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DYNAMICS OF TWO-RESONANT BIHOLOMORPHISMS

JASMIN RAISSY AND LIZ VIVAS

Abstract. In this paper we study the existence of basins of attraction for
germs of 2-resonant biholomorphisms of Cn fixing a point, that is germs such

that the eigenvalues of the differential at the fixed point have a 2 dimensional
family of resonances.

1. Introduction

Given a germ F of biholomorphism of Cn at a fixed point, that we may choose
(without loss of generality) to be the origin O, and with diagonalizable differential
at it, we are interested in the dynamics of F near the origin, that is in the dynamical
behavior of the sequence of the iterates of F in a (sufficiently small) neighborhood
of O.

Since the local dynamics of a germ is invariant under conjugacy, one of the
main tools to study it is the classification under holomorphic, topological or formal
conjugacy of the germ. Moreover, it is natural to search for “special representatives”
having an easier to understand dynamics.

The most natural candidate is the linear germ, but, especially for n ≥ 2, even the
formal conjugacy to the linear term is not guaranteed due to the possible presence
of resonances between the eigenvalues λ1, . . . , λn, i.e., the relations λh =

∏n
j=1 λ

qj
j

for 1 ≤ h ≤ n, with q1, . . . , qn ∈ N, and q1 + · · · + qn ≥ 2. However, for non-
linearizable germs, another natural candidate (at least in the formal category) is
given by Poincaré-Dulac normal forms (see [?, Chapter 5] and [?] for surveys). The
study of the convergence of Poincaré-Dulac normal forms is made difficult, in most
of the cases, by small divisors problems and by the not uniqueness of such normal
forms. On the other hand, it is always possible to holomorphically conjugate to a
germ in approximated Poincaré-Dulac normal form, that is in normal form up to
a given order. Recently, these approximated normal forms have been successfully
used to infer the dynamical behavior of a germ.

Furthermore, whereas almost everything is known for the local holomorphic dy-
namics in the one-dimensional case (see for example the surveys [?] and [?]), the
study of local dynamics of non holomorphically linearizable germs in several vari-
ables is still far from being complete, and only some cases have been studied in
detail. The simplest case is the attracting (resp. repelling) case, i.e., when all
the eigenvalues of the linear term have modulus strictly less than 1 (resp. strictly
larger than 1), where the dynamics of the germ is topologically always depicted by
its linear term at the origin.

Date: June 9, 2014.
∗Partially supported by the FIRB2012 grant “Differential Geometry and Geometric Function

Theory”.

1



2 JASMIN RAISSY AND LIZ VIVAS

Another interesting case is the tangent to the identity one, that is germs whose
linear part is the identity. Results on the existence of basins of attraction were
proved by Écalle [?], Hakim [?, ?] (see also [?]), and, more recently by the second
author [?]. In the tangent to the identity case, every multi-index is indeed resonant,
so Poincaré-Dulac normal forms are not of much help.

Recently, holomorphic Poincaré-Dulac normal forms have been linked to the
existence of invariant holomorphic foliations with some additional properties, [?].
Furthermore, Bracci and Zaitsev [?] and Bracci, Zaitsev and the first author [?],
studied the dynamics of multi-resonant germs, i.e., germs whose resonances are gen-
erated over N by a finite number of Q-linearly independent multi-indices, through
the study of the dynamics induced by their approximated Poincaré-Dulac normal
forms on the almost invariant holomorphic foliations (see [?] and [?] for details, and
the next section for a brief summary of the main results and definitions).

In this paper, we study local dynamics of 2-resonant, non-linearizable germs
with diagonalizable linear term. In the rest of the paper, and without mentioning
it explicitly, we shall consider only germs of biholomorphims whose differential at
O is diagonalizable.

Following [?], we say that a germ is 2-resonant with respect to the first r eigen-
values {λ1, . . . , λr} if there exist two linearly independent multi-indices P,Q ∈
Nr × {0}n−r, such that all resonances λs =

∏n
j=1 λ

βj

j for 1 ≤ s ≤ r are precisely of

the form (β1, . . . , βn) = kP + hQ+ es with k, h ∈ N, es = (0, . . . , 0, 1, 0 . . . , 0) with
1 in the s-th coordinate.

Given a germ as above, we can consider the map π : Cn → C2, π(z) = (zP , zQ),
and the parabolic shadow f of F as it is defined in [?] (see also section 2), which is a
tangent to the identity germ of (C2, O) describing roughly the dynamics induced by
approximated Poincaré-Dulac normal forms of F on the almost-invariant foliation
{z ∈ Cn : π(z) = const}.

The results in [?] were obtained using the dynamical properties of the parabolic
shadow f = id +Hk0+1 (namely the existence of basins of attraction centered along
a fully-attracting non-degenerate characteristic direction ensured by the works of
Hakim [?, ?]) together with an attracting condition on the germ F with respect to
the projection, called parabolically-attracting introduced in [?].

In [?] the second author generalized Hakim’s results for maps tangent to the
identity in C2. She proved the existence of basins of attraction centered along irreg-
ular or Fuchsian-attracting degenerate characteristic directions, as well as centered
along irregular non-degenerate characteristic directions, which are in particular not
fully-attracting (see also [?]).

It could then seem possible to use all the results of [?], together with the parabol-
ically -attracting condition of [?], to obtain basins of attraction for 2-resonant germs
whose parabolic shadow has a degenerate or an irregular non-degenerate character-
istic direction.

Our first result is that this is not possible for the degenerate characteristic direc-
tions. More precisely, we prove that a map whose parabolic shadow has a degen-
erate characteristic direction cannot be also parabolically-attracting. We provide
examples of germs with parabolic shadows having a basin along a degenerate char-
acteristic direction but with no basins of attraction (see section 4). On the other
hand, in our second result, we prove the existence of basins when the parabolic
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shadow has an irregular non-degenerate characteristic direction and the map F is
parabolically-attracting.

Before stating our main results we need to recall a couple of definitions.
Let v ∈ C2 \ {0} be a non-degenerate characteristic direction for f in the sense

of Écalle [?] and Hakim [?], i.e., Hk0+1(v) = cv for some c ∈ C \ {0}. It is
clear that if v is a characteristic direction, then any scalar multiple of v will also
be a characteristic direction, hence the direction [v] in P1 is well determined. In
the rest of the paper we will refer by v or [v] as the characteristic direction. By
multiplying by an appropriate constant, we can normalize the direction so that
Hk0+1(v) = −(1/k0)v (we say v is normalized as in [?]). Following the definitions
introduced by Abate and Tovena [?] (see also section 2), we say that F is (f, v)-
irregular-nondegenerate, if v is an irregular non-degenerate characteristic direction
for f . We say that F is (f, v)-parabolically-attracting with respect to {λ1, . . . , λr}
if v is a normalized characteristic direction of f , and

(1) Re

 ∑
k1+k2=k0
(k1,k2)∈N2

a(k1,k2),j

λj
vk11 v

k2
2

 < 0 j = 1, . . . , r.

Such conditions are invariant in the sense that if they hold for a parabolic shadow,
then they hold for any other parabolic shadow of F . We say that F is irregular-
nondegenerate if it is (f, v)-irregular-nondegenerate with respect to some parabolic
shadow f and some normalized characteristic direction v ∈ C2. We also say that F
is parabolically-attracting if it is (f, v)-parabolically-attracting with respect to some
parabolic shadow f and some normalized non-degenerate characteristic direction
v ∈ C2.

Our main results are then the following:

Proposition 1. Let F ∈ Diff(Cn, O) be m-resonant with respect to the first r ≤ n
eigenvalues, and let f be a parabolic shadow of F . If v ∈ Cm is any representative
of a degenerate characteristic direction for f , then F can not be (f, v)-parabolically-
attracting.

Theorem 1. Let F ∈ Diff(Cn, O) be 2-resonant with respect to the eigenvalues
{λ1, . . . λr}. Assume that |λj | = 1 for j = 1, . . . , r and |λj | < 1 for j = r+1, . . . , n.
If F is irregular-nondegenerate and parabolically-attracting, then there exists a basin
of attraction having O at the boundary.

The strategy of the proof of Theorem ?? uses the same ideas as in [?]. Indeed, we

use the parabolic shadow f to obtain a basin B in C2. Then we define B̃ ⊂ π−1(B)

in Cn so that F (B̃) ⊂ B̃. In order to make sure that B̃ is F -invariant, we choose
the first r coordinates so that their projection by π is in B, and we choose the other
coordinates in such a way that their modulus is less than a power of the projection
coordinates. Using the hypothesis of parabolically-attracting we are able to see
that the modulus of the coordinates will go exponentially fast to 0.

This result complements the corresponding result in [?] for the case m = 2, and
moreover, from it we can also deduce the non-necessity of the hypothesis of fully-
attracting (see section 2) for the characteristic direction of the parabolic shadow.

The plan of the paper is the following. In section 2 we briefly recall the basic
definitions, the result that we need from the dynamics of tangent to the identity
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germs, and we prove Proposition ??. In section 3 we prove Theorem ??. In sec-
tion 4 we apply Theorem ?? to a few examples, we provide an example of germ
with no basins of attraction, and we make some observations on partial cases for
holomorphically normalizable germs.

2. Preliminaries

As stated in the introduction, we shall follow the strategy of the recent papers
[?] and [?], where results about the dynamics of germs of biholomorphisms tangent
to the identity in C, and in Cm, were used to prove the existence of attracting
basins for one-resonant, respectively multi-resonant, germs satisfying additional
conditions. We shall use the same approach together with a recent result on the
dynamics of germs tangent to the identity in C2 to prove results on the dynamics
of 2-resonant germs satisfying additional conditions.

We start by briefly recalling the definition of multi-resonant germ, and we refer
the reader to the very thorough study in [?].

Given {λ1, . . . , λn} a set of complex non-zero numbers, a resonance is a pair
(j, L), where j ∈ {1, . . . , n} and L = (l1, . . . , ln) ∈ Nn is a multi-index with |L| :=∑n
h=1 lh ≥ 2 such that λj = λL (where λL := λl11 · · ·λlnn ). We shall use the notation

Res j(λ) := {Q ∈ Nn : |Q| ≥ 2, λQ = λj}.

With a slight abuse of notation, we denote by ej = (0, . . . , 0, 1, 0, . . . , 0) both the
multi-index with 1 at the j-th position and 0 elsewhere, and the vector with the
same entries in Cn.

Let F be in Diff(Cn, O), and let λ1, . . . , λn be the eigenvalues of the differential
dFO. We say that F is m-resonant with respect to the first r eigenvalues λ1, . . . , λr
(1 ≤ r ≤ n) if there exist m multi-indices P 1, . . . , Pm ∈ Nr × {O}n−r linearly
independent over Q, so that the resonances (j, L) with 1 ≤ j ≤ r are precisely of
the form

(2) L = ej + k1P
1 + · · ·+ kmP

m

with k1, . . . , km ∈ N and k1 + · · · + km ≥ 1. The vectors P 1, . . . , Pm are called
generators over N of the resonances of F . We call F multi-resonant with respect to
the first r eigenvalues if it is m-resonant with respect to these eigenvalues for some
m ≥ 1.

We focus our attention to the case m = 2.
Given F a 2-resonant germ with respect to the first r eigenvalues λ1, . . . , λr, and

given any l large, by the theorem of Poincaré-Dulac (see [?]) we can holomorphically
conjugate F to a map of the form

(3) F̃ (z) = Dz+

r∑
s=1

∑
|k1P+k2Q|≥2

(k1,k2)∈N2

a(k1,k2),sz
k1P+k2Qzses +

n∑
s=r+1

Rs(z)es +O(‖z‖l),

where D = Diag(λ1, . . . , λn), Rs(z) = O(‖z‖2) for s = r + 1, . . . , n, and P,Q are
the ordered generators over N of the resonances. The weighted order of F is the

minimal k0 = k1 + k2 ∈ N \ {O} such that the coefficient a(k1,k2),s of F̃ is non-zero
for some 1 ≤ s ≤ r. It was proved in [?] that such a definition is well-posed. We
recall that the weighted order of F is +∞ if and only if F is formally linearizable
in the first r coordinates.
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Define

G(z) = Dz +

r∑
s=1

∑
|k1P+k2Q|≥2

(k1,k2)∈N2

a(k1,k2),sz
k1P+k2Qzses.

Using the projection map π(z) = (zP , zQ), we obtain the following commuting
diagram:

Cn G−−−−→ Cn

π

y π

y
C2 h−−−−→ C2

where h is a tangent to the identity germ in C2 of the form h(u) = u+Hk0+1(u) +
O(‖u‖k0+2), where

(4) Hk0+1(u) =


u1

∑
k1+k2=k0

(
p1
a(k1,k2),1

λ1
+ · · ·+ pr

a(k1,k2),r

λr

)
uk11 u

k2
2

u2
∑

k1+k2=k0

(
q1
a(k1,k2),1

λ1
+ · · ·+ qr

a(k1,k2),r

λr

)
uk11 u

k2
2

 ,

and, by construction, it approximates up to a given finite order the action of F
on the almost invariant foliation {z ∈ Cn : π(z) = const}. We shall call f(u) =
u+Hk0+1(u) a parabolic shadow of F .

We shall also need a few definitions for tangent to the identity germs, that we
recall here. Given

(5) h(u) := u+Hk0+1(u) +O(‖u‖k0+2),

a germ at O of biholomorphism of (Cm, O), m ≥ 2, tangent to the identity, where
Hk0+1 is the first non-zero term in the homogeneous expansion of h, and k0 ≥ 1,
we call the number k0 + 1 ≥ 2 the order of h.

Several important results about basins for tangent to the identity germs have
been obtained in the last decade. We refer the reader to [?] where several results
have been explained and applied to the existence of parabolic basins for resonant
germs, and we recall here only the result that will be relevant to prove our main
theorem.

Definition 1. Let h ∈ Diff(Cm, O) be of the form (??). A characteristic direction
for h is a non-zero vector v ∈ Cm \ {O} such that Hk0+1(v) = λv for some λ ∈ C.
If λ = O, v is a degenerate characteristic direction; otherwise, (that is, if λ 6= 0) v
is non-degenerate.

In the case m = 2, examples of basins along non-degenerate not fully-attracting
(see definition below) and degenerate characteristic directions have been shown
recently (see [?], [?]), inspired also by the classification introduced in the recent
paper [?], where Abate and Tovena studied the dynamics of the time 1-map of
homogeneous holomorphic vector fields C2. We shall use the result obtained in [?]
for tangent to the identity germs in C2 with non-degenerate characteristic direction,
but before stating it we need to explain the classification given by Abate and Tovena
[?].

Writing u = (x, y) ∈ C2, our map has the form:

(6) h(u) := u+Hk0+1(u) +O(‖u‖k0+2), where Hk0+1(x, y) = (Q1(x, y), Q2(x, y))
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where both Q1 and Q2 have homogeneous degree k0 + 1. Using the above defi-
nitions, we clearly have that (1, u0) is a characteristic direction when Q2(1, u0) =
u0Q1(1, u0). Equivalently if we define g2(u) = Q2(1, u)− uQ1(1, u), then (1, u0) is
a characteristic direction if g2(u0) = 0. Define g1(u) = Q1(1, u).

Let µj(u0) ∈ N be the order of vanishing of gj at u0. Then we shall say that the
direction given by (1, u0) is:

• an apparent characteristic direction if µ2(u0) < µ1(u0) + 1;
• a Fuchsian characteristic direction if µ2(u0) = µ1(u0) + 1; and
• an irregular characteristic direction if µ2(u0) > µ1(u0) + 1.

The index of a direction i(1,u0) is defined as the residue Resu=u0

g1(u)
g2(u)

.

Using such a classification, in [?] the second author proved that if a tangent to the
identity germ in Diff(C2, O) has an irregular characteristic direction, or a Fuchsian
characteristic direction such that Re i(1,u0) > 1/µ1(u0), then there exists a parabolic
basin of attraction centered in the direction. Note that Fuchsian non-degenerate
characteristic directions such that Re i(1,u0) > 1/µ1(u0) are exactly fully-attracting
non-degenerate characteristic directions as defined in [?], i.e., the real parts of
the directors (see [?] or [?] for the precise definition) are strictly positive, and
hence those characteristic directions satisfy the hypotheses of Hakim’s result [?].
In particular, for non-degenerate characteristic directions, we shall use the following
result that complements the result of Hakim in dimension 2.

Theorem 2 ([?]). Let h ∈ Diff(C2, O) be a tangent to the identity germ of biholo-
morphism. If [v] = [1 : u0] is an irregular non-degenerate characteristic direction
for h, then there exists a parabolic domain D for h centered in the direction [v].
Moreover, there exists a Fatou coordinate ψ : D → C such that ψ(h(z)) = ψ(z) + 1.

In [?], the existence of parabolic basins of attraction depended not only on the
existence of a basin for the parabolic shadow of the germ, but also on another
“attracting” condition controlling the dynamics on the fibers of π : Cn → Cm,
which is the following:

Definition 2. Let F ∈ Diff(Cn, O) be 2-resonant with respect to λ1, . . . , λr, with
P,Q being the ordered generators over N of the resonances. Let k0 < +∞ be
the weighted order of F . Let f = id + Hk0+1, with Hk0+1 as in (??), be a para-
bolic shadow of F . We say that F is (f, v)-parabolically-attracting with respect to
{λ1, . . . , λr} if v is a normalized non-degenerate characteristic direction of f , (i.e.,
Hk0+1(v) = −(1/k0)v), and

(7) Re

 ∑
k1+k2=k0
(k1,k2)∈N2

a(k1,k2),j

λj
vk11 v

k2
2

 < 0 j = 1, . . . , r.

We say that F is (f, v)-partially parabolically-attracting of order s if there exists
1 ≤ s < r such that (??) is satisfied only for j = 1, . . . , s. We say that F is
parabolically-attracting if F is (f, v)-parabolically-attracting with respect to some
parabolic shadow f and some v ∈ C2 a normalized non-degenerate characteristic
direction. We say that F is partially parabolically-attracting of order s if F is (f, v)-
partially parabolically-attracting of order s for some 1 ≤ s < r with respect to some
parabolic shadow f and some v ∈ C2 normalized non-degenerate characteristic
direction.
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As mentioned in the introduction, one could think that it is possible to use all the
results of [?], together with the attracting condition just defined, to obtain basins
of attraction also for 2-resonant germs whose parabolic shadow has a degenerate
characteristic direction. However, this is not true, and we can provide in section 4
examples of germs with parabolic shadow having a basin along a degenerate charac-
teristic direction but with no basins of attraction. Moreover, we have the following
result, that holds in general for m-resonant germs with m ≥ 2 with respect to the
condition of parabolic-attracting introduced in [?, Definition 3.12].

Proposition 2. Let F ∈ Diff(Cn, O) be m-resonant with respect to the first r ≤ n
eigenvalues, and let f be the parabolic shadow of F . If v ∈ Cm is any representative
of a degenerate characteristic direction for f , then F cannot be (f, v)-parabolically-
attracting.

Proof. Let k0 ≥ 1 be the weighted order of F and let P 1, . . . , Pm ∈ Nr×{0}n−r be
the ordered generators of the resonances of F . Since F is m-resonant with respect
to the first r eigenvalues λ1, . . . , λr, then by the Theorem of Poincaré-Dulac we can
holomorphically conjugate it to a map of the form

(8) F̃ (z) = Dz +

r∑
s=1

∑
|K|≥k0
K∈Nm

aK,sz
k1P

1+···+kmPm

zses +

n∑
s=r+1

Rs(z)es +O(‖z‖l),

where D = Diag(λ1, . . . , λn), and Rs(z) = O(‖z‖2) for s = r + 1, . . . , n. Hence, for
the parabolic shadow f(u) = u+Hk0+1(u) we have

Hk0+1,j(u) = uj
∑
|K|=k0

(
pj1
aK,1
λ1

+ · · ·+ pjr
aK,r
λr

)
uK

for all j = 1, . . . , r.
Let v ∈ Cm \ {O} be a degenerate characteristic direction for f , i.e., such that

Hk0+1(v) = 0, and assume by contradiction that

Re

 ∑
|K|=k0

aK,s
λs

vK

 < 0 ∀s = 1, . . . , r.

Let j ∈ {1, . . . ,m} be such that vj 6= 0. Then, since v is degenerate, we have

(9)

0 =
∑
|K|=k0

(
pj1
aK,1
λ1

+ · · ·+ pjr
aK,r
λr

)
vK

= pj1

 ∑
|K|=k0

aK,1
λ1

vK

+ · · ·+ pjr

 ∑
|K|=k0

aK,r
λr

vK

 .

Therefore

pj1Re

 ∑
|K|=k0

aK,1
λ1

vK

+ · · ·+ pjrRe

 ∑
|K|=k0

aK,r
λr

vK

 = 0

which is impossible since P j is a generator, and hence P j ∈ Nn and |P j | ≥ 1, and

we are assuming Re

 ∑
|K|=k0

aK,s
λs

vK

 < 0 for all s = 1, . . . , r. �
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We now give the definition that we use to state our result.

Definition 3. Let F ∈ Diff(Cn, O) be 2-resonant with respect to λ1, . . . , λr, with
P,Q being the ordered generators over N of the resonances. Let k0 < +∞ be the
weighted order of F . Let f = id + Hk0+1, with Hk0+1 as in (??), be a parabolic
shadow of F . We say that F is (f, v)-irregular-nondegenerate if v ∈ C2 is an
irregular normalized non-degenerate characteristic direction for f . We say that
F is irregular-nondegenerate if F is (f, v)-irregular-nondegenerate with respect to
some parabolic shadow f and some v ∈ C2 normalized non-degenerate characteristic
direction.

Remark 1. It is immediate to check that Definitions ?? and ?? are well posed: if
F is (f, v)-irregular-nondegenerate, or (f, v)-parabolically-attracting, with respect
to a parabolic shadow f and a normalized characteristic direction v ∈ C2, then
it is so with respect to any parabolic shadow (for the corresponding normalized
characteristic direction ṽ).

3. Non-degenerate 2-resonant germs

Theorem 3. Let F ∈ Diff(Cn, O) be 2-resonant with respect to the eigenvalues
{λ1, . . . λr} and of weighted order k0. Assume that |λj | = 1 for j = 1, . . . , r and
|λj | < 1 for j = r + 1, . . . , n. If F is irregular-non-degenerate and parabolically-
attracting, then there exists a basin of attraction having O at the boundary.

Proof. We follow the same strategy as in [?] and [?]. Let P and Q be the ordered
generators over N of the resonances of F . Up to biholomorphic conjugation, we can
assume that F (z) = (F1(z), . . . , Fn(z)) is of the form

Fj(z) = λjzj

(
1 +

∑
k0≤k1+k2≤kl

(k1,k2)∈N2

a(k1,k2),j

λj
zk1P+k2Q

)
+O

(
‖z‖l+1

)
, j = 1, . . . , r,

Fj(z) = λjzj +O(‖z‖2), j = r + 1, . . . , n,

where

kl := max{k1 + k2 : |k1P + k2Q| ≤ l}.
We consider the map π : (Cn, 0) → (C2, 0) defined by π(z) = u := (zP , zQ).

Then, for j = 1, . . . , r, we can write

Fj(z) = Gj(u, z)+O
(
‖z‖l+1

)
, Gj(u, z) := λjzj

(
1+

∑
k0≤k1+k2≤kl

(k1,k2)∈N2

a(k1,k2),j

λj
uk11 u

k2
2

)
.

The composition ϕ := π ◦ F can be written as

ϕ(z) = Φ(u, z) := Φ(u) + g(z), Φ(u) = u+Hk0+1(u) + h(u),

where Φ is induced by G via π ◦G = Φ ◦ π, Hk0+1(u) has the form (??), that is

Hk0+1(u) =


u1

∑
k1+k2=k0

(
p1
a(k1,k2),1

λ1
+ · · ·+ pr

a(k1,k2),r

λr

)
uk11 u

k2
2

u2
∑

k1+k2=k0

(
q1
a(k1,k2),1

λ1
+ · · ·+ qr

a(k1,k2),r

λr

)
uk11 u

k2
2

 ,

we have h(u) = O(‖u‖k0+2), and g(z) = O(‖z‖l+1).
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Thanks to our hypotheses, the parabolic shadow u 7→ u + Hk0+1(u), has an
irregular non-degenerate characteristic direction [v]. Therefore, Theorem ?? implies
that Φ has an attracting basin B of parabolic type at the origin centered along
the normalized characteristic direction v ∈ C2, with a Fatou coordinate. We will

construct a basin of attraction Ṽ ⊂ Cn for F in such a way that Ṽ is projected into
B via π.

For the sake of simplicity, we shall use linear coordinates (s, t) ∈ C2 where the
normalized characteristic direction is v = (1, 0). Then the condition on F to be
parabolically-attracting translates on:

(10) Re

(
a(k0,0),j

λj

)
< 0 j = 1, . . . , r.

After blowing-up C2 at the origin as in [?], in the local chart centered at v, we
may assume the lifting of the map Φ to be of the form:

(11)

s1 = Φ1(s, t, z) = s− 1

k0
sk0+1 + h1(s, t) + g1(z),

t1 = Φ2(s, t, z) = t− 1

n− 1
sk0tn + h2(s, t) + s−1g2(z)

with h1 = O(sk0+2, sk0+1t), h2 = O(sk0+1, sk0tn+1), and g1(z), g2(z) = O(‖z‖l+1).
Thanks to Theorem ??, Φ(s, t) has an attracting basin B along v. We shall prove

that, fixed β > 0 small enough, the set

Ṽ := {z ∈ Cn : |zj | < |s|k0β for j = 1, . . . , n, π(z) := (s, t) ∈ B}

is a basin of attraction for F . First of all, taking β > 0 sufficiently small, it is easy

to see that Ṽ is an open non-empty set of Cn and O ∈ ∂Ṽ .

Next, we prove that Ṽ is F -invariant. Let z ∈ Ṽ and let u = π(z). Considering
the change of coordinates (x, y) = ψ(s, t) := (s−k0 , t−(n−1)) on a suitable open set,
with the origin on its boundary, we have that (s, t) ∈ B if and only if (x, y) ∈ V ,
where

V = VR,N,θ := {(x, y) ∈ C2 : Re (x) > R, |Arg (x)| < k0θ,Re (y) > R, |y|N < |x|},

for R,N large enough, and θ small. Fix 0 < δ < 1/2 and 0 < c′ < c. Thanks to
the parabolically-attracting hypothesis, there exists θ > 0 such that

(12)

∣∣∣∣∣∣∣1 +
∑

k1+k2=k0
(k1,k2)∈N2

a(k1,k2),j

λj
uk11 u

k2
2

∣∣∣∣∣∣∣ ≤ 1− 2c|s|k0 ,

for all u ∈ B. We choose β > 0 such that

(13) β(δ + 1)− c′ < 0

and we can choose l > 1 so that

(14) β(l + 1) ≥ 4.

Since z ∈ Ṽ , then we have the following estimates for g1 and s−1g2:

‖s−1g2(z)‖ < C|s|−1‖z‖l+1 ≤ C ′|s|−1|s|k0β(l+1) = C ′|s|k0β(l+1)−1.

Similarly for ‖g1(z)‖; and we conclude that ‖g1(z)‖, ‖s−1g2(z)‖ = O(|s|k0+2).
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In the coordinates (x, y) = ψ(s, t) := (s−k0 , t−(n−1)) we have

(15)

x1 = x+ 1 + ν1(x, y, z),

y1 = y +
1

x
+ ν2(x, y, z),

with

(16)

ν1(x, y, z) = O

(
1

x1/k0
,

1

y1/(n−1)

)
,

ν2(x, y, z) = O

(
y

n
n−1

x(k0+1)/k0
,

1

xy1/(n−1)

)
If R and N are sufficiently large, for any z ∈ Ṽ we have |ν1(x, y, z)| < δ < 1/2.
Therefore, we have Re (x1) > R and |Arg (x1)| < |Arg (x)| < θ. Arguing as in the
computations of [?, p. 9], we obtain Re (y1) > R, and |y1|N < |x1|, and so we
proved that if u = π(z) ∈ B, then u1 := π(F (z)) ∈ B.

Now, given z ∈ Ṽ , we have to estimate |Fj(z)| for j = 1, . . . , n. To estimate the
components Fj for j = r+ 1, . . . , n, we can argue exactly as in [?] and we refer the
reader to [?, p. 17] for the proof. We have

(17) |Fj(z)| < |s1|k0β , j = r + 1, . . . , n.

For the other coordinates, we have

Fj(z) = λjzj

(
1 +

∑
k1+k2=k0
(k1,k2)∈N2

a(k1,k2),j

λj
uk11 u

k2
2 + fj(u)

)
+ gj(z),

with fj = O(‖u‖k0+1) and gj = O(‖z‖l+1), for j = 1, . . . , r. Thanks to (??) we
have ∣∣∣∣∣∣∣1 +

∑
k1+k2=k0
(k1,k2)∈N2

a(k1,k2),j

λj
uk11 u

k2
2 + fj(u)

∣∣∣∣∣∣∣ ≤ 1− c

|x|
.

Moreover, if z ∈ Ṽ and R is sufficiently large, we have, for a suitable D > 0,

|gj(z)| ≤ D‖z‖l+1 <
D

|x|β(l+1)
.

Therefore for j = 1, . . . , r

(18)

|Fj(z)| ≤ |λj ||x|−β
(

1− c

|x|

)
+

D

|x|β(l+1)
,

≤
(

1− c

|x|
+

D

|x|βl

)
|x|−β .

If R is sufficiently large, we have

p(x) := 1− c

|x|
+

D

|x|βl
< 1.

Now we claim that

(19) |x1| ≤ p(x)−1/β |x|.
Indeed, since we have

x1 = x+ 1 + ν1(x, y, z),
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with |ν1(x, y, z)| ≤ δ, we obtain

|x1|
|x|

=
|x+ 1 + ν1(x, y, z)|

|x|
≤ 1 +

1

|x|
+
|ν1(x, y, z)|
|x|

≤ 1 +
1 + δ

|x|
.

On the other hand, by our choice of 0 < c′ < c and taking R sufficiently large, we
have (

1− c′

|x|

)−1/β
≤ p(x)−1/β ,

and hence, in order to prove (??), we just need to check that

1 +
1 + δ

|x|
≤
(

1− c′

|x|

)−1/β
.

But (
1− c′

|x|

)−1/β
= 1 +

1

β

c′

|x|
+O

(
1

|x|2

)
,

and since (??) ensures that δ + 1 − c′/β < 0, if R is sufficiently large, (??) holds,
and the claim is proved. Therefore, thanks to (??) we have

(20) |Fj(z)| < |s1|k0β , j = 1, . . . , r,

which together with (??) implies F (Ṽ ) ⊆ Ṽ .
Finally, setting inductively u(l) = (s(l), t(l)) := π(F ◦(l−1)(z)), and denoting by

ρj : Cn → C the projection ρj(z) = zj , we obtain∣∣ρj ◦ F ◦l(z)∣∣ ≤ ∣∣∣s(l)∣∣∣k0β
for all z ∈ Ṽ , implying that F ◦l(z)→ O as l→ +∞. This proves that Ṽ is a basin
of attraction of F at O. �

4. Examples and remarks on partial cases

4.1. Example of parabolically attracting germs. In [?, Section 5.1] is de-
scribed a family of 2-resonant germs in C3 which are (f, v1)-attracting-nondegenerate
and (f, v2)-attracting-nondegenerate (with f a parabolic shadow, and v1, v2 two dif-
ferent normalized non-degenerate characteristic directions for f), and which are
(f, v1)-parabolically-attracting but not (f, v2)-parabolically-attracting. Here we
shall weaken certain conditions and see that the existence of basins is still satisfied
by using our Theorem ??.

Let P 1 = (2, 3, 0) and P 2 = (0, 2, 5). Let λ1, λ2, λ3 ∈ C∗ be of modulus 1 such
that relations are generated by λ21λ

3
2 = 1 and λ22λ

5
3 = 1. It is easy to see that

λj = λL for L ∈ N3, |L| ≥ 2, j = 1, 2, 3 if and only if L = k1P
1 + k2P

2 + ej for
some k1, k2 ∈ N.

Let F be of the form

Fj(z) = λjzj(1 + be1,jz
P 1

+ be2,jz
P 2

) j = 1, 2, 3.

Then F is 2-resonant with respect to {λ1, λ2, λ3} and of weighted order k0 = 1. A
parabolic shadow of F is f(u) = u+H2(u) where

H2(u) =

(
u1 [(2be1,1 + 3be1,2)u1 + (2be2,1 + 3be2,2)u2]
u1 [(2be1,2 + 5be1,3)u1 + (2be2,2 + 5be2,3)u2]

)
.
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The directions [1 : 0] and [0 : 1] are characteristic directions, and as seen in [?],
imposing 2be1,1 + 3be1,2 = −1, 2be2,2 + 5be2,3 = −1, it follows that the two di-
rections are non-degenerate characteristic directions for f . Furthermore setting
2be2,1 + 3be2,2 = −p, 2be1,2 + 5be1,3 = −q with q, p > 1 we have that (1, 0) and
(0, 1) are normalized fully-attracting non-degenerate characteristic directions for f ,
and hence F is (f, (1, 0))-attracting-non-degenerate and (f, (0, 1))-attracting-non-
degenerate.

However, if we impose the following condition:

(21) 2be1,1 + 3be1,2 = −1, 2be2,1 + 3be2,2 = −p = −1

we obtain that (1, 0) is an irregular normalized characteristic direction for f , and
hence F is (f, (1, 0))-irregular.

Analogously, imposing

(22) 2be2,2 + 5be2,3 = −1, 2be1,2 + 5be1,3 = −q = −1

we have that (0, 1) is an irregular normalized characteristic direction for f , hence
F is (f, (0, 1))-irregular.

The condition for F to be (f, (1, 0))-parabolically-attracting it is as before:

(23) Re be1,j < 0 j = 1, 2, 3 ,

whereas F is (f, (0, 1))-parabolically-attracting if and only if

(24) Re be2,j < 0 j = 1, 2, 3 .

4.2. Example of 2-resonant degenerate germ with no basins of attraction.
Let P 1 = (2, 3, 0), P 2 = (0, 2, 5), and let λ1, λ2, λ3 ∈ C∗ be of modulus 1 such that
relations are generated by λ21λ

3
2 = 1 and λ22λ

5
3 = 1, as in the previous example.

Let F be of the form

F (z) =

(
λ1z1(1 + zP

2

) , λ2z2 , λ3z3

(
1 +

3

5
zP

2

))
.

Then F is 2-resonant with respect to {λ1, λ2, λ3} and of weighted order k0 = 1.
It is clear that F has no basins of attraction. Indeed, for any point w 6= 0 in a
neighborhood of zero such that w2 6= 0 we have (F ◦`(w))2 = λ`2w2 and then their
orbits cannot converge to O, and for any point w 6= 0 in a neighborhood of zero
such that w2 = 0 we have (F ◦`(w)) = (λ`1w1, 0, λ

`
3w3) and hence also their orbits

cannot converge to O. However, parabolic shadows of F have a basin of attraction.
In fact, a parabolic shadow of F is f(u) = u+H2(u) where

H2(u) =
(
2u1u2, 3u

2
2

)
.

The direction [1 : 0] is a degenerate Fuchsian characteristic direction satisfying the
hypotheses of [?, Theorem 2], whereas [0 : 1] is a non-degenerate characteristic
direction whose director has strictly negative real part. Therefore, f has a basin of
attraction centered in [1 : 0] but it cannot have a basin centered in [0 : 1] (see [?]
or [?]). Note that F is not (f, (1, 0))-parabolically-attracting.

4.3. Remarks on partial cases. We end this section showing that for holomor-
phically normalizable germs, by weakening the hypothesis of parabolically attrac-
tiveness, we can still get information on the dynamics, namely the existence of
parabolic manifolds. We recall that a parabolic manifold P of dimension 1 ≤ s ≤ n
for F ∈ Diff(Cn, 0) is the biholomorphic image of a simply connected open set in
Cs such that O ∈ ∂P , F (P ) ⊂ P and lim`→∞ F ◦`(z) = 0 for all z ∈ P .
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We distinguish the one-resonant case and the m-resonant case with m ≥ 2.

1-resonant case. We use the same notation of [?], and we refer to [?, Sections 1
and 3] for the definition of non-degenerate one-resonant germ G and of the invariant
Λ(G).

Proposition 3. Let G ∈ Diff(Cn, O) be one-resonant with respect to all eigenvalues
{λ1, . . . , λn}, with |λj | = 1, but not a root of unity, for j = 1, . . . , n, and non-
degenerate. Assume that G is holomorphically normalizable germ, such that:

Re

(
aj
λj

1

Λ(G)

)
> 0 for j = 1, . . . , s,

Re

(
ah
λh

1

Λ(G)

)
< 0 for h = s+ 1, . . . , n,

for some 1 ≤ s < n, and let α ∈ Nn be the generator of resonance of {λ1, . . . , λn}.
Then:

(1) if α 6∈ Ns × {0}n−s, then the unique point in a neighborhood of the origin
with orbit under G converging to O is the origin itself;

(2) if α ∈ Ns × {0}n−s, then there exists a parabolic manifold of dimension s
for G at O.

Proof. We may assume without loss of generality that G is in Poincaré-Dulac nor-
mal form. Let w be a point in a neighborhood of the origin with orbit under G
converging to the origin. Then liml→∞ π◦G◦l(w) = 0, and since π◦G◦l = Φ◦l◦π, we
have liml→∞Φ◦l(π(w)) = 0. Two cases can occur: either π(w) = 0, or π(w) 6= 0.
If π(w) = 0, then w = O. In fact, if π(w) = 0, then for every ` ≥ 1, we have
‖G◦`(w)‖ = ‖(λ`1w1, . . . , λ

`
nwn)‖ = ‖w‖ and hence it can converge to the origin if

and only if w = O.
Suppose then that π(w) 6= 0. Assume that α 6∈ Ns × {0}n−s, and there exists a

point w 6= O in a neighborhood of the origin, whose orbit under G converges to O.
Then π(w) lies in an attracting petal P+

j for one j, and so w ∈ U+
j := π−1(P+

j ).

Arguing as in the proof of [?, Proposition 4.2], we thus have that ws+1 = · · · =
wn = 0, and so π(w) = wα = 0 contradicting our hypothesis on w.

Assume now that α ∈ Ns × {0}n−s. Therefore, we have Gj(z) = Gj(z1, . . . , zs),
for j = 1, . . . , s, so G|{zs+1=···=zn=0} is one-resonant with generator (α1, . . . , αs),
non-degenerate and parabolically-attracting, and hence thanks to [?, Theorem 1.1]
we deduce that π−1(P+

j ) ∩ {zs+1 = · · · = zn = 0} contains a parabolic manifold of

G of dimension s for any attracting petal P+
j . �

m-resonant case. In the m-resonant case, with m ≥ 2, it is not possible to
obtain a result completely analogous to the previous proposition, because, even
if it is possible to generalize [?, Proposition 4.2] using attracting parabolic basins
along non-degenerate directions, it is not true that for any point w with orbit
under G converging to O, its projection π(w) has to lie in a basin centered along a
characteristic direction, since there exist tangent to the identity germs with orbit
converging to the origin but not along a characteristic direction (see [?]). However,
we have the following corollary of [?, Theorem 1.1] and our Theorem 1, where we
use the conditions of partial parabolic attractiveness defined in Definition ??.
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Corollary 1. Let G ∈ Diff(Cn, O) be m-resonant with respect to all eigenvalues
{λ1, . . . , λn}, with |λj | = 1 not a root of unity, for j = 1, . . . , n, and holomor-
phically normalizable. Assume that m = 2 and G is attracting-nondegenerate or
irregular-nondegenerate, or m ≥ 3 and G attracting-nondegenerate. If G is par-
tially parabolically-attracting of order 1 ≤ s < n, and the ordered generators over
N of the resonances satisfy P 1, . . . , Pm ∈ Ns×{0}n−s, then there exists a parabolic
manifold of dimension s for G at O.

Proof. We have Gj(z) = Gj(z1, . . . , zs), for j = 1, . . . , s, and so G|{zs+1=···=zn=0}
is m-resonant and satisfies the hypotheses of [?, Theorem 1.1] or Theorem ?? (if
m = 2) and so we deduce that {zs+1 = · · · = zn = 0} contains a parabolic manifold
of G of dimension s. �
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[AriR] M. Arizzi, J. Raissy, On Écalle-Hakim’s theorems in holomorphic dynamics, to appear

in Proceedings of the conference “Frontiers in Complex Dynamics” held in Banff in
February 2011, arXiv:1106.1710v2.

[Ar] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations.

Springer, 1983.
[B] F. Bracci, Local holomorphic dynamics of diffeomorphisms in dimension one. Five lec-

tures in complex analysis, 1-42, Contemp. Math., 525, Amer. Math. Soc., Providence,

RI, 2010
[BZ] F. Bracci, D. Zaitsev, Dynamics of one-resonant biholomorphisms. J. Eur. Math. Soc.

15 (2013), 179–200.

[BRZ] F. Bracci and J. Raissy and D. Zaitsev, Dynamics of multi-resonant biholo-
morphisms, Int. Math. Res. Notices, first published online August 27, 2012,

doi:10.1093/imrn/rns192.
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Orsay, 1985.

[H1] M. Hakim, Analytic transformations of (Cp, 0) tangent to the identity, Duke Math. J.

92 (1998), 403–428.
[H2] M. Hakim, Transformations tangent to the identity. Stable pieces of manifolds,

Preprint, 1998.

[La] S. Lapan, Attracting domains of maps tangent to the identity whose only characteristic
direction is non-degenerate, preprint.

[R] J. Raissy, Torus actions in the normalization problem, Jour. Geom. Anal., 20, (2010),
472–524.

[Ri] M. Rivi, Parabolic manifolds for semi-attractive holomorphic germs. Michigan Math.

J. 49, 2, (2001), 211–241.
[Ro1] F. Rong, Quasi-parabolic analytic transformations of Cn. J. Math. Anal. Appl. 343,

No. 1, (2008), 99–109.

[Ro2] F. Rong, Linearization of holomorphic germs with quasi-parabolic fixed points. Ergodic
Theory Dyn. Syst. 28, No. 3, (2008), 979–986.



DYNAMICS OF TWO-RESONANT 15

[V1] L. R. Vivas: Fatou-Bieberbach Domains as Basins of Attraction of Automorphisms
Tangent to the Identity. Journal of Geometric Analysis 22, Issue 2 (2012), 352–382.

[V2] L. R. Vivas: Degenerate characteristic directions for maps tangent to the identity. to

appear in Indiana J. of Mathematics, 2012.
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