper bound
is derived from the fact that the N × N Laplacian matrix L
of a connected graph has at most N eigenvalues including the
simple eigenvalue 0. Therefore, the averaging matrix cannot be
factored with a number of matrices lower than d(G).

Let us recall the following lemma:
Lemma 1. ( Tran and Kibangou (2013)).
Let λ2, · · · ,λD+1 ̸= 0 be the D distinct nonzero eigenvalues
of the graph Laplacian matrix L, then, up to permutation, the
sequence {αi}i=1,··· ,D, with αi =

1
λi+1

, i = 1,2, · · · ,D, is the

1 The diameter d(G) of a graph is defined as d(G) = maxi, j dist(i, j), where
given two vertices i and j, the distance dist(i, j) is the length of the shortest
path between i and j.

unique sequence, which allows getting the minimal factoriza-
tion of the averaging matrix as 1

N 11T = ∏D
i=1(IN −αiL).

As a consequence, if the factorization of the averaging matrix
with h > D factor matrices succeeds then the obtained set
of stepsizes includes necessarily the D inverse of Laplacian
eigenvalues. Therefore, by taking h = N − 1, we intend to find
a larger set of values that includes the Laplacian eigenvalues. In
subsection 3.2, we describe the way of retrieving the Laplacian
eigenvalues from the obtained larger set.

Let us assume that the standard average consensus protocol (2)
for obtaining x̄ is stopped after a finite number of iterations
M > N. For a sufficiently large value of M, x̄(M) can be viewed
as a reasonable approximation of x̄. Therefore, the problem
under study is:

Consider a network performing the average consensus proto-
col (3). Given the number of nodes N, the state of the network
x(M) at iteration M > N, and the N first consecutive measure-
ments q(t), t = 0,1, · · · ,N − 1, estimate the nonzero distinct
Laplacian eigenvalues.

3.1 Convex optimization problem formulation

Instead of solving the non-convex optimization problem (7) as
in Tran and Kibangou (2013), we first reformulate the problem
into a convex one and then solve it in a distributed way.

We know that if {αt}h
t=1 contains the D inverses of the nonzero

Laplacian eigenvalues, then x̄ =
h
∏

t=1
(I − αtL)x(0) or equiva-

lently,

x̄ =
h

∑
r=0

crLrx(0) =
h

∑
r=0

crq(r),

Assuming that x(M) is a reasonable approximation of x̄, our
aim is to:

(i)- find the coefficients cr, r = 0,1, · · · ,h, that minimize the
quadratic error on the final consensus value:

E(c) =

∥∥∥∥∥ h

∑
r=0

crq(r)−x(M)

∥∥∥∥∥
2

; (8)

(ii)- compute the set S1 = {ααα t}t=1,··· ,h of the roots of the
polynomial with coefficients cr;

(iii)- deduce from S1, the set S2 of inverse of Laplacian
eigenvalues.

In order to solve the problem in a distributed way, we first define
by ci,r the coefficients of the polynomial of interest as estimated
by node i. The optimization problem can be reformulated as
follows:

min
ci∈ℜ(h+1),i=1,...,N

1
2

N

∑
i=1

(
h

∑
r=0

ci,rqi,r − xi(M))2, (9)

subject to ci,r = c j,r, i = 1, . . . ,N; j ∈ Ni;

r = 0, . . . ,h.

ci = (ci,0,ci,1, · · · ,ci,h)
T ∈Ci,

where Ci stands for the constrained set with respect to node i
defined as Ci = {γγγ ∈ ℜh+1 : Qiγγγ = xi(M)1, Qi ∈ ℜ(di+1)×(h+1)}
where Qi is formed with the rows of Q corresponding to node
i and its di neighbors. This constraint set allows to enforce



not only the local coefficients vector ci to be equal in a given
neighborhood but also to enforce the scalar product qT

i ci to be
globally equal, where qT

i stands for the row of Q associated
with node i.

In the literature, there exist several methods dealing with the
distributed optimization problem (9), including distributed de-
scent algorithms, Nedic et al. (2010), dual averaging meth-
ods, Duchi et al. (2012), and the ADMM, Boyd et al. (2011);
Erseghe et al. (2011). However, we make use of the ADMM
method, which has become a popular approach for solving
convex minimization problems by means of parallelization.
The positive features of this method is that it is guaranteed to
converge for all tuning parameters Boyd et al. (2011). ADMM
has only one single penalty parameter ρ that can influence
on the speed of convergence. ADMM ensures in general very
good convergence speed when this parameter is appropriately
chosen. There exist some works dealing with penalty parame-
ter selection for accelerating the convergence rate of ADMM
Ghadimi et al. (2012); Boley (2013); Teixeira et al. (2013).
The convergence analysis is also studied in Boyd et al. (2011);
Erseghe et al. (2011); Boley (2013). In what follows, we de-
scribe the derivation of the ADMM algorithm for solving prob-
lem (9) with a constant penalty parameter.

For this purpose, one can note that by introducing the auxiliary
variables {zi j}, the following constrained convex optimization
problem is absolutely equivalent to problem (9):

min
ci∈ℜ(h+1),i=1,...,N

1
2

N

∑
i=1

(
h

∑
r=0

ci,rqi,r − xi(M))2. (10)

subject to ci,r = zi j,r, i = 1, . . . ,N; j ∈ Ni

z ji,r = zi j,r, r = 0, . . . ,h. (11)

ci ∈Ci.

Since the graph is assumed to be connected, the constraints (11)
allow enforcing ci = c j, j ∈Ni. We can then write the associated
augmented Lagrangian as:

Lρ(c,z,y) =
N

∑
i=1

(
1
2

h

∑
r=0

(ci,rqi,r − xi(M))2

+
h

∑
r=0

∑
j∈Ni

yi j,r(ci,r − zi j,r)+ ∑
j∈Ni

ρ
2
∥ci − zi j∥2

)
.

=
N

∑
i=1

(
1
2
(qT

i ci − xi(M))2 + ∑
j∈Ni

yT
i j(ci − zi j)

+ ∑
j∈Ni

ρ
2
∥ci − zi j∥2

)
. (12)

The ADMM solution is obtained by solving iteratively three
sub-optimization problems. At step k, given ci[k], zik[k], and
yi j[k], j ∈ Ni, i = 1, · · · ,N, the following problems are to be
solved:

• Minimization with respect to the polynomial coefficients
ci, i = 1, · · · ,N:

ci[k+1] = ΩCi [argmin Lρ(ci,zi j[k],yi[k])]. (13)
where ΩCi [·] stands for the projection onto the constraints
set of the vector in argument.

• Minimization with respect to the auxiliary variables zi j
with the constraint z ji = zi j:

zi j = argmin Lρ(ci[k+1],zi j,yi[k]). (14)
• Update of Lagrange multipliers:

yi j[k+1] = yi j[k]+ρ(ci[k+1]− zi j[k+1]). (15)

Solving the sub-optimization problem (13) acts in two steps.
First the augmented Lagrangian is minimized with respect to
the vector of polynomial coefficients ci:

ĉi[k+1] =ΨΨΨi(xi(M)qi +ρ ∑
j∈Ni

zi j[k]− ∑
j∈Ni

yi j[k]), (16)

with ΨΨΨi = (qiqT
i + ρdiIh+1)

−1. Then, the obtained solution is
projected onto the constraints set:

ci[k+1] = ΩCi [ĉi[k+1]]
that yields:

ci[k+1] = Q̃ix̄i,M +(Ih+1 − Q̃iQi)ĉi[k+1], (17)

with Q̃i = QT
i (QiQT

i )
−1. This solution is well defined if and

only if Qi is a full row rank matrix. One way to guarantee
this property is to have a different initial condition at each
neighborhood meaning that xi(0) ̸= x j(0) for any pair (i, j).

One can note that performing this updating task does not
need information exchange between neighbors since building
matrices Qi is carried out beforehand.

Next, solving the sub-optimization problem (14) in the same
way yields

zi j[k+1] =
1
2
(ci[k+1]+c j[k+1])+

1
2ρ

(yi j[k]+y ji[k]). (18)

Unlike the previous step, now nodes have to share their local
polynomial coefficients vector ci[k+1] and the Lagrange mul-
tipliers yi j[k].

The overall ADMM algorithm for estimating the polynomial
coefficient vector or equivalently performing the factorization
of the averaging matrix is described in Algorithm 1.

Algorithm 1: ADMM-based distributed factorization of the
averaging matrix
(1) Given the number of agents N, the intermediate measure-

ments {qi(t)}, t = 0,1, · · · ,h with h=N−1, and the value
xi(M) of the state at time M > N, each node forms the
vector qi, and the matrices Qi and Q̃i.

(2) Initialization:
• Penalty parameter ρ ,
• Random initial values of the coefficients

{ci,r},{zi j,r},{yi j,r}, r = 0, . . . ,h, at each node
i, i = 1, . . . ,N.

• Set k = 0;
(3) Update Process:

(a) Set k := k+1;
(b) Compute ci[k+1] using (16) and (17).
(c) Each node i sends a message containing its local poly-

nomial coefficients vector ci[k + 1] and the current
Lagrange multipliers yi j[k] to its neighbors j ∈ Ni.

(d) Compute zi j[k+1] using (18).
(e) Update the Lagrange multipliers yi j[k+1] using (15).
(f) Return to (3a) or stop the iterations if a stopping

criterion is reached.
(4) Each agent build a polynomial Pc,i with the set of coeffi-

cients ci,r[k+1].
(5) Each agent compute the set of the stepsizes {αi,t} as the

roots of the polynomial Pc,i.



3.2 Laplacian eigenvalues retrieving.

At each node, the set S1 of the step-size obtained by means
of Algorithm 1 contains the set S2 of the inverse of Laplacian
eigenvalues. Let ˆ̄xi be the final consensus value reconstructed

by node i as ˆ̄xi =
h
∑

r=0
ci,rqi,r = Pci,i(qi) with the coefficients

obtained by means of Algorithm 1. The idea is to reduce, step-
by-step, the degree of the polynomial Pci,i(qi) by removing
one element of S1. We know that if the removed element is also
an element of S2 then ˆ̄xi ̸= P̃c̃i,i(qi) where P̃c̃i,i is the polyno-
mial with reduced degree. Such a simple test allows to conclude
if the selected element is an inverse of a Laplacian eigenvalue
or not. Algorithm 2 describes the proposed procedure. We can
note that it is strictly local.

Algorithm 2: Laplacian eigenvalues retrieving
Given the set of step size S1, the final consensus value ˆ̄xi, and
the measurements vector qi.
(1) Initialization: S2 = {} and S3 = S1.
(2) while S3 ̸= /0, select an element α j of S3.
(3) From the set S3\{α j} compute the coefficients ci using (5)

and then form c̃i.
(4) If ˆ̄xi ̸= c̃T

i qi, include α j in S2 so that S2 = S2
∪
{α j}, set

S3 = S3/{α j}, and return to 2.
(5) If ˆ̄xi = c̃T

i qi, set S3 = S3/{α j}, and return to 2.
(6) If S3 = /0, deduce the Laplacian eigenvalues as the inverse

of the elements in S2.

In practice, the test ˆ̄xi = c̃T
i qi is replaced by

(
ˆ̄xi − c̃T

i qi
)2

< ε ,
where ε is a sufficiently small positive coefficient.

The overall distributed estimation scheme is summarized in Fig.
1

Average Consensus Protocol

Laplacian eigenvalues retrieving

λ1, . . . , λD+1

xi(0) α

xi(M) qi(t), t = 0, . . . , h.

{αi,t}

ADMM based distributed
factorization of the averaging matrix

Algorithm 1

Algorithm 2

Fig. 1. Block diagram of the proposed distributed Laplacian
eigenvalues estimation method.

4. SIMULATION RESULTS

In order to evaluate the performance of the proposed distributed
estimation method, we consider a network of 6 nodes modeled
as a cycle graph. The performance is evaluated by means of
the mean square error (MSE) between the estimated Laplacian
eigenvalues λ̂ j,i and the actual ones.

MSE =
1
N

N

∑
i=1

D

∑
j=1

(λ j − λ̂ j,i)
2. (19)

The Laplacian matrix associated with this graph has 3 dis-
tinct nonzero eigenvalues Λ = {1,3,4} and, therefore, the
corresponding inverse of nonzero distinct eigenvalues are
{1,0.3333,0.25}.
As depicted in Fig. 1, we first run an average consensus protocol
using a constant edge weights consensus protocol with α = 0.2
as a stepsize and

x(0) = [0.6179,0.0702,0.0693,0.1360,0.7889,0.0924]T

as an initial condition. Fig. 2 depicts the trajectory of the state of
each node. We can note that a reasonable agreement is obtained

5 10 15 20 25 30 35 40
0
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x

Fig. 2. Trajectory of the network state during average consensus
protocol.

from iteration 10.

Then, the ADMM algorithm for computing the factorization of
the averaging matrix was performed for different values for the
number of iterations M of the average consensus algorithm.
For instance, Fig. 3 depicts the trajectories of the estimated
polynomial coefficients. We can note the good agreement be-
tween nodes on the estimation of these polynomial coefficients,
which are then used to build a 5th-order polynomial whose
roots contain the inverse of the Laplacian eigenvalues.
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Fig. 3. Estimation of the polynomial coefficients for (M=15).

For M ≤ 10, x(M) was too far from x̄. As a consequence,
the obtained polynomial gave rise to negative or complex-
valued roots meaning that the coefficients c̃ created from these
roots do not satisfy ˆ̄xi = c̃T

i qi in Algorithm 2. For M > 10,
Algorithm 2 was successfully performed for retrieving the
Laplacian eigenvalues. Fig. 4 depicts the MSE on the estimation
of the Laplacian eigenvalues and the corresponding standard
deviation. As expected, we can note that the closer x(M) is to



x̄, the higher the precision on the computation of the Laplacian
eigenvalues is. In addition, the tight bounds around the MSE
inform us about the agreement on the estimated Laplacian
eigenvalues.
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Fig. 4. Performance of Laplacian eigenvalues estimation for
different values of the number of iterations of the standard
average consensus algorithm.

5. CONCLUSION

In this paper, we have proposed an improved distributed method
to estimate the Laplacian nonzero distinct eigenvalues of a
connected undirected graph representing interactions between
nodes of a given network. A convex optimization problem has
been proposed. It consists in finding the optimal coefficients
of a given polynomial whose roots are precisely the stepsizes
αt , t = 1, . . . ,D, allowing to factorize the averaging matrix as
a product of Laplacian-based average consensus matrices. The
stepsizes are the inverse of the Laplacian eigenvalues. To solve
this problem in a distributed way, we have devised an ADMM
approach that exhibits in general fast convergence. The draw-
back of the proposed method concerns its scalability. Indeed,
for very large graphs the roots of very high degree polynomials
are to be computed. Furthermore, the proposed algorithms are
implemented perfectly if the average consensus value x̄ is es-
timated. In stead of solving two tasks, which are average con-
sensus protocol and Laplacian eigenvalues estimation, we can
combine them into one problem that simultaneously estimates
the average consensus value x̄ and nonzero distinct Laplacian
eigenvalues. This problem is still under investigation.
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