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Abstract—This paper shows how data mining and in partic-
ular graph mining and clustering can help to tackle difficult
tracking problems such as tracking possibly multiple objects
in a video with a moving camera and without any contextual
information on the objects to track. Starting from different
segmentations of the video frames (dynamic and non dynamic
ones), we extract frequent subgraph patterns to create spatio-
temporal patterns that may correspond to interesting objectsto
track. We then cluster the obtained spatio-temporal patterns to
get longer and more robust tracks along the video. We compare
our tracking method called TRAP to two state-of-the-art tracking
ones and show on three synthetic and real videos that our method
is effective in this difficult context.

I. I NTRODUCTION AND RELATED WORK

Many ongoing research works concerning object tracking
in videos [1], [2] make strong assumptions about the objectsto
track (people, car, etc.) which can be modelled in advance, or
about the tracking context (stable background, object moving
in a single direction, stable lighting conditions, etc.) toper-
form an efficient tracking. These methods rely on two steps,
the object detection in the frame and the tracking process.
For detection, techniques are based on frame difference or
background subtraction [3], optical flow (detection of the
relative motion between a static camera and the filmed objects)
[4] or background information on the objects to track (skin
color, shape etc.). For the tracking process, techniques consist
in predicting the next region (or contour) of interest using
probabilistic or deterministic methods and then possibly add
another detection step.

TLD [5] and CT [6] are two recent examples of trackers
by detection. InCT, the tracking from a framet to a frame
t + 1 is achieved by first sampling positive samples around
the object location at timet and negative samples away from
the object and use both negative and positive samples to
build a Bayesian classifier. Then, locations in framet + 1
around the position of the object at timet are rated using
the classifier. The location with the highest score is selected
as the new position in the framet + 1. Image patches are
represented by a sparse feature vector obtained through random
projections of the image features which allow the algorithmto
efficiently handle changes in pose, illumination and scale as
well as partial occlusions. TheTLD algorithm updates online
a set of image patches (the model) representing the different
appearances of the target. At each time stept, the bounding
box of the target is tracked by a Lucas-Kanade tracker [7]
while the algorithm performs a window search on the current

frame to detect locations that are in agreement with the object
model. If there is no agreement, the alternative hypothesis
detected by scanning the frame that is the most similar to
the images patches stored in the model, is selected as the
new location of the target. BothTLD and CT are real-time
algorithms which need to identify a target before starting the
tracking.

In this paper, we would like to show how graph mining
and clustering techniques can help to track, off-line, multiple
objects in a video in the specific case in which both the objects
and the background are moving and when no supervised infor-
mation about the objects to track is known in advance. Tackling
such a difficult problem is done at a computational cost which
currently prevents the online use of our method. It can however
be used to gather meaningful high level semantic information
in large already recorded databases for example, for indexing
purposes. Our starting point is a segmentation (dynamic or not)
of each frame of the video. We then create an attributed region
adjacency graph (RAG) from the segmentation of each frame.
We thus obtain a sequence of graphs which evolve through
time. Our main assumption is that interesting objects in the
video can be tracked by following frequent subgraphs patterns
which are connected in time and space (calledspatio-temporal
patterns). To loosen the strong isomorphism constraint used in
frequent graph mining algorithm, we then allow our system to
cluster the spatio-temporal patterns according to their structural
similarities within a sequence of frames.

The tracking methods (TLD and CT) presented at the
beginning of this introduction typically do not consider moving
objects in changing environments. When it is the case as in
[8], multiple cameras are used to tackle object occlusions or
features instability using stereo vision. The setting taken in
[9] is close to the one we are interested in since they consider
cameras embedded in surveillance cars but they rely on strong
background information (here GPS position) to perform an
effective tracking. Our method is also similar to [10] but
they do not use the topological information provided by the
subgraph patterns and they use a spatio-temporal MCMC
algorithm to sample the possible paths represented in our
occurrences graph. While tackling the problems mentioned
above, this paper tries to overcome the drawbacks identifiedin
[11] where the same kind of patterns are mined. The authors
computed a shortest path in some connected components called
spatio-temporal paths created from the patterns to identify the
relevant tracks. However, this suppose that the first and thelast
frame where the objects of interest appear can be identified (to



run the shortest path algorithm) and also to identify the objects
of interest in the first frame in order to limit the number of
possible output tracks. Our aim is to automatically group the
spatio-temporal patterns according to their spatial similarity
among overlapping frames (patterns that can be grouped to
track the same object). This grouping will allow us to avoid the
costly and somewhat arbitrary structural comparison between
patterns introduced in [11]. The same technique could also be
used directly from a dynamic segmentation such as the one
proposed by [12] where each connected regions (2D+t) can be
seen as a spatio-temporal pattern.

After this introduction and presentation of the related work,
we mention in Section II, some important definitions from [11]
about spatio-temporal patterns. In Section III, we define our
clustering method to find relevant tracks from our patterns.
The experiments that compare our proposedTRAPalgorithm
to the TLD and CT trackers are presented in Section IV. We
conclude and give some perspectives in Section V.

II. M INING SPATIO-TEMPORAL PATTERNS

As stated in the introduction, the main assumption of this
paper is that interesting objects in the video can be trackedoff-
line by following frequent subgraphs patterns, called spatio-
temporal patterns, which are connected in time and space. We
assume that a video can be represented as a dynamic plane
graph. A dynamic plane graph is a sequence of plane graphs
where each graph represent a frame of the video. Each node
is a region of a frame and is associated to spacial coordinates
(cf. details in Section IV). Fig. 3 presents a frame and the
corresponding plane graph.

To mine the spatio-temporal patterns we use the DY-
PLAGRAM ST algorithm described in [11]. Due to space
limitations, we do not give a description of the algorithm and
repeat the formal definitions in this paper. In typical subgraph
mining problems, where the input collection of graphs does not
represent a dynamic graph, the frequency freq(P ) of a pattern
graphP is computed regardless of the fact that its occurrences
may be far apart w.r.t. time and/or space. We are interested in
occurrences of the same pattern that arecloseto one another.

DYPLAGRAM ST performs a depth first traversal of the
search space of all possible graph patterns. Then for each
pattern P , it constructs anoccurrences graph. The nodes
of the occurrences graph are the occurrences of a pattern
P in all frames, and the edges connect “close” occurrences
(with respect to a spatial thresholdǫ and a temporal threshold
τ ). A spatio-temporal patternS based onP is a connected
component of the occurrences graph ofP and the frequency
freqst(S) of a spatio-temporal patternS is the number of frame
in which it appears.

Given a frequency threshold,freq, a spatial thresholdǫ and
a temporal thresholdτ , DYPLAGRAM ST mines efficiently all
spatio-temporal patterns whose freqst is above the threshold.

An example of an occurrence graph for a given patternP
is given in Figure 1. This patterns has12 occurrences in the
video. The occurrences3, 5 and8 are connected in space and
time, they form a spatio-temporal patternp1 and freqst(p1) =
3. The9 occurrences{1, 2}, 4, {6, 7}, 9, {10, 11}, 12 also form
a spatio-temporal patternsp2 with freqst(p2) = 6.
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Fig. 1. Example of an occurrence graph for a given pattern P which occurs
12 different times in 6 frames of a given video.
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Fig. 2. Example of two overlapping (on 3 frames) spatio-temporal patterns
A and B

III. T RACKING WITH PATTERNS

A. Dissimilarity between spatio-temporal patterns

Each spatio-temporal patternp can be represented as a
trajectory ptr = {(xp

i , y
p
i )|fp

s ≤ i ≤ fp
e } with fp

s and fp
e

respectively the starting and ending frame ofp. For each
spatio-temporal pattern, the coordinates(xp

i , y
p
i ) of the points

of its trajectory are obtained by computing the barycentersof
its occurrences in each framei. For example, in Figure 1, we
would compute the barycenter of occurrences1 and2 for the
second spatio-temporal pattern. Since the temporal threshold
τ allows spatio-temporal patterns to have gaps in the sequence
of occurrences, the coordinates of the points of the trajectory
in those frames are interpolated between the previous and next
known points.

Let A and B be two patterns. Letfs = max(fA
s , fB

s ) and
fe = min(fA

e , fB
e ). The distance between two spatio-temporal

patterns is defined as:
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In words, if two patterns never belong to the same frames,
their distance is infinite. Otherwise, their distance is the
normalized (over the number of common frames) sum of the
Euclidean distances between the barycenters of the patterns
that appear in common frames. We added a penalty between1
and 2 to take into account the proportion of common frames
compared to the span of the union of the two spatio-temporal
patterns. For example, in Figure 2, the distance between the
two patterns is(a+b+c)

6−4+1 ∗ (2− 3
8−1+1 ).

B. Clustering algorithm

To cluster our spatio-temporal patterns without knowing
in advance the number of interesting clusters, we decided to



use a simple hierarchical clustering algorithm [13] with the
distance function previously defined. The main problem of this
algorithm is the choice of the criterion to cut the hierarchy
of the dendogram without any information a priori about the
quality of the resulting clustering. After analyzing different
criteria, we decided to cut the hierarchy at the level of the
creation of the cluster with the highestlifetime. The lifetime
of a cluster corresponds to the difference between the similarity
at which it has been formed and the similarity at which it is
merged with an other cluster. However, the lifetime criterion
tends to behave badly in the presence of outliers which are
fused at the top of the hierarchy and often have the maximum
lifetime (the hierarchy is thus cut at a high level with very few
clusters). To overcome this drawback, we decided to ignore the
10% first levels of the hierarchy (note that there arei clusters
at level i) before computing the lifetime.

C. Selection of the best clusters in the clustering

Since with our approach, a lot of the spatio-temporal
patterns of the background are not part of any precise clusters,
the optimal number of clusters is usually much higher than the
true number of main objects. Therefore, after having cut the
hierarchy, we still have to decide which clusters are the most
interesting. We consider that longer (in terms of the number
of covered frames) clusters are better. More precisely, we first
keep the longest cluster and the ones that do not differ from
more than 10% of the length of the video from the longest
ones. Within the clusters of this length, we select the one (or
randomly among the ones) with the highest number of spatio-
temporal patterns and then the highest number of occurrences.
This cluster is called thelongestin the rest of this article.

To decide how many interesting objects should be tracked
in the video in a completely unsupervised manner (without
selecting them in the first frame), we could either assume that
there is only one object or to find among the longest clusters,
the ones that are sufficiently far from each other. However,
in this paper, we select for each video then longest clusters,
with n being the number of main objects in the video. We then
measure their precision and recall with respect to a ground
truth.

IV. EXPERIMENTS

A. Datasets

To the best of our knowledge, there is no video benchmark
which contains diverse and multiple objects to track (most
of the existing benchmarks focus on pedestrian tracking) in
which the camera is also moving. Note that in these cases,
our algorithm could also be used but may perform worse than
the optimized dedicated ones. To assess the qualities of our
algorithm, we thus introduce our own dataset. We used 4
videos for these experiments. The two first ones are synthetic
videos which allows us to avoid the possible segmentation
problems by keeping the true colored regions. The two last
ones are real videos. The real videos are first segmented and for
all of them we create a region adjacency graph (RAG) [14] for
all the frames of the video. In the RAGs, the barycenters of the
different regions in a frame are the nodes of the graph, and an
edge exists between two nodes if the regions are adjacent in the
frame. As our RAGs greatly depend on the segmentation, we

Fig. 3. Example of frame and RAGs obtained from the synthetic videos
(top), from the segmented real drone video (middle), and from the segmented
car video (bottom)

tried two types of segmentation. The first segmentation (static)
is done independently on each frame using the algorithm1

presented in [15]. This algorithm has three parameters for
which we use the default values. It favors the merging of small
regions which may result in an unstable segmentation when
objects are getting close to or moving away from the camera.
In order to prevent this behavior, we modified the code of this
algorithm to make its second parameter independent from the
size of the regions. Fig.3 shows examples of RAGs represent-
ing a frame of our three videos. The second segmentation is
the (dynamic) video segmentation algorithm2 presented in [12].
This algorithm outputs regions that are identified through time,
i.e, it provides a correspondence between regions in different
frames.

a) Synthetic videos:The two synthetic videos (cf. top
of Fig.3) differ only from the color of the objects. They show
three identical objects (X-wings) that are moving in the video
such that they may overlap or even get (partially) out of the
field of view. In the first video, the 3 X-wings are identical
while in the second one they have different colors, therefore in
both cases the topology of the RAGs representing the videos
is the same, only the labels of their nodes are different. The
labels on the nodes of the RAG correspond to the discretized
average color of the segmented region. Those videos have 721
frames in total and in average the RAGs are composed of 240.7
nodes with an average degree of 3.9.

These videos were used to assess whether our approach
can deal with scenes involving several objects occluding each
others and moving out of the field of view.

b) Real Videos:The first real video (cf. middle of Fig.3)
is composed of 950 frames, each RAG has on average 194.5

1http://www.cs.brown.edu/∼pff/segment/
2http://www.videosegmentation.com



nodes with an average degree of 5.35. This video shows a
drone flying across a covered parking lot. This video is the
most simple one but the segmentation still suffers from the
illumination changes. The second real video (cf. bottom of
Fig.3) is made of 5619 frames, each RAG has on average
207.5 nodes with an average degree of 5.5. This video is shot
from a car while following another car (the main object). In
this video the main object goes out of the field of view, its
scale changes, the global illumination changes all the timeand
it is also longer than the other ones which allows us to test
the efficiency of our approach. This video has been divided
into 3 parts (car1000, car2000, car3000) which correspond to
the 1000, 2000 and 3000 first frames of the car video. This
has been done since the tracking difficulty gradually increases
along the video.

For both videos, we use the same modified segmentation
algorithm with standard parameters to segment the images.
With these videos, we want to assess whether our approach
can deal with changing appearances and with the segmentation
inaccuracies.

B. Experimental design

1) Different algorithms:

• TLD (Track Learn Detect) is a tracking algorithm [5]
that requires manual selection of the target.

• CT (Compressive Tracking) is a tracking algorithm [6]
that also requires manual selection of the target.

• TRAP is our tracking algorithm which mines frequent
spatio-temporal patterns and clusters them. It uses
the simple segmentation algorithm presented in [15]
for the real video (and the original regions for the
synthetic ones). The value for the three parameters of
the algorithm (τ , freqst and ǫ) are discussed bellow.

• TRAP + VS (Video Segmentation) uses the second
type of segmentation.

2) Precision and Recall:In all the frames of all the videos
we have drawn a rectangle bounding box around the objects of
interest. For thecar video, the ground truth has been collected
every5 frames.

For the clusters obtained with our approach theprecision
corresponds to the proportion of occurrences of the clusterthat
have all their nodes in the bounding box of the ground truth (at
the corresponding frame). Therecall of a cluster is the number
of frames in which at least one occurrence of this cluster in
this frame has all its nodes in the bounding box of the ground
truth.

TLD and CT are given the ground truth of the first frame
of each video as input. Both algorithms return a sequence of
bounding boxes representing the track of the followed objects.
The precision is the area the bounding boxes of the track
have in common with the bounding boxes of the ground truth
divided by the area of the bounding boxes of the track. The
recall of the algorithm is the number of frames in which the
center of the bounding box of the track is inside the bounding
box of the ground truth.

a) Cluster choice: As explained in Section III, the
choice of the clusters that are used to track the objects of
interest is an important problem. In the experiments, we will
show the results for theLongestcluster (L in the tables) as
defined in Section III but also the results for theBestcluster
(B) in the hierarchy (we chose the best cluster for all possible
cut of the clustering hierarchy). This best cluster is the one
for which the Precision ∗ Recall ∗ 100 is the highest. Of
course, these “best” results are just given to assess the possible
improvements for our algorithm since they cannot be used in
an unsupervised setting. In some experiments, the two criteria
we use (cut with the lifetime and keep the longest cluster) are
not always the best but we can the show that a very good
cluster exists and could be found using different criteria.

3) Parameters ofDYPLAGRAM ST: The spatial threshold
ǫ should be high enough depending on the motion of the
objects and the motion of the camera. This can be estimated
on the first frames of the video using optical flows. However,
setting this to40 (pixels) for all experiments gave sufficiently
good results. In general, giving a high value for this parameters
will increase the mining time but will not harm the results.
Similarly the time thresholdτ is set for all videos to25
frames (1 second of the video). Again, this may not be the
best set of parameters especially for the car video which is the
most complex to deal with. The frequencies threshold (freq
and freqst) should be set after having found a workingτ and
ǫ to obtain a significant number of spatio-temporal patterns
(600 < #patterns < 2000). A too large number would also
slow down the algorithm. By default freq= freqst. Note that
freq controls the frequency of the patterns from which the
spatio-temporal patterns can be generated. However, a very
high freqst threshold (for example, more than 20% of the
length of the video) means that the structure of the object
(and thus a pattern representing it) should not change at all
during 20% of the frames which is not very reasonable for
most of the real videos that are recorded by amateurs. Thus,
we impose that freqst is always bellow20% of the length (in
frames) of the video. If the number of patterns is still too
big with this bound, we can increase freq to get inside the
#patterns bounds.

C. Results

1) Tracking quality:

a) Synthetic videos:In Fig.4 we can see that CT and
TLD do not give good results on the synthetic video especially
when the3 planes are identical. Indeed, the initial bounding
box given in the ground truth includes a lot of background
between the wings of the planes which corrupts the appearance
model learned. Besides, there are occlusions between the
objects and their rapid change in direction make them hard to
track. Our approach gives good results (97/90 P/R for Anim1
and 100/99 for Anim2) on the first plane which is the most
stable. However there is no really good cluster (where the
recall and the precision would be both above 90%) in all the
hierarchy representing the second and the third object. Forthe
second object, the best cluster has92% precision and88%
recall but this cluster exists only when cutting the hierarchy at
11 clusters whereas our lifetime criteria cuts the hierarchy at
252 clusters and thus does not allow us to find the best one.
For the third object, the best cluster was only361 frames long



Anim 1: Identical Objects Animation 2: 6= Objects
Obj 1 Obj 2 Obj 3 Obj1 Obj2 Obj3

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)
TLD 22 14 90 17 0 0 14 13 36 5 0 0
CT 39 52 0 0 0 0 68 96 0 0 0 0

T L 97 90 41 99 21 63 100 99 91 99 8 12
B 99 90 92 88 87 49 100 99 91 99 72 92

Fig. 4. Precision and Recall of the CT, TLD and TRAP (T) algorithms using the standard color segmentation, for the longest (L) and the best (B) clusters.

Fig. 5. Precision an recall results of the best and longest clusters output by TRAP for the object 1 (top) and object 3 (middle) of animation 2 and for the car
(bottom) for car1000. The vertical red line is the lifetime cut.

Drone Car 1000 Car 2000 Car 3000
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

TLD 63 88 65 68 55 46 55 31
CT 84 99 9 14 8 8 5 5

T L 81 99 92 83 10 98 4 52
B 97 99 90 98 90 51 90 34

VS+T L 24 95 92 90 5 82 5 65
B 95 94 93 98 85 54 85 36

Fig. 6. Percentage of Precision (P) and Recall (R) of the CT, TLD and TRAP
algorithms using the standard color segmentation, the TRAP (T) algorithm
using the video segmentation (VS+T), for the longest (L) and best (B) clusters.

so it was not selected as the longest one. Because the third
object goes almost completely out of the field of view for 3 to
4 seconds several times in the video, the clusters representing
this object were easily split.

The results for the Anim 2 show that the color difference
between the three objects usually helps all the trackers (except
TLD). For our approaches, the longest clusters at the highest
lifetime were the best one in the hierarchy as can been seen
in Fig. 5 (left). The difference between the objects was dis-
criminative enough to be able to follow the third object witha
best cluster with72% precision and92% recall. Unfortunately
this good cluster was at the 14th level of the hierarchy while
it was cut at the 70th level as can be seen in Fig.5 (middle).
In this later case the best cluster’s size diminishes aroundthe
50th level of the hierarchy which causes it not to be highly
ranked in comparison of bigger clusters that do not match the
third object.

b) Real videos:TLD and CT both track the drone for
almost all the video, the former with 63/88% (P/R) and the
later with 84/99% (P/R) (see Fig.6). TLD loses it for some
frames which results in a lower recall. Due to the large size
of the output bounding box in some frames, the precision is
lower than for our approaches for both algorithms. TRAP also
follows the drone with 99% recall, but the longest cluster is
less precise than the best cluster (81% vs 97%). Note that just
reducing the freqst to 10 in this case would allow us find the
best cluster. Clustering the spatio-temporal patterns extracted
from the video segmentation (VS+T) also produces some good
clusters but not at the level the lifetime cuts the hierarchy.

From Fig.6, we can confirm that the car video is a much

Car1000 Car2000 Car3000
P R P R P R

TRAP L 90 99 96 73 7 83
B 90 99 93 87 92 61

VS L 90 99 93 87 7 84
+T B 92 98 88 91 22 39

Fig. 7. Percentage of Precision (P) and Recall (R) of the longest (L) and the
best (B) clusters obtained for the car video when increasingfreq

st
to 75 for

the TRAP algorithm .

more difficult tracking problem. TLD follows the car until
the frame 1305, losing it occasionally, but never with a good
precision. CT never succeeds in following the car. For both
types of segmentation, the longest clusters returned by TRAP
follows the car until the frame 1200 and then loses it. At
this point of the video the car is small and the segmentation
segmented it in only one region. Since occurrences of frequent
spatio-temporal patterns have at least 3 nodes (1 face, thisis
imposed by the DYPLAGRAM ST algorithm), there is none
matching the car in this part of the video. The best patterns for
the first 2000 and 3000 frames all end at this frame, and, since
there is no other long pattern matching the car, the longest
clusters has a bad quality. As shown in tab 7, augmenting
the gap allows us to skip the frames of the video where the
car is too small which produces better results. However, the
algorithm faces the same situation for a longer time at the
frame 2300. This shows that if the gap thresholdτ can allow
us to deal with some situations where the object is hard to
detect, it would be better to introduce a mechanism specifically
designed to deal with long term occlusions. Figure 5 shows
that on the first 1000 frames, the longest cluster returned by
TRAP is always the best one until the lowest levels of the
hierarchy. This shows that the length criterion can be a very
good criteria to find the best cluster when sufficient patterns
representing the objects can be extracted and when no long
disappearance of the targets splits the clusters.

We also experimented (for lack of space, it is not reported
here) a different way of building the spatio-temporal patterns
using the identification of the regions across the videos pro-
vided by the video segmentation. In this case, regions are re-
grouped into the same spatio-temporal pattern if they have the
same id. Regions can therefore be seen as occurrences of the



spatio-temporal patterns. We used the same clustering method
on those spatio-temporal patterns and measured their recall and
precision. Overall this method produced a lot more spatio-
temporal patterns which greatly increased the computational
time required for the clustering and resulted in clusters that
had similar recall and precision as TRAP.

In conclusion, our unsupervised methods give comparable
(and most of the time better) results than the state-of-the-art
trackers TDL and CT. However, we do not need to select
the objects of interests in the first frame of the video which
makes this method usable in practice to treat batches of off-line
recorded videos such as Youtube ones.

Fig. 8. Occurrences of frequent patterns in the longest cluster for the first
1000 frames of the car video

Exec Time (s) # patMine Clust Total
Anim1 TRAP 11 1042 1053 1708
Anim2 TRAP 9 1180 1189 1667

Drone TRAP 28 952 980 1421
VS+TRAP 9 722 731 1349

Car1000 TRAP 109 231 340 575
VS+TRAP 212 204 416 520

Car2000 TRAP 153 1005 1158 1046
VS+TRAP 153 954 1107 985

Car3000 TRAP 153 1758 1911 1232
VS+TRAP 153 1981 2134 1237

Fig. 9. Execution time and number of patterns output by the TRAP

2) Efficiency: For the synthetic videos, when keeping the
default parameters forτ and ǫ we fell into the number
of patterns problem mentioned in Section IV-B3. For both
animations, freqst was set to 150 but freq was set to250 for
the first animation and to220 for the second one. As can be
seen in the Fig.9 it takes more than 15 minutes to process 1700
patterns in both cases. For the video segmentation (VS), we can
not control the number of output patterns and for the simple
animation video, we get around 100 of them which made
the clustering process very fast. Because of many changes in
appearance for the real videos, there were less frequent patterns
so we could keep the default setting for all parameters (except
freqst as discussed in Section IV-B3). For TRAP, we used
freqst = 15 for the drone and freqst = 25 for the car, and we
set it to35 for both videos when mining the more stable video
segmentation. We mined the5600 frames of the car video at
once and then restricted the occurrence graph to the first 1000,
2000, and 3000 frames, this explains why the time results for
the mining step of this video are constant. This is also why
the number of patterns can be as low as 500 when processing
only the first 1000 frames.

In conclusion, the mining phase can give better results and
is more efficient than directly using the output of the dynamic
segmentation for real videos. However, both methods are far
from usable in real time although the clustering step could
easily be improved by designing an optimized algorithm.

V. CONCLUSION AND FUTURE WORK

We have presented a novel tracking algorithm based on
clustered graph patterns calledTRAP. It is able to track
multiple objects in a video recorded by a moving camera. This
unsupervised algorithm does not need any a priori information
on the objects to track nor the manual selection of the objects
of interest. On the downsides, it cannot be used in a real
time context and it is dependent on some prior segmentation
of the video. Results on synthetic and real videos show that
the algorithm outperforms or is comparable to state-of-theart
trackers which necessitate to select the objects of interest in the
first frame. The efficiency of the algorithm could be greatly
improved by optimizing the clustering step and by using a
stream mining algorithm in the first step. The precision of
the tracking process could also be improved by incorporating
a lucas-kanade probabilistic detection of the objects in the
sequence of frames which could allow us to separate paths
of different objects which are currently merged in a single
pattern (e.g, the pattern at the bottom of Fig.1).
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