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We prove a Julia-Wolff-Carathédory theorem on angular derivatives of infinitesimal generators of one-parameter semigroups of holomorphic self-maps of the unit ball B n ⊂ C n , starting from results recently obtained by Bracci and Shoikhet.

Introduction

The classical Fatou theorem says that a bounded holomorphic function f defined on the unit disk ∆ ⊂ C admits non-tangential limit at almost every point of ∂∆, but it does not say anything about the behavior of f (ζ) as ζ approaches a specific point σ of the boundary. Of course, to be able to say something in this case one needs some hypotheses on f . For instance, one can assume that, in a very weak sense, f (ζ) approaches the boundary of ∆ at least as fast as ζ. It turns out that under this condition, not only f , but even its derivative admits non-tangential limit. This is the content of the classical Julia-Wolff-Carathéodory theorem: for some σ ∈ ∂∆. Then f has non-tangential limit τ ∈ ∂∆ at σ, for all ζ ∈ ∆ one has

|τ -f (ζ)| 2 1 -|f (ζ)| 2 ≤ α |σ -ζ| 2 1 -|ζ| 2 , (0.2)
and furthermore both the incremental ratio τ -f (ζ) (σ -ζ) and the derivative f ′ (ζ) have nontangential limit αστ at σ.

This results from the work of several authors: Julia [START_REF] Julia | Mémoire sur l'itération des fonctions rationnelles[END_REF][START_REF] Julia | Extension nouvelle d'un lemme de Schwarz[END_REF], Wolff [Wo], Carathéodory [C], Landau and Valiron [L-V], R. Nevanlinna [N] and others (see, e.g., [B] and [A1] for proofs, history and applications).

As already noticed by Korányi and Stein ([Ko], [K-S], [St]) when they extended Fatou's theorem to several complex variables, for domains in C n the notion of non-tangential limit is not the right one to consider. Actually, it turns out that for generalizing the Julia-Wolff-Carathéodory theorem from the unit disk to the unit ball B n ⊂ C n one needs two different notions of limit at the boundary, both stronger than non-tangential limit.

A function f : B n → C has non-tangential limit L ∈ C at a boundary point p ∈ ∂B n if f (z) → L as z → p staying inside cones with vertex at p; a stronger notion of limit can be obtained by using approach regions larger than cones.

In the unit disk, as approach regions for the non-tangential limit one can use Stolz regions, since they are angle-shaped nearby the vertex. In the unit ball B n ⊂ C n the natural generalization of a Stolz region is the Korányi region K(p, M ) of vertex p ∈ ∂B n and amplitude M > 1 given by

K(p, M ) = z ∈ B n |1 -z, p | 1 -z < M ,
where • denotes the euclidean norm and • , • the canonical hermitian product. We shall say that a function f : B n → C has K-limit (or admissible limit) L ∈ C at p ∈ ∂B n , and we shall write K-lim z→p f (z) = L, if f (z) → L as z → p staying inside any Korányi region K(σ, M ). Since a Korányi region K(p, M ) approaches the boundary non-tangentially along the normal direction at p but tangentially along the complex tangential directions at p, it turns out that having K-limit is stronger than having non-tangential limit. However, the best generalization of Julia's lemma to B n is the following result (proved by Hervé [H] in terms of non-tangential limits and by Rudin [R] in general):

Theorem 0.2: Let f : B n → B m be a holomorphic map such that lim inf z→p 1 -f (z) 1 -z = α < +∞ ,
for some p ∈ ∂B n . Then f admits K-limit q ∈ ∂B m at p, and furthermore for all z ∈ B n one has

|1 -f (z), q | 2 1 -f (z) 2 ≤ α |1 -z, p | 2 1 -z 2 .
To obtain a complete generalization of the Julia-Wolff-Carathéodory for B n one needs a different notion of limit, still stronger than non-tangential limit, but weaker than K-limit.

A crucial one-variable result relating limits along curves and non-tangential limits is Lindelöf 's theorem. Given σ ∈ ∂∆, a σ-curve is a continuous curve γ: [0, 1) → ∆ such that γ(t) → σ as t → 1 -. Then Lindelöf [Li] proved that if a bounded holomorphic function f : ∆ → C admits limit L ∈ C along a given σ-curve then it admits limit L along all non-tangential σ-curves -and thus it has non-tangential limit L at σ.

Trying to generalize this theorem to several complex variables, Čirka [ Č] realized that for a bounded holomorphic function the existence of the limit along a (suitable) p-curve (where p ∈ ∂B n ) implies not only the existence of the non-tangential limit, but also the existence of the limit along any curve belonging to a larger class of curves, including some tangential ones -but it does not in general imply the existence of the K-limit. To describe the version (due to Rudin [R]) of Čirka's result we shall need in this paper, let us introduce a bit of terminology.

Let p ∈ ∂B n . As before, a p-curve is a continuous curve γ:

[0, 1) → B n such that γ(t) → p as t → 1 -. A p-curve is special if lim t→1 - γ(t) -γ(t), p p 2 1 -| γ(t), p | 2 = 0 ; (0.3) and, given M > 1, it is M -restricted if |1 -γ(t), p | 1 -| γ(t), p | < M
for all t ∈ [0, 1). We also say that γ is restricted if it is M -restricted for some M > 1. In other words, γ is restricted if and only if t → γ(t), p goes to 1 non-tangentially in ∆. It is not difficult to see that non-tangential curves are special and restricted; on the other hand, a special restricted curve approaches the boundary non-tangentially along the normal direction, but it can approach the boundary tangentially along complex tangential directions. Furthermore, a special M -restricted p-curve is eventually contained in any K(p, M ′ ) with M ′ > M , and conversely a special p-curve eventually contained in K(p, M ) is M -restricted. However, K(p, M ) can contain p-curves that are restricted but not special: for these curves the limit in (0.3) might be a strictly positive number.

With these definitions in place, we shall say that a function f : B n → C has restricted K-limit (or hypoadmissible limit) L ∈ C at p ∈ ∂B n , and we shall write

K ′ -lim z→p f (z) = L, if f γ(t) → L
as t → 1 -for any special restricted p-curve γ: [0, 1) → B n . It is clear that the existence of the K-limit implies the existence of the restricted K-limit, that in turns implies the existence of the non-tangential limit; but none of these implications can be reversed (see, e.g., [R] for examples in the ball).

Finally, we say that a function f :

B n → C is K-bounded at p ∈ ∂B n if it is bounded in any Korányi region K(p, M )
, where the bound can depend on M > 1. Then the version of Čirka's generalization of Lindelöf's theorem we shall need is the following:

Theorem 0.3: (Rudin [R]) Let f : B n → C be a holomorphic function K-bounded at p ∈ ∂B n .
Assume there is a special restricted p-curve γ o : [0, 1) → B n such that f γ o (t) → L ∈ C as t → 1 -. Then f has restricted K-limit L at p.

We can now deal with the generalization of the Julia-Wolff-Carathéodory theorem to several complex variables. With respect to the one-dimensional case there is an obvious difference: instead of only one derivative we have to consider a whole (Jacobian) matrix of them, and there is no reason they should all behave in the same way. And indeed they do not, as shown in Rudin's version of the Julia-Wolff-Carathéodory theorem for the unit ball:

Theorem 0.4: (Rudin [R]) Let f : B n → B m be a holomorphic map such that lim inf z→p 1 -f (z) 1 -z = α < +∞ ,
for some p ∈ ∂B n . Then f admits K-limit q ∈ ∂B m at p. Furthermore, if we set f q (z) = f (z), p q and denote by df z the differential of f at z, we have:

(i) the function 1 -f (z), q (1 -z, p
) is K-bounded and has restricted K-limit α at p; (ii) the map (f (z) -f q (z))/(1 -z, p ) 1/2 is K-bounded and has restricted K-limit O at p; (iii) the function df z (p), q is K-bounded and has restricted K-limit α at p; (iv) the map (1 -z, p ) 1/2 d(f -f q ) z (p) is K-bounded and has restricted K-limit O at p; (v) if v is any vector orthogonal to p, the function df z (v), q (1 -z, p ) 1/2 is K-bounded and has restricted K-limit 0 at p; (vi) if v is any vector orthogonal to p, the map d(f -f q ) z (v) is K-bounded at p.

In the last twenty years this theorem (as well as Theorems 0.2 and 0.3) has been extended to domains much more general than the unit ball: for instance, strongly pseudoconvex domains, convex domains of finite type, and polydisks (see, e.g., [A1], [A2], [A3], [A5], [AT], [A6], [AMY] and references therein). But in this paper we are interested in a different kind of generalization, that we are now going to describe.

Let Hol(B n , B n ) denote the space of holomorphic self-maps of B n , endowed with the usual compact-open topology. A one-parameter semigroup of holomorphic self-maps of B n is a continuous semigroup homomorphism Φ: R + → Hol(B n , B n ). In other words, writing ϕ t instead of Φ(t), we have ϕ 0 = id B n , the map t → ϕ t is continuous, and the semigroup property ϕ t • ϕ s = ϕ t+s holds (see, e.g., [A1], [START_REF] Reich | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces[END_REF] or [S] for an introduction to the theory of one-parameter semigroups of holomorphic maps).

One-parameter semigroups can be seen as the flow of a vector field (see, e.g., [A4]). Indeed, given a one-parameter semigroup Φ, it is possible to prove that it exists a holomorphic map G: B n → C n , the infinitesimal generator of the semigroup, such that

∂Φ ∂t = G • Φ . (0.4)
The infinitesimal generator can be obtained by the following formula:

G(z) = lim t→0 + ϕ t (z) -z t . (0.5)
Remark 0.5: In some papers (e.g., in [ERS] and [START_REF] Reich | Semigroups and generators on convex domains with the hyperbolic metric[END_REF]), the infinitesimal generator is defined as the solution of the equation

∂Φ ∂t + G • Φ = O ,
that is with a change of sign with respect to our definition. This should be kept in mind when reading the literature on this subject.

Somewhat surprisingly, in 2008 Elin, Reich and Shoikhet [ERS] discovered a Julia's lemma for infinitesimal generators, just assuming that the radial limit of the generator at a point p ∈ ∂B n vanishes (roughly speaking, this means that p is a boundary fixed point for the associated semigroup):

Theorem 0.6: ([ERS, Theorem p. 403]) Let G: B n → C n be the infinitesimal generator on B n of the one-parameter semigroup Φ = {ϕ t }, and let p ∈ ∂B n be such that

lim t→1 -G(tp) = O . (0.6)
Then the following assertions are equivalent:

(I) we have

α = lim inf t→1 -Re G(tp), p t -1 < +∞ ;
(II) we have

β = 2 sup z∈B n Re G(z), z 1 -z 2 - G(z), p 1 -z, p < +∞ ;
(III) there exists γ ∈ R such that for all z ∈ B n we have

|1 -ϕ t (z), p | 2 1 -ϕ t (z) 2 ≤ e γt |1 -z, p | 2 1 -z 2 .
Furthermore, if any of these assertions holds then α = β = inf γ and we also have

lim t→1 - G(tp), p t -1 = β . (0.7)
If (0.6) and any (and hence all) of the equivalent conditions (I)-(III) holds we say that p ∈ ∂B n is a boundary regular null point of G with dilation β ∈ R.

This result strongly suggests that one should try and prove a Julia-Wolff-Carathéodory theorem for infinitesimal generators along the line of Rudin's Theorem 0.4. This has been partially achieved by Bracci and Shoikhet [BS], who proved the following Theorem 0.7: ( [BS]) Let G: B n → C n be an infinitesimal generator on B n of a one-parameter semigroup, and let p ∈ ∂B n . Assume that

G(z), p z, p -1 is K-bounded at p (0.8) and G(z) -G(z), p p ( z, p -1) 1/2 is K-bounded at p. (0.9)
Then p is a boundary regular null point for G. Furthermore, if β is the dilation of G at p then (i) the function G(z), p ( z, p -1) (is K-bounded and) has restricted K-limit β at p;

(ii) if v is a vector orthogonal to p, the function G(z), v /( z, p -1) 1/2 is K-bounded at p; (iii) the function dG z (p), p is K-bounded and has restricted K-limit β at p; (iv) if v is a vector orthogonal to p, the function ( z, p -1) 1/2 dG z (p), v is K-bounded at p; (v) if v is a vector orthogonal to p, the function dG z (v), p ( z, p -1) 1/2 is K-bounded at p. (vi) if v 1 and v 2 are vectors orthogonal to p the function dG z (v 1 ), v 2 is K-bounded at p.
Remark 0.8: In the context of holomorphic maps, conditions (0.8) and (0.9) are a consequence of (the equivalent of) condition (I) in Theorem 0.6, and indeed they appear as part of Theorem 0.4.(i) and (ii); however, the proof in that setting uses in an essential way the fact that there we are dealing with holomorphic self-maps of the ball. On the other hand, in our context, (0.9) is not a consequence of Theorem 0.6.(I), as Example 1.2 shows, and (0.8) too seems to be stronger than Theorem 0.6.(I); see also similar comments in [START_REF] Bracci | Boundary behavior of infinitesimal generators in the unit ball[END_REF]Section 4.1]. Thus we have to assume (0.8) and (0.9) as separate hypotheses. Furthermore, Example 1.2 also shows that the exponent 1/2 might not necessarily be the right one to consider in the setting of infinitesimal generators.

Remark 0.9: The assertions in Theorem 0.7.(i), (iii) and (v) follow just assuming (0.8) and that G(tp) → O as t → 1 -(see [START_REF] Bracci | Boundary behavior of infinitesimal generators in the unit ball[END_REF]Proposition 4.1]).

Remark 0.10: The assertions in Theorem 0.7 (and in Theorem 0.12 below) have been numbered so as to reflect the similarities with the assertions in Theorem 0.4. To see this, first of all notice that a boundary regular null point of G is a boundary fixed point of the associated semigroup {ϕ t }. So in any comparison we must take (m = n and) q = p in Theorem 0.4; in particular, the analogies between assertions (iii) and (v) in the two statements are obvious. Furthermore we can write 1

-ϕ t (z), p 1 -z, p = ϕ t (z) -p, p z, p -1 = ϕ t (z) -z, p z, p -1 + 1 ,
and thus recalling (0.5) it is clear that Theorem 0.7.(i) is the analogue of Theorem 0.4.(i). Moreover, if {v 2 , . . . , v n } is an orthornormal basis of the vector space orthogonal to p we can write

G(z) -G(z), p p = n j=2 G(z), v j v j ; therefore d(G -G, p p) z (•) = n j=2 dG z (•), v j v j
and the analogies between Theorem 0.4.(ii), (iv) and (vi) and the corresponding statements in Theorem 0.7 become evident.

What is missing in Theorem 0.7 to obtain a complete analogue of Theorem 0.4 is statements about restricted K-limits in cases (ii), (iv) and (v); the aim of this paper is exactly to provide those statements. It turns out that there is an obstruction, parallel to the one telling apart K-limits and restricted K-limits: as better described in Section 1, the curves one would like to use for obtaining the exponent 1/2 in the statements are restricted but not special, in the sense that the limit in (0.3) is a strictly positive (though finite) number. We are thus led to consider exponents γ < 1/2: this is not just a technical problem, but an inevitable feature of the theory, and in this way we actually widen the applicability of our results, as Example 1.2 shows.

Our first main theorem then is:

Theorem 0.11: Let G: B n → C n be an infinitesimal generator on B n of a one-parameter semigroup, and let p ∈ ∂B n . Assume that

G(z), p z, p -1 and G(z) -G(z), p p ( z, p -1) γ are K-bounded at p for some 0 < γ < 1/2. Then p ∈ ∂B n is a boundary regular null point for G.
Furthermore, if β is the dilation of G at p then: (i) the function G(z), p ( z, p -1) (is K-bounded and) has restricted K-limit β at p; (ii) if v is a vector orthogonal to p, the function G(z), v /( z, p -1) γ is K-bounded and has restricted K-limit 0 at p; (iii) the function dG z (p), p is K-bounded and has restricted K-limit β at p; (iv) if v is a vector orthogonal to p, the function ( z, p -1) 1-γ dG z (p), v is K-bounded and has restricted K-limit 0 at p; (v) if v is a vector orthogonal to p, the function dG z (v), p ( z, p -1) γ is K-bounded and has restricted K-limit 0 at p. (vi) if v 1 and v 2 are vectors orthogonal to p the function ( z, p -1) 1/2-γ dG z (v 1 ), v 2 is K-bounded at p.

An exact analogue of Theorem 0.4 would be with γ = 1/2; we can obtain such a statement by assuming a slightly stronger hypothesis on the infinitesimal generator. Under the assumptions of Theorem 0.7 we know that G σ(t) , p σ(t), p -1 = β + o(1) (0.10) as t → 1 -for any special restricted p-curve σ: [0, 1) → B n . Following ideas introduced in [ESY], [EKRS] and [EJ] in the context of the unit disk, we shall say that p is a Hölder boundary null point

if there is α > 0 such that G σ(t) , p σ(t), p -1 = β + o (1 -t) α (0.11)
for any special restricted p-curve σ: [0, 1) → B n such that σ(t), p ≡ t. Then our second main theorem is:

Theorem 0.12: Let G: B n → C n be an infinitesimal generator on B n of a one-parameter semigroup, and let p ∈ ∂B n . Assume that

G(z), p z, p -1 and G(z) -G(z), p p ( z, p -1) 1/2
are K-bounded at p, and that p is a Hölder boundary null point. Then the statement of Theorem 0.11 holds with γ = 1/2.

We end this paper giving examples of infinitesimal generators with a Hölder boundary null point and satisfying the hypotheses of Theorem 0.12.

Proofs

This section is devoted to the proofs of Theorem 0.11 and Theorem 0.12.

Proof of Theorem 0.11. Our hypotheses ensure that lim t→1 -G(tp) = O and therefore, thanks to Theorem 0.6 we have that p is a boundary regular null point for G. Let β ∈ R be the dilation of G at p.

(i) This follows immediately from our hypotheses, thanks to Theorems 0.3 and 0.6.

(ii) Given a vector v orthogonal to p, the K-boundedness of the function G(z), v /( z, p -1) γ follows immediately from that of G(z) -G(z), p p /( z, p -1) γ . Analogously, to prove that the restricted K-limit at p is zero, it suffices to prove

K ′ -lim z→p G(z) -G(z), p p ( z, p -1) γ = 0 . (1.1)
Without loss of generality, we can assume p = e 1 , and we write z = (z 1 , z ′ ) with z ′ = (z 2 , . . . , z n ) for points in C n . In particular, we can replace G(z) -G(z), p p by G(z) ′ = (G 2 (z), . . . , G n (z)) in the statement we would like to prove, and by Theorem 0.3 to get the assertion it suffices to show that lim

t→1 - G j (te 1 ) (t -1) γ = 0 (1.2)
for all j = 2, . . . , n.

Since G is an infinitesimal generator with boundary regular null point e 1 having dilation

β ∈ R, Theorem 0.6 implies that Re G(z), z 1 -z 2 - G 1 (z) 1 -z 1 ≤ β 2 (1.3)
for any z ∈ B n . Given j ∈ {2, . . . , n}, fix 0 < ε < 1 and θ ∈ R; for t ∈ (0, 1), set

z t = te 1 + e -iθ ε(1 -t) 1-γ e j ∈ B n .
In particular, t → z t is a special restricted e 1 -curve, and we have

1 -z t 2 = (1 -t)(1 + t -ε 2 (1 -t) 1-2γ ) . Now, (1.3) evaluated in z t becomes Re tG 1 (z t ) + e iθ ε(1 -t) 1-γ G j (z t ) 1 -z t 2 - G 1 (z t ) 1 -z t , e 1 ≤ β 2 . Therefore Re e iθ ε(1 -t) 1-γ G j (z t ) 1 -z t 2 ≤ β 2 + Re G 1 (z t ) 1 -z t , e 1 -t Re G 1 (z t ) 1 -z t 2 = β 2 + Re G 1 (z t ) 1 -z t , e 1 1 - t(1 -z t , e 1 ) 1 -z t 2 = β 2 + Re G 1 (z t ) 1 -z t , e 1 1 - t 1 + t -ε 2 (1 -t) 1-2γ . Furthermore Re e iθ ε(1 -t) 1-γ G j (z t ) 1 -z t 2 = ε(1 -t) 1-γ (1 -z t , e 1 ) γ 1 -z t 2 Re[e iθ G j (z t )] (1 -z t , e 1 ) γ = ε 1 + t -ε 2 (1 -t) 1-2γ
Re[e iθ G j (z t )] (1 -z t , e 1 ) γ .

Recalling Theorem 0.7, and in particular (0.10), we get

Re[e iθ G j (z t )] (1 -z t , e 1 ) γ ≤ β 2 + Re G 1 (z t ) 1 -z t , e 1 1 - t 1 + t -ε 2 (1 -t) 1-2γ 1 + t -ε 2 (1 -t) 1-2γ ε = β 2 • 1 + t -ε 2 (1 -t) 1-2γ ε + Re G 1 (z t ) 1 -z t , e 1 1 + t -ε 2 (1 -t) 1-2γ ε - t ε = β 2 • 1 + t -ε 2 (1 -t) 1-2γ ε + -β + o(1) 1 -ε 2 (1 -t) 1-2γ ε = β 2 ε 2 (1 -t) 1-2γ + t -1 ε + o(1) . Letting t → 1 -we obtain lim sup t→1 - Re[e iθ G j (z t )]
(1 -z t , e 1 ) γ ≤ 0 for all ε > 0 and θ ∈ R. Now letting ε → 0 + we find lim sup

t→1 - Re[e iθ G j (te 1 )] (1 -t) γ ≤ 0
for all θ ∈ R, and this is possible if and only if lim

t→1 - G j (te 1 ) (1 -t) γ = 0 ,
and (1.2) follows.

(iii) The proof is analogous to the one given in [BS]; we recall it here for the sake of completeness.

Without loss of generality, we can assume p = e 1 . Let M ′ > M > 1 and set δ := 1 3 ( 1 M -1 M ′ ). Thanks to [START_REF] Rudin | Function theory in the unit ball of C n[END_REF]Lemma 8.5.5], for any z ∈ K(e 1 , M ) and (λ,

u ′ ) ∈ C × C n-1 with |λ| ≤ δ|z 1 -1| and u ′ ≤ δ|z 1 -1| 1/2 , we have (z 1 + λ, z ′ + u ′ ) ∈ K(e 1 , M ′ ).
Now, fix z ∈ K(e 1 , M ) and let r = r(z) := δ|z 1 -1|. By Cauchy's formula, we have

dG z (e 1 ), e 1 = 1 2πi |ζ|=r G(z 1 + ζ, z ′ ), e 1 ζ 2 dζ = 1 2π π -π G(z 1 + re iθ , z ′ ), e 1 z 1 + re iθ -1 z 1 + re iθ -1 re iθ dθ .
The first factor in the integral is bounded because (z 1 + re iθ , z ′ ) ∈ K(e 1 , M ′ ); furthermore, we also have |(z 1 + re iθ -1)/re iθ | ≤ 1 + 1/δ, and thus we are done.

To prove that the restricted K-limit at p is β, by Theorem 0.3 it suffices to prove that lim t→1 -dG te 1 (e 1 ), e 1 = β.

Thanks to [START_REF] Bracci | Pluripotential theory, semigroups and boundary behavior of infinitesimal generators in strongly convex domains[END_REF]Theorem 0.4], we have that lim t→1 -d dt (G 1 (te 1 )) = β, and then we are done, because d dt (G 1 (te 1 )) = dG te 1 (e 1 ), e 1 . (iv) Without loss of generality we can assume p = e 1 and v = e 2 , so that the quotient we would like to study is

(z 1 -1) 1-γ ∂G 2 ∂z 1 (z) .
The proof of the K-boundedness is again an application of the Cauchy formula. As before, let M ′ > M > 1 and set δ :

= 1 3 ( 1 M -1 M ′ ).
Thanks to [START_REF] Rudin | Function theory in the unit ball of C n[END_REF]Lemma 8.5.5], for any z ∈ K(e 1 , M ) and (λ, u ′ ) ∈ C × C n-1 with |λ| ≤ δ|z 1 -1| and u ′ ≤ δ|z 1 -1| 1/2 , we have (z 1 + λ, z ′ + u ′ ) ∈ K(e 1 , M ′ ). Now, fix z ∈ K(e 1 , M ) and let r = r(z) := δ|z 1 -1|. By Cauchy's formula, we have

|z 1 -1| 1-γ ∂G 2 ∂z 1 (z) = |z 1 -1| 1-γ 2πi |ζ|=r G 2 (z 1 + ζ, z ′ ) ζ 2 dζ = 1 2πδ π -π G 2 (z 1 + re iθ , z ′ ) |z 1 + re iθ -1| γ z 1 + re iθ -1 z 1 -1 γ |z 1 -1| |z 1 -1|e iθ dθ .
The choice of r ensures that (z 1 + ζ, z ′ ) ∈ K(e 1 , M ′ ); thus the first factor in the integral is bounded, and, since an easy computation shows that |z 1 +re iθ -1| |z 1 -1|

≤ 1 + δ, we are done. To prove that the restricted K-limit at p vanishes, thanks to Theorem 0.3, it suffices to show that lim

t→1 - (t -1) 1-γ ∂G 2 ∂z 1 (te 1 ) = 0 . (1.4)
Indeed, choose ε ∈ (0, 1), and for any t ∈ (0, 1), let σ t : ε∆ → B n be defined by

σ t (ζ) = (t + ζ(1 -t))e 1 .
Then σ t (0) = te 1 and σ ′ t (0) = (1 -t)e 1 . Moreover, for any ζ ∈ ε∆ we have

|1 -t -ζ(1 -t)| 1 -|t + ζ(1 -t)| = (1 -t)|1 -ζ| 1 -|1 -(1 -t)(1 -ζ)| ≤ 1 + ε 1 -ε .
Therefore σ t (ε∆) ⊂ K(e 1 , M ) for all M > 1+ε 1-ε . In particular, for all θ ∈ R, the e 1 -curve t → σ t (εe iθ ) is special and M -restricted. Now,

(t -1) 1-γ ∂G 2 ∂z 1 (te 1 ) = 1 2π π -π G 2 (t + ε(1 -t)e iθ , O ′ ) (t + ε(1 -t)e iθ -1) γ (t + ε(1 -t)e iθ -1) γ ε(1 -t)e iθ (t -1) 1-γ dθ = -1 2π π -π G 2 (t + ε(1 -t)e iθ , O ′ ) (t + ε(1 -t)e iθ -1) γ (1 -εe iθ ) γ εe iθ dθ .
The second factor of the integrand is bounded, and the first factor converges punctually and boundedly to 0 as t → 1, thanks to (ii); therefore (1.4) follows from the dominated convergence theorem.

(v) Without loss of generality we can assume p = e 1 and v = e 2 , so that the quotient we would like to study is 1

(z 1 -1) γ ∂G 1 ∂z 2 (z) .
The proof of the K-boundedness is yet another application of the Cauchy formula. Let

M ′ > M > 1; set δ := 1 3 ( 1 M -1 M ′ ), and r = r(z) := δ|z 1 -1| 1-γ ; [R, Lemma 8.5.5] ensures that if z ∈ K(e 1 , M ) then z + re iθ e 2 ∈ K(e 1 , M ′ ) for all θ ∈ R. Then Cauchy's formula yields 1 |z 1 -1| γ ∂G 1 ∂z 2 (z) = 1 2πi|z 1 -1| γ |ζ|=r G 1 (z + ζe 2 ) ζ 2 dζ = 1 2πδ π -π G 1 (z + re iθ e 2 )
|z 1 -1|e iθ dθ , and the K-boundness follows. Now we would like to prove that the restricted K-limit at p vanishes. Let Φ: B 2 → B n be given by Φ(ζ, η) = ζe 1 + ηe 2 , and put H = Ξ • Φ, where

Ξ(z) = G(z), z 1 -z 2 - G 1 (z) 1 -z 1 . Hence H(ζ, η) = G 1 (ζ, η, 0, . . . , 0)ζ + G 2 (ζ, η, 0, . . . , 0)η 1 -|ζ| 2 -|η| 2 - G 1 (ζ, η, 0, . . . , 0) 1 -ζ .
Now we expand H in power series with respect to η:

H(ζ, η) = H(ζ, 0) + ∂H ∂η (ζ, 0)η + ∂H ∂η (ζ, 0)η + O(|η| 2 ) . (1.5)
We have

H(ζ, 0) = G 1 (ζ, O ′ ) ζ 1 -|ζ| 2 - 1 1 -ζ = -G 1 (ζ, O ′ ) 1 1 -|ζ| 2 1 -ζ 1 -ζ ; ∂H ∂η (ζ, 0) = ∂G 1 ∂z 2 (ζ, O ′ ) ζ 1 -|ζ| 2 - 1 1 -ζ = - ∂G 1 ∂z 2 (ζ, O ′ ) 1 1 -|ζ| 2 1 -ζ 1 -ζ ; and ∂H ∂η (ζ, 0) = G 2 (ζ, O ′ ) 1 -|ζ| 2 . Recalling (1.3) we get β 2 ≥ Re H(ζ, η) = Re H(ζ, 0) + ∂H ∂η (ζ, 0)η + ∂H ∂η (ζ, 0)η + O(|η| 2 ) = 1 1 -|ζ| 2 Re -G 1 (ζ, O ′ ) + η ∂G 1 ∂z 2 (ζ, O ′ ) |1 -ζ| 2 (1 -ζ) 2 + G 2 (ζ, O ′ )η + O (1 -|ζ| 2 )|η| 2 , and thus - β 2 1 -|ζ| 2 |1 -ζ| 2 ≤ Re G 1 (ζ, O ′ ) (1 -ζ) 2 + η (1 -ζ) 2 ∂G 1 ∂z 2 (ζ, O ′ ) - ηG 2 (ζ, O ′ ) |1 -ζ| 2 + O 1 -|ζ| 2 |1 -ζ| 2 |η| 2 . (1.6)
Fix c > 0 and for t ∈ [0, 1) put

ζ t = t + ic(1 -t) . In particular, 1 -ζ t = (1 -t)(1 -ic) , |1 -ζ t | = (1 -t)(1 + c 2 ) 1/2 and 1 1 -ζ t = 1 1 -t 1 + ic 1 + c 2 . It is easy to check that ζ t ∈ ∆ if 1 -t < 2/(1 + c 2 ), and in this case 1 -|ζ t | 2 = 1 -t 2 -c 2 (1 -t) 2 = (1 -t) 1 + t -(1 -t)c 2 < 2(1 -t) . Moreover, if 1 -t < 1/(1 + c 2 ) we have 1 -|ζ t | 2 > 1 -t, and thus we can find η t ∈ C such that 2(1 -t) > 1 -|ζ t | 2 > |η t | 2 > 1 -t ; in particular, (ζ t , η t ) ∈ B 2
, and we choose the argument of η t so that

η t (1 -ζ t ) 2 ∂G 1 ∂z 2 (ζ t , O ′ ) = - η t (1 -ζ t ) 2 ∂G 1 ∂z 2 (ζ t , O ′ ) ∈ R -. Now we compute (1.6) in (ζ t , η t ). Multiplying by |1 -ζ t | 2-γ and dividing by |η t | we get 1 (1 -ζ t ) γ ∂G 1 ∂z 2 (ζ t , O ′ ) ≤ Re G 1 (ζ t , O ′ ) 1 -ζ t |1 -ζ t | 2-γ (1 -ζ t )|η t | + |G 2 (ζ t , O ′ )| |1 -ζ t | γ + O 1 -|ζ t | 2 |1 -ζ t | γ |η t | + β 2 1 -|ζ t | 2 |1 -ζ t | γ |η t | .
Applying (0.10) we obtain 1

(1 -ζ t ) γ ∂G 1 ∂z 2 (ζ t , O ′ ) ≤ |1 -ζ t | 2-γ |η t | Re -β + o(1) 1 -t 1 + ic 1 + c 2 + |G 2 (ζ t , O ′ )| |1 -ζ t | γ + O 1 -|ζ t | 2 |1 -ζ t | γ |η t | + β 2 1 -|ζ t | 2 |1 -ζ t | γ |η t | ≤ (1 -t) 2-γ (1 + c 2 ) 1-γ/2 (1 -t) 1/2 -β + o(1) (1 -t)(1 + c 2 ) + |G 2 (ζ t , O ′ )| |1 -ζ t | γ + O 1 -|ζ t | 2 |1 -ζ t | γ |η t | + β 2 1 -|ζ t | 2 (1 -t) γ (1 + c 2 ) γ/2 |η t | ≤ (-β + o(1))(1 -t) 1/2-γ (1 + c 2 ) γ/2 + |G 2 (ζ t , O ′ )| |1 -ζ t | γ + O 2(1 -t) (1 -t) γ (1 + c 2 ) γ/2 √ 2(1 -t) 1/2 + β 2 2(1 -t) (1 -t) γ (1 + c 2 ) γ/2 (1 -t) 1/2 ≤ o (1 -t) 1/2-γ + |G 2 (ζ t , O ′ )| |1 -ζ t | γ + O (1 -t) 3/2-γ .
Since t → ζ t e 1 is a special restricted curve we can apply (ii) obtaining lim sup

t→1 1 (1 -ζ t ) γ ∂G 1 ∂z 2 (ζ t , O ′ ) ≤ 0 . So we get lim t→1 1 (ζ t -1) γ ∂G 1 ∂z 2 (ζ t , O ′ ) = 0
and the assertion follows from Theorem 0.3. (vi) Without loss of generality we can assume p = e 1 , v 1 = e 2 , and v 2 = e 3 , so that the function we would like to study is

(z 1 -1) 1 2 -γ ∂G 3 ∂z 2 (z) .
We argue as usual.

Let M ′ > M > 1 and set δ :

= 1 3 ( 1 M -1 M ′ ).
Thanks to [START_REF] Rudin | Function theory in the unit ball of C n[END_REF]Lemma 8.5.5], for any z ∈ K(e 1 , M ) and

u ′ ∈ C n-1 with u ′ ≤ δ|z 1 -1| 1/2 we have (z 1 , z ′ + u ′ ) ∈ K(e 1 , M ′ ).
Now, fix z ∈ K(e 1 , M ) and let r = r(z) := δ|z 1 -1| 1/2 . By Cauchy's formula, we have

|z 1 -1| 1 2 -γ ∂G 3 ∂z 2 (z) = |z 1 -1| 1 2 -γ 2πi |ζ|=r G 3 (z + ζe 2 ) ζ 2 dζ = 1 2πδ π -π G 3 (z + re iθ e 2 ) |z 1 -1| γ e iθ dθ .
The choice of r ensures that z + re iθ e 2 ∈ K(e 1 , M ′ ), and the assertion follows from (ii).

An accurate examination of the proof of the previous theorem reveals that the main point is the proof of part (ii). As soon as the statement of Theorem 0.11.(ii) holds for some 0 < γ ≤ 1/2 (with γ = 1/2 included) then the rest of the Theorem follows with the same γ (again, γ = 1/2 included). The proof of Theorem 0.11.(ii) we presented however breaks down for γ = 1/2 because the curve (0, 1)

∋ t → z t = te 1 + e -iθ ε(1 -t) 1-γ e j ∈ B n
is not special if γ = 1/2; the limit (0.3) is a strictly positive (though finite) number.

Remark 1.1: Even assuming that the hypotheses of Theorem 0.11 are satisfied with γ ≥ 1/2, as explained above with this proof we can only obtain the thesis for all exponents γ < 1/2. Furthermore the exponent 1/2, which is the natural one to consider in the setting of self-maps, it is not necessarily the right one for infinitesimal generators, as next example shows.

Example 1.2: Let G: B 2 → C 2 be defined as

G(z, w) = (-z(1 -z), -w(1 -z) -α ) ,
with 0 < α < 1/2. It is easy to check that G is an infinitesimal generator, since it vanishes at the origin and Re G(z, w), (z, w) ≤ 0 for every (z, w) ∈ B 2 . Moreover, G satisfies the hypotheses of Theorem 0.11 with p = e 1 and γ = 1/2 -α, but G 2 (z, w)/(z -1) β is not K-bounded for any β > 1/2 -α. Indeed, given c ∈ (0, 1), all points of the form (t, c √ 1 -t 2 ), with t ∈ [0, 1), belong to a Korányi region of vertex e 1 , whereas G 2 (t, c √ 1 -t 2 )/(t -1) β is not bounded as t tends to 1, for 1/2 -α -β < 0. Furthermore G 2 (z, w)/(z -1) β does not even have a restricted K-limit at e 1 . In fact, choosing ρ > 1 such that β > ρ/2 -α, the curve σ ρ : [0, 1) → B 2 defined by σ ρ (t) = (t, c(1 -t 2 ) ρ/2 ), with c ∈ (0, 1), is a special restricted e 1 -curve such that G 2 (σ ρ (t))/(t -1) β diverges as t tends to 1. This example can be easily generalized to any dimension.

On the other hand, we can get the statement with exponent γ = 1/2 by using the notion of Hölder boundary null point, as follows: Proof of Theorem 0.12. As explained above, it suffices to prove that lim t→1 - G j (te 1 ) (t -1) 1/2 = 0 (1.7) for all j = 2, . . . , n.

Let α > 0 be given by the definition of Hölder boundary null point; we can clearly assume that α < 1. Given j ∈ {2, . . . , n}, fix 0 < ε < 1 and θ ∈ R; for t ∈ (0, 1), set

z t = te 1 + e -iθ ε(1 -t) 1/2+α e j ∈ B n .
In particular, t → z t is a special restricted e 1 -curve such that z t , e 1 ≡ t, and we have

1 -z t 2 = (1 -t)(1 + t -ε 2 (1 -t) 2α ) . Now, (1.3) evaluated in z t becomes Re tG 1 (z t ) + e iθ ε(1 -t) 1/2+α G j (z t ) 1 -z t 2 - G 1 (z t ) 1 -z t , e 1 ≤ β 2 . Therefore Re e iθ ε(1 -t) 1/2+α G j (z t ) 1 -z t 2 ≤ β 2 + Re G 1 (z t ) 1 -z t , e 1 1 - t 1 + t -ε 2 (1 -t) 2α . Furthermore Re e iθ ε(1 -t) 1/2+α G j (z t ) 1 -z t 2 = ε(1 -t) 1/2+α (1 -z t , e 1 ) 1/2 1 -z t 2 Re[e iθ G j (z t )] (1 -z t , e 1 ) 1/2 = ε(1 -t) 1+α 1 -t 2 -ε 2 (1 -t) 1+2α |G j (z t )| (1 -z t , e 1 ) 1/2 = ε(1 -t) α 1 + t -ε 2 (1 -t) 2α Re[e iθ G j (z t )] (1 -z t , e 1 ) 1/2 . Using (0.11) we then get Re[e iθ G j (z t )] (1 -z t , e 1 ) 1/2 ≤ β 2 + Re G 1 (z t ) 1 -z t , e 1 1 - t 1 + t -ε 2 (1 -t) 2α 1 + t -ε 2 (1 -t) 2α ε(1 -t) α = β 2 • 1 + t -ε 2 (1 -t) 2α ε(1 -t) α + Re G 1 (z t ) 1 -z t , e 1 1 + t -ε 2 (1 -t) 2α ε(1 -t) α - t ε(1 -t) α = β 2 • 1 + t -ε 2 (1 -t) 2α ε(1 -t) α + -β + o (1 -t) α 1 -ε 2 (1 -t) 2α ε(1 -t) α = β 2 ε 2 (1 -t) α -(1 -t) 1-α ε + o(1) . Letting t → 1 -we obtain lim sup t→1 -
Re[e iθ G j (z t )] (1 -z t , e 1 ) 1/2 ≤ 0 for all ε > 0 and θ ∈ R. Now letting ε → 0 + we find lim sup t→1 -

Re[e iθ G j (te 1 )]

(1 -t) 1/2 ≤ 0 for all θ ∈ R, and this is possible if and only if lim t→1 - G j (te 1 ) (1 -t) 1/2 = 0 , and we are done.

We end this paper giving examples of infinitesimal generators having a Hölder boundary null point.

Example 1.3: Let p = e 1 , and G: B n → C n be an infinitesimal generator with K ′ -lim

z→e 1 G(z) = O.
Setting G 1 = G, e 1 , condition (0.11) can be written as

G 1 σ(t) = β(t -1) + o (1 -t) 1+α
for any special e 1 -curve σ: [0, 1) → B n such that σ(t), e 1 ≡ t. In particular, if G 1 is of class C 1+α ′ at e 1 for some α ′ > α then (0.11) is satisfied, and e 1 is a Hölder boundary null point for G.

To give an explicit example, let us recall that if F : B n → B n is a holomorphic self-map of B n then G = id -F is an infinitesimal generator (see, e.g., [START_REF] Reich | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces[END_REF]Theorem 6.16] and [START_REF] Shoikhet | Semigroups in geometrical function theory[END_REF]Corollary 3.3.1]). Recalling Theorem 0.4, to get an example of infinitesimal generator having e 1 as Hölder boundary null point and satisfying the hypotheses of Theorem 0.11 it thus suffices to find F having K-limit e 1 at e 1 , with lim inf z→e 1

(1 -F (z) )/(1 -z ) < +∞ and such that

F 1 σ(t) = t + β(1 -t) + o (1 -t) 1+α
for any special e 1 -curve σ: [0, 1) → B n such that σ(t), e 1 ≡ t. For example, we can just take maps of the form F (z) = f (z 1 )e 1 with f given by

f (ζ) = ζ + β(1 -ζ) + c(1 -ζ) 1+α ′ = 1 -a(1 -ζ) + c(1 -ζ) 1+α ′ ;
(1.8) thus we just need to choose a = 1 -β > 0 and c > 0 so that f (∆) ⊆ ∆. ) -1 . Putting together (1.9), (1.10), (1.11) and (1.12) it follows that if a < (1 + 2ε α ′ D 1+α ′ α ′

) -1 and c < 2 1-α ′ ε α ′ a, then the function f given by (1.8) maps ∆ into itself, as we wanted.

  Theorem 0.1: (Julia-Wolff-Carathéodory) Let f : ∆ → ∆ be a bounded holomorphic function such

  Put w = 1 -ζ; then |f (ζ)| < 1 if and only if |1 -aw + cw 1+α ′ | < 1 if and only if a 2 |w| 2 + c 2 |w| 2(1+α ′ ) + 2c Re(w 1+α ′ ) < 2a Re w + 2ac|w| 2 Re(w α ′ ) .(1.9)First of all, write w = |w|e iθ , with |θ| < π/2. ThenRe(w α ′ ) = |w| α ′ cos(α ′ θ) ≥ ε α ′ |w| α ′ ,whereε α ′ = cos(α ′ π/2) > 0. Recalling that |w| < 2, it follows that taking c < 2 1-α ′ ε α ′ a we get c 2 |w| 2(1+α ′ ) < 2 α ′ c 2 |w| 2+α ′ < 2acε α ′ |w| 2+α ′ ≤ 2ac|w| 2 Re(w α ′ ) . (1.10) Now, if |θ| ≥ π/2(1 + α ′ ) then Re(w 1+α ′ ) ≤ 0. Since |1 -w| < 1 implies |w| 2 < 2 Re(w), in this case we get a 2 |w| 2 + 2c Re(w 1+α ′ ) < 2a 2 Re w < 2a Re w (1.11) as soon as a < 1. If instead |θ| < π/2(1 + α ′ ), we have | Im w| < C α ′ Re w, where C α ′ = tan π/2(1 + α ′ ) , and thus |w| < D α ′ Re w, where Dα ′ = 1 + C 2 α ′ . Hence a 2 |w| 2 + 2c Re(w 1+α ′ ) < 2a 2 + 2cD 1+α ′ α ′ (Re w) α ′ Re w < 2a Re w (1.12) as soon as a 2 + 2 α ′ D 1+α ′ α ′ c < a.Since we already requested that c < 2 1-α ′ ε α ′ a, it suffices to have a < (1 + 2ε α ′ D 1+α ′

	α ′
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