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Abstract—This paper shows how data mining and in partic-  frame to detect locations that are in agreement with thectbje
ular graph mining and clustering can help to tackle difficult model. If there is no agreement, the alternative hypothesis
tracking problems such as tracking possibly multiple objects  detected by scanning the frame that is the most similar to
in a video with a moving camera and without any contextual  the jmages patches stored in the model, is selected as the
information on the objects to track. Starting from different new location of the target. BotiLD and CT are real-time

segmentations of the video frames (dynamic and non dynamic . . . . ;
ones), we extract frequent subgraph patterns to create spat- ?rlglgkri';gms which need to identify a target before starting t

temporal patterns that may correspond to interesting objectsto

track. We then cluster the obtained spatio-temporal patterns o In thi Id like to sh h h mini
get longer and more robust tracks along the video. We compare n this paper, we would lixe 10 show how graph mining

our tracking method called TRAP to two state-of-the-art tracking ~ @nd clustering techniques can help to track, off-line, ipldt
ones and show on three synthetic and real videos that our method Objects in a video in the specific case in which both the object

is effective in this difficult context. and the background are moving and when no supervised infor-
mation about the objects to track is known in advance. Tagkli
such a difficult problem is done at a computational cost which
currently prevents the online use of our method. It can hewev
Many ongoing research works concerning Object trackindﬁ)e used to gather meaningful hlgh level semantic info_rmatip
in videos [1], [2] make strong assumptions about the objeects In large already recorded databases for example, for indexi
track (people, car, etc.) which can be modelled in advance, dPurposes. Our starting point is a segmentation (dynamiogr n
about the tracking context (stable background, object nmpvi Of _each frame of the video. We then create an attributed megio
in a single direction, stable lighting conditions, etc.)ger- ~ adjacency graph (RAG) from the segmentation of each frame.
form an efficient tracking. These methods rely on two stepsYVe thus obtain a sequence of graphs which evolve through
the object detection in the frame and the tracking procesdime. Our main assumption is that interesting objects in the
For detection, techniques are based on frame difference afideo can be tracked by following frequent subgraphs padter
background subtraction [3], optical flow (detection of theWwhich are connected in time and space (cafipdtio-temporal
relative motion between a static camera and the filmed at)ject patterng. To loosen the strong isomorphism constraint used in
[4] or background information on the objects to track (skinfrequent graph mining algorithm, we then allow our system to
color, shape etc.). For the tracking process, techniquesisto ~cluster the spatio-temporal patterns according to theicsiral
in predicting the next region (or contour) of interest usingSimilarities within a sequence of frames.
probabilistic or deterministic methods and then possilug a
another detection step.

I. INTRODUCTION AND RELATED WORK

The tracking methodsT(D and CT) presented at the
beginning of this introduction typically do not consider virg

TLD [5] and CT [6] are two recent examples of trackers objects in changing environments. When it is the case as in
by detection. InCT, the tracking from a frame to a frame [8], multiple cameras are used to tackle object occlusians o
t + 1 is achieved by first sampling positive samples aroundeatures instability using stereo vision. The setting take
the object location at timeé and negative samples away from [9] is close to the one we are interested in since they conside
the object and use both negative and positive samples toameras embedded in surveillance cars but they rely ongstron
build a Bayesian classifier. Then, locations in frame 1 background information (here GPS position) to perform an
around the position of the object at tinteare rated using effective tracking. Our method is also similar to [10] but
the classifier. The location with the highest score is setkct they do not use the topological information provided by the
as the new position in the frame+ 1. Image patches are subgraph patterns and they use a spatio-temporal MCMC
represented by a sparse feature vector obtained throudhman algorithm to sample the possible paths represented in our
projections of the image features which allow the algoritiom occurrences graph. While tackling the problems mentioned
efficiently handle changes in pose, illumination and scale aabove, this paper tries to overcome the drawbacks identified
well as partial occlusions. ThELD algorithm updates online [11] where the same kind of patterns are mined. The authors
a set of image patches (the model) representing the differeromputed a shortest path in some connected components calle
appearances of the target. At each time gtefhe bounding spatio-temporal paths created from the patterns to idethé
box of the target is tracked by a Lucas-Kanade tracker [7}elevant tracks. However, this suppose that the first anthte
while the algorithm performs a window search on the currenframe where the objects of interest appear can be identified (



run the shortest path algorithm) and also to identify thecisj

of interest in the first frame in order to limit the number of
possible output tracks. Our aim is to automatically group th
spatio-temporal patterns according to their spatial sirity
among overlapping frames (patterns that can be grouped to
track the same object). This grouping will allow us to avdid t 10 12
costly and somewhat arbitrary structural comparison betwe
patterns introduced in [11]. The same technique could adso b
used directly from a dynamic segmentation such as the ongig. 1. Example of an occurrence graph for a given pattern Riwbecurs
proposed by [12] where each connected regions (2D+t) can b different times in 6 frames of a given video.

seen as a spatio-temporal pattern.

After this introduction and presentation of the relatedkyor
we mention in Section Il, some important definitions from][11
about spatio-temporal patterns. In Section Ill, we define ou
clustering method to find relevant tracks from our patterns.
The experiments that compare our propo3&AP algorithm Fig. 2. Example of two overlapping (on 3 frames) spatio-temippatterns
to the TLD and CT trackers are presented in Section IV. We A and B
conclude and give some perspectives in Section V.

I1l.  TRACKING WITH PATTERNS
Il. MINING SPATIO-TEMPORAL PATTERNS A. Dissimilarity between spatio-temporal patterns

As stated in the introduction, the main assumption of this Each Spa[io-tempora| pattenm can be represented as a
paper is that interesting objects in the video can be traoked  trajectory p,, = {(@P,y?)|fP < i < fP} with fP and fP
line by following frequent subgraphs patterns, called ispat respectively the starting and ending frame jof For each
temporal patterns, which are connected in time and space. \gatio-temporal pattern, the coordinate€, y*) of the points
assume that a video can be represented as a dynamic plaggits trajectory are obtained by computing the barycentérs
graph. A dynamic plane graph is a sequence of plane graph occurrences in each framieFor example, in Figure 1, we
where each graph represent a frame of the video. Each noggould compute the barycenter of occurrendesnd?2 for the
is a region of a frame and is associated to spacial coordinatgecond spatio-temporal pattern. Since the temporal tblésh
(cf. details in Section IV). Fig. 3 presents a frame and ther allows spatio-temporal patterns to have gaps in the sequenc
corresponding plane graph. of occurrences, the coordinates of the points of the trajgct
in those frames are interpolated between the previous axtd ne

To mine the spatio-temporal patterns we use the D .
known points.

PLAGRAM_ST algorithm described in [11]. Due to space
limitations, we do not give a description of the algorithndan Let A and B be two patterns. Let, = max(f2, fZ) and
repeat the formal definitions in this paper. In typical sapyr  f. = min(f2, fF). The distance between two spatio-temporal
mining problems, where the input collection of graphs da#s n patterns is defined as:

represent a dynamic graph, the frequency fféqof a pattern
graphP is computed regardless of the fact that its occurrences
may be far apart w.r.t. time and/or space. We are interested i

if fe—/fs>0
occurrences of the same pattern that @oseto one another. d(A, B) = { dizj(Af,SB) % (2 — doy(A, B))
DYPLAGRAM_ST performs a depth first traversal of the elseco

search space of all possible graph patterns. Then for each /@A 2B )21 (yA—yP)?
pattern P, it constructs anoccurrences graphThe nodes wheredi,qj(A, B) = 34 Vi :;:_fﬁyf =
of the occurrences graph are the occurrences of a pattern
P in all frames, and the edges connect “close” occurrences _ fs—fet1

3 anddov(A, B) = S i85 a2 751

(with respect to a spatial threshalcand a temporal threshold
7). A spatio-temporal patterr5’ based onP is a connected
component of the occurrences graphiéfand the frequency
freq,,(S) of a spatio-temporal pattersiis the number of frame
in which it appears.

In words, if two patterns never belong to the same frames,
their distance is infinite. Otherwise, their distance is the
normalized (over the number of common frames) sum of the
Euclidean distances between the barycenters of the pattern

Given a frequency threshold,freq, a spatial threskhadshd  that appear in common frames. We added a penalty betiveen
a temporal threshold, DY PLAGRAM_ST mines efficiently all and2 to take into account the proportion of common frames
spatio-temporal patterns whose fregs above the threshold. compared to the span of the union of the two spatio-temporal
patterns. For example, in Figure 2, the distance between the

An example of an occurrence graph for a given pat@rn . patterns is(gfﬁﬁ) (2 - Sjﬂ)_

is given in Figure 1. This patterns ha2 occurrences in the
video. The occurrences 5 and8 are connected in space and
time, they form a spatio-temporal pattesn and freq,(pl) =

3. The9 occurrenced 1, 2},4,{6,7},9,{10,11}, 12 also form To cluster our spatio-temporal patterns without knowing
a spatio-temporal patterns with freq,,(p2) = 6. in advance the number of interesting clusters, we decided to

B. Clustering algorithm



use a simple hierarchical clustering algorithm [13] witfe th
distance function previously defined. The main problem & th
algorithm is the choice of the criterion to cut the hierarchy
of the dendogram without any information a priori about the
quality of the resulting clustering. After analyzing diféat
criteria, we decided to cut the hierarchy at the level of the
creation of the cluster with the highelfietime The lifetime

of a cluster corresponds to the difference between theasiityil

at which it has been formed and the similarity at which it is
merged with an other cluster. However, the lifetime crdari
tends to behave badly in the presence of outliers which are
fused at the top of the hierarchy and often have the maximum
lifetime (the hierarchy is thus cut at a high level with veeyf

-
clusters). To overcome this drawback, we decided to igriare t N
10% first levels of the hierarchy (note that there argusters . l ‘

at levels) before computing the lifetime.

4

C. Selection of the best clusters in the clustering

Since with our approach, a lot of the spatio-temporal
patterns of the background are not part of any precise ¢hjste
the optimal number of clusters is usually much higher than th
true number of main objects. Therefore, after having cut theig. 3. Example of frame and RAGs obtained from the synthetitea$
hierarchy, we still have to decide which clusters are thetmos{top), from the segmented real drone video (middle), and fleensegmented
interesting. We consider that longer (in terms of the numbefar video (bottom)
of covered frames) clusters are better. More precisely, ige fi
keep the longest cluster and the ones that do not differ from . . ' o
morFe)z than 18% of the length of the video from the Iongesttrled two types of segmentation. The first se_gmentatlom@ﬁta
ones. Within the clusters of this length, we select the ome (oIS done independently on each frame using the algorithm

randomly among the ones) with the highest number of Spatiopresented in [15]. This algorithm has three parameters for

temporal patterns and then the highest number of occursenceWh'Ch we use the default values. It favors the merging of kmal

This cluster is called théongestin the rest of this article. regions which may result in an unstable segmentation when
objects are getting close to or moving away from the camera.

To decide how many interesting objects should be trackedh order to prevent this behavior, we modified the code of this
in the video in a completely unsupervised manner (withou@lgorithm to make its second parameter independent from the
selecting them in the first frame), we could either assume thesize of the regions. Fig.3 shows examples of RAGs represent-
there is only one object or to find among the longest clustersng a frame of our three videos. The second segmentation is
the ones that are sufficiently far from each other. Howeverthe (dynamic) video segmentation algorithpresented in [12].
in this paper, we select for each video thdongest clusters, This algorithm outputs regions that are identified througtet
with n being the number of main objects in the video. We theni.e, it provides a correspondence between regions in difter
measure their precision and recall with respect to a grounframes.

truth. a) Synthetic videosThe two synthetic videos (cf. top
of Fig.3) differ only from the color of the objects. They show

IV.  EXPERIMENTS three identical objects (X-wings) that are moving in theedid
A. Datasets such that they may overlap or even get (partially) out of the

field of view. In the first video, the 3 X-wings are identical

To the best of our knowledge, there is no video benchmarkvhile in the second one they have different colors, theeefior
which contains diverse and multiple objects to track (mostoth cases the topology of the RAGs representing the videos
of the existing benchmarks focus on pedestrian tracking) iris the same, only the labels of their nodes are different. The
which the camera is also moving. Note that in these case$abels on the nodes of the RAG correspond to the discretized
our algorithm could also be used but may perform worse thamaverage color of the segmented region. Those videos have 721
the optimized dedicated ones. To assess the qualities of oframes in total and in average the RAGs are composed of 240.7
algorithm, we thus introduce our own dataset. We used 4odes with an average degree of 3.9.
videos for these experiments. The two first ones are syntheti
videos which allows us to avoid the possible segmentation . ; : . .
problems by keeping the true colored regions. The two last2" deal with scenes mvoIvmglseveraI.objects occludirgh ea
ones are real videos. The real videos are first segmenteaand thers and moving out of the field of view.

all of them we create a region adjacency graph (RAG) [14] for b) Real VideosThe first real video (cf. middle of Fig.3)

all the frames of the video. In the RAGs, the barycentersef this composed of 950 frames, each RAG has on average 194.5
different regions in a frame are the nodes of the graph, and an

edge exists between two nodes if the regions are adjacemtint  nitp://www.cs.brown.edespff/segment/
frame. As our RAGs greatly depend on the segmentation, we 2http://mww.videosegmentation.com

These videos were used to assess whether our approach




nodes with an average degree of 5.35. This video shows a a) Cluster choice: As explained in Section Ill, the
drone flying across a covered parking lot. This video is thechoice of the clusters that are used to track the objects of
most simple one but the segmentation still suffers from theanterest is an important problem. In the experiments, wé wil
illumination changes. The second real video (cf. bottom ofshow the results for théongestcluster (L in the tables) as
Fig.3) is made of 5619 frames, each RAG has on averagdefined in Section IIl but also the results for tBestcluster
207.5 nodes with an average degree of 5.5. This video is sh@B) in the hierarchy (we chose the best cluster for all pdesib
from a car while following another car (the main object). In cut of the clustering hierarchy). This best cluster is the on
this video the main object goes out of the field of view, itsfor which the Precision x Recall = 100 is the highest. Of
scale changes, the global illumination changes all the eime  course, these “best” results are just given to assess tlsépos

it is also longer than the other ones which allows us to tesimprovements for our algorithm since they cannot be used in
the efficiency of our approach. This video has been dividedn unsupervised setting. In some experiments, the twaierite
into 3 parts (carl000, car2000, car3000) which correspond tave use (cut with the lifetime and keep the longest cluster) ar
the 1000, 2000 and 3000 first frames of the car video. Thisiot always the best but we can the show that a very good
has been done since the tracking difficulty gradually ineesa cluster exists and could be found using different criteria.

along the video. 3) Parameters ofDYPLAGRAM_ST: The spatial threshold

For both videos, we use the same modified segmentation should be high enough depending on the motion of the
algorithm with standard parameters to segment the imagesbjects and the motion of the camera. This can be estimated
With these videos, we want to assess whether our approac the first frames of the video using optical flows. However,
can deal with changing appearances and with the segmantatisetting this to40 (pixels) for all experiments gave sufficiently
inaccuracies. good results. In general, giving a high value for this paramse

will increase the mining time but will not harm the results.
i i Similarly the time thresholdr is set for all videos to25
B. Experimental design frames (1 second of the video). Again, this may not be the
1) Different algorithms: best set of parameters especially for the car video whicheis t
most complex to deal with. The frequencies threshold (freq
e TLD (Track Learn Detect) is a tracking algorithm [5] and freq,) should be set after having found a workingand
that requires manual selection of the target. € to obtain a significant number of spatio-temporal patterns
(600 < #patterns < 2000). A too large number would also
e CT (Compressive Tracking) is a tracking algorithm [6] slow down the algorithm. By default freg freq,,. Note that
that also requires manual selection of the target.  freq controls the frequency of the patterns from which the
. . . . . io-temporal n n ner . However, a ver
e TRAP is our tracking algorithm which mines frequent ﬁ?gag c;r;e%tpt?wgsﬁgfée (fgr C§xar?1(|ealg,e n?o?etze?hanozg%e (,)fathee y
spatio-temporal patterns and clusters them. It use?ength of the video) means that the structure of the object

';he tsh|mple Ise%mentangntr?lgorl_thm Ipresgntedf In I[#S](and thus a pattern representing it) should not change at all
or the real video (an € orginal regions for the uring 20% of the frames which is not very reasonable for
synthetic ones). The value for the three parameters o

the algorithm {, freq, ande) are discussed bellow ost of the real videos that are recorded by amateurs. Thus,
» Teq, * we impose that freg is always bellow20% of the length (in
e TRAP + VS (Video Segmentation) uses the secondrames) of the video. If the number of patterns is still too
type of segmentation. big with this bound, we can increase freq to get inside the
#patterns bounds.
2) Precision and Recallin all the frames of all the videos
we have drawn a rectangle bounding box around the objects @. Results

interest. For thear video, the ground truth has been collected ) )
every 5 frames. 1) Tracking quality:

For the clusters obtained with our approach fhecision a) Synthetic videosin Fig.4 we can see that CT and
corresponds to the proportion of occurrences of the clusgr 1D do not give good results on the synthetic video especiall

have all their nodes in the bounding box of the ground truth (awhen the3 planes are identical. Indeed, the initial bounding

the corresponding frame). Thecall of a cluster is the number POX given in the ground truth includes a lot of background
of frames in which at least one occurrence of this cluster iP€tWeen the wings of the planes which corrupts the appearanc

this frame has all its nodes in the bounding box of the groundodé! learned. Besides, there are occlusions between the
truth. objects and their rapid change in direction make them hard to

track. Our approach gives good resuliz (90 P/R for Anim1l
TLD and CT are given the ground truth of the first frame and 100/99 for Anim2) on the first plane which is the most
of each video as input. Both algorithms return a sequence dftable. However there is no really good cluster (where the
bounding boxes representing the track of the followed dbjec recall and the precision would be both above 90%) in all the
The precision is the area the bounding boxes of the trackhierarchy representing the second and the third objectthHeor
have in common with the bounding boxes of the ground truttsecond object, the best cluster g% precision and38%
divided by the area of the bounding boxes of the track. Theecall but this cluster exists only when cutting the hiengrat
recall of the algorithm is the number of frames in which the 11 clusters whereas our lifetime criteria cuts the hierarchy a
center of the bounding box of the track is inside the boundin@®52 clusters and thus does not allow us to find the best one.
box of the ground truth. For the third object, the best cluster was oBbi frames long



Anim 1: Identical Objects Animation 2: # Objects
Obj 1 Obj 2 Obj 3 Obj1 Obj2 Obj3
P(%) | R(%) || P(%) | R(%) || P(%) | R(%) ||| P(%) | R(%) || P(%) | R(%) || P(%) | R(%)
TLD 22 14 90 17 0 0 14 13 36 5 0 0
CT 39 52 0 0 0 0 68 96 0 0 0 0
L] 97 90 41 99 21 63 100 99 91 99 8 12
B| 99 90 92 88 87 49 100 99 91 99 72 92

T

Fig. 4. Precision and Recall of the CT, TLD and TRAP (T) algoris using the standard color segmentation, for the longgsar{tl the best (B) clusters.

PreckinRacal
PrecisionRecall
Preckinfscall

I

o a
0 50 1o 180 20 250 0 250 <00 450 a 50 100 150 200 280 a0 360 400 450 0 100 200 0 400 Lea)
Humber of Clsiers Humtsr of Clusters Number of Clusters

Fig. 5. Precision an recall results of the best and longesttels output by TRAP for the object 1 (top) and object 3 (ne@jidif animation 2 and for the car
(bottom) for carl1000. The vertical red line is the lifetime.cut

Drone Car 1000 Car 2000 Car 3000 Car1000]] Car2000] Car3000
P(%) | R(%) || P(%) | R(%) || P(%) | R(%) || P(%) | R(%) PITR|P|R| PR
TLD 63 88 65 68 55 46 55 31 TRAP L[90[99(96] 73] 7 |83
CT 84 99 9 14 8 8 5 5 B|90| 99| 93| 87 || 92| 61
T L 81 99 92 83 10 98 4 52 VS L|190| 99 || 93| 87 7 | 84
B 97 99 90 98 90 51 90 34 +T B|92| 98| 88| 91 || 22| 39
L| 24 | 95 92 90 5 82 5 65 ) .
VS+T B| 95 94 93 98 85 54 85 36 Fig. 7. Percentage of Precision (P) and Recall (R) of thedeh@.) and the

best (B) clusters obtained for the car video when increaBieg,, to 75 for
Fig. 6. Percentage of Precision (P) and Recall (R) of the €D @&nd TRAP the TRAP algorithm .

algorithms using the standard color segmentation, the TRAPalgorithm

using the video segmentation (VS+T), for the longest (L) agst B) clusters.

more difficult tracking problem. TLD follows the car until

so it was not selected as the longest one. Because the thifge frame 1305, losing it occasionally, but never with a good
object goes almost completely out of the field of view for 3 toprecision. CT never succeeds in following the car. For both

4 seconds several times in the video, the clusters repiegent types of segmentation, the longest clusters returned byPrRA
this object were easily split. follows the car until the frame 1200 and then loses it. At

) ) this point of the video the car is small and the segmentation

The results for the Anim 2 show that the color differencesegmented it in only one region. Since occurrences of freique
between the three objects usually helps all the tracke®(®X spatio-temporal patterns have at least 3 nodes (1 facejsthis
TLD). For our approaches, the longest clusters at the highesmposed by the PPLAGRAM_ST algorithm), there is none
lifetime were the best one in the hierarchy as can been segfatching the car in this part of the video. The best pattesns f
in Fig. 5 (left). The difference between the objects was disthe first 2000 and 3000 frames all end at this frame, and, since
criminative enough to be able to follow the third object wéth  there is no other long pattern matching the car, the longest
best cluster withr2% precision and2% recall. Unfortunately  ¢justers has a bad quality. As shown in tab 7, augmenting
this good cluster was at the 14th level of the hierarchy whilghe gap allows us to skip the frames of the video where the
it was cut at the 70th level as can be seen in Fig.5 (middle)ear is too small which produces better results. However, the
In this later case the best cluster's size diminishes ardhad g|gorithm faces the same situation for a longer time at the
50th level of the hierarchy which causes it not to be highlyframe 2300. This shows that if the gap thresheldan allow
ranked in comparison of bigger clusters that do not match thgs to deal with some situations where the object is hard to
third object. detect, it would be better to introduce a mechanism spettfica

b) Real videos:TLD and CT both track the drone for designed to deal with long term occlusions. Figure 5 shows
almost all the video, the former with 63/88% (P/R) and thethat on the first 1000 frames, the I_ongest cluster returned by
later with 84/99% (P/R) (see Fig.6). TLD loses it for some 1 RAP is alwgys the best one until the_lovx_/est levels of the
frames which results in a lower recall. Due to the large sizd"€rarchy. This shows that the length criterion can be a very
of the output bounding box in some frames, the precision jgood criteria to flnd_the best cluster when sufficient pattern
lower than for our approaches for both algorithms. TRAP alsgéPresenting the objects can be extracted and when no long
follows the drone with 99% recall, but the longest cluster isdisappearance of the targets splits the clusters.
less precise than the best clustgt% vs 97%). Note that just
reducing the freg to 10 in this case would allow us find the ; e .
best cluster. Clustering the spatio-temporal patternsaetad here) a different way of building the spatio-temporal pate

from the video segmentation (VS+T) also produces some goo'dsgng ;[)heﬂ;den'tglcanon of tr;et.reg?n?hacross the yldeos pro
clusters but not at the level the lifetime cuts the hierarchy vided by he video segmentation. In this case, regions are re
grouped into the same spatio-temporal pattern if they hawe t

From Fig.6, we can confirm that the car video is a muchsame id. Regions can therefore be seen as occurrences of the

We also experimented (for lack of space, it is not reported



spatio-temporal patterns. We used the same clusteringosheth V. CONCLUSION AND FUTURE WORK

on those spatio-temporal patterns and measured theit agchl We have presented a novel tracking aloorithm based on
precision. Overall this method produced a lot more spatio- P 9 alg

temporal patterns which greatly increased the computaition clustered graph patterns callelRAP It is able to track
time required for the clustering and resulted in clusteet th Multiple objects in a video recorded by a moving camera. This
had similar recall and precision as TRAP unsupervised algorithm does not need any a priori inforonati

on the objects to track nor the manual selection of the abject

In conclusion, our unsupervised methods give comparabl€f interest. On the downsides, it cannot be used in a real
(and most of the time better) results than the state-ofthe- time context and it is dependent on some prior segmentation
trackers TDL and CT. However, we do not need to selecef the video. Results on synthetic and real videos show that
the objects of interests in the first frame of the video whichthe algorithm outperforms or is comparable to state-ofétte
makes this method usable in practice to treat batches diheff- trackers which necessitate to select the objects of irttaveise
recorded videos such as Youtube ones. first frame. The efﬁciency of the algorithm could be gl’eaﬂy
improved by optimizing the clustering step and by using a
stream mining algorithm in the first step. The precision of
the tracking process could also be improved by incorpagatin
a lucas-kanade probabilistic detection of the objects m th
sequence of frames which could allow us to separate paths
of different objects which are currently merged in a single

Fig. 8.
1000 frames of the car video

Occurrences of frequent patterns in the longesteiusr the first

(1]

Exec Time (s)
Mine | Clust | Total | * P&l 121
Anmi | TRAP | 11 | 1042 | 1053 1708 5
Anim2 | TRAP 9 | 1180 | 1189 1667 (3]
Drone | TRAP |28 | 952 | 980 | 1421
VS+TRAP| 9 | 722 | 731 | 1349
TRAP | 109 | 231 | 340 | 575 [4]
Carl000| yg TRAP | 212 | 204 | 416 | 520
TRAP | 153 | 1005 | 1158 | 1046
Car2000| g TRAP | 153 | 954 | 1107| 985
Car3000| _ TRAP | 153 | 1758 1911 | 1232 (5]
VS+TRAP | 153 | 1081 | 2134 | 1237

(6]

Fig. 9. Execution time and number of patterns output by the TRAP

[7]

2) Efficiency: For the synthetic videos, when keeping the
default parameters for and ¢ we fell into the number
of patterns problem mentioned in Section IV-B3. For both (8]
animations, freg was set to 150 but freq was set 260 for
the first animation and t@20 for the second one. As can be g
seen in the Fig.9 it takes more than 15 minutes to process 1705
patterns in both cases. For the video segmentation (VS)awe c
not control the number of output patterns and for the simpld10]
animation video, we get around 100 of them which made
the clustering process very fast. Because of many changes in
appearance for the real videos, there were less frequédntipst
so we could keep the default setting for all parameters (gxce
freq,, as discussed in Section IV-B3). For TRAP, we used;
freq,, = 15 for the drone and freg = 25 for the car, and we
set it to35 for both videos when mining the more stable videoyi3]
segmentation. We mined th#00 frames of the car video at
once and then restricted the occurrence graph to the fir&t, 100[14]
2000, and 3000 frames, this explains why the time results for
the mining step of this video are constant. This is also why
the number of patterns can be as low as 500 when processi
only the first 1000 frames.

In conclusion, the mining phase can give better results and
is more efficient than directly using the output of the dynami
segmentation for real videos. However, both methods are far
from usable in real time although the clustering step could
easily be improved by designing an optimized algorithm.

pattern (e.g, the pattern at the bottom of Fig.1).
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