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Abstract. We give a short proof of Wolff-Denjoy theorem for (not necessarily smooth) strictly
convex domains. With similar techniques we are also able to prove a Wolff-Denjoy theorem for
weakly convex domains, again without any smoothness assumption on the boundary.

0. Introduction

Studying the dynamics of a holomorphic self-map f : ∆ → ∆ of the unit disk ∆ ⊂ C one is naturally led to
consider two different cases. If f has a fixed point then Schwarz’s lemma readily implies that either f is an
elliptic automorphism, or the sequence {fk} of iterates of f converges (uniformly on compact sets) to the
fixed point. The classical Wolff-Denjoy theorem ([W], [D]) says what happens when f has no fixed points:

Theorem 0.1: (Wolff-Denjoy) Let f : ∆ → ∆ be a holomorphic self-map without fixed points. Then there
exists a point τ ∈ ∂∆ such that the sequence {fk} of iterates of f converges (uniformly on compact sets) to
the constant map τ .

Since its discovery, a lot of work has been devoted to obtain similar statements in more general situations
(surveys covering different aspects of this topic are [A3, RS, ES]). In one complex variable, there are results
in multiply connected domains, multiply and infinitely connected Riemann surfaces, and even in the settings
of one-parameter semigroups and of random dynamical systems (see, e.g., [H, L, B]). In several complex
variables, the first Wolff-Denjoy theorems are due to Hervé [He1, 2]; in particular, in [He2] he proved a
statement identical to the one above for fixed points free self-maps of the unit ball Bn ⊂ C

n. Hervé’s
theorem has also been generalized in various ways to open unit balls of complex Hilbert and Banach spaces
(see, e.g., [BKS, S] and references therein).

A breakthrough occurred in 1988, when the first author (see [A1]) showed how to prove a Wolff-Denjoy
theorem for holomorphic self-maps of smoothly bounded strongly convex domains in C

n. The techniques
introduced there turned out to be quite effective in other contexts too (see, e.g., [A5, AR, Br1, Br2]); but in
particular they led to Wolff-Denjoy theorems in smooth strongly pseudoconvex domains and smooth domains
of finite type (see, e.g., [A4, Hu, RZ, Br3]).

Two natural questions were left open by the previous results : how much does the boundary smoothness
matter? And, what happens in weakly (pseudo)convex domains? As already shown by the results obtained
by Hervé [He1] in the bidisk, if we drop both boundary smoothness and strong convexity the situation
becomes much more complicated; but most of Hervé’s techniques were specific for the bidisk, and so not
necessarily applicable to more general domains. On the other hand, for smooth weakly convex domains a
Wolff-Denjoy theorem was already obtained in [A3] (but here we shall get a better result; see Corollary 3.2).

In 2012, Budzyńska [Bu2] (see also [BKR] and [Bu3] for infinite dimensional generalizations) finally
proved a Wolff-Denjoy theorem for holomorphic fixed point free self-maps of a bounded strictly convex
domain in C

n, under no smoothness assumption on the boundary; but she did not deal with weakly convex
domains.
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In Section 2 of this paper (Section 1 is devoted to recalling a few known preliminary facts) we shall
give a simpler proof of Budzyńska’s result, using only tools already introduced in [A1] and no additional
machinery; it is worth mentioning that the final proof is also simpler than the proof presented in [A1] for the
smooth case. In Section 3 we shall furthermore show how, combining our ideas with Budzyńska’s new tools,
one can obtain a Wolff-Denjoy theorem for weakly convex domains with no smoothness assumptions, thus
addressing the second natural question mentioned above. Finally, in Section 4 we shall specialize our results
to the polydisk, and we shall see that Hervé’s results imply that our statements are essentially optimal.

1. Preliminaries

In this section we shall collect a few more or less known facts on bounded convex domains in C
n.

1.1. Euclidean geometry.

Let us begin by recalling a few standard definitions and notations.

Definition 1.1: Given x, y ∈ C
n let

[x, y] = {sx + (1 − s)y ∈ C
n | s ∈ [0, 1]} and (x, y) = {sx + (1 − s)y ∈ C

n | s ∈ (0, 1)}

denote the closed, respectively open, segment connecting x and y. A set D ⊆ C
n is convex if [x, y] ⊆ D for

all x, y ∈ D; and strictly convex if (x, y) ⊆ D for all x, y ∈ D.

An easy but useful observation is:

Lemma 1.2: Let D ⊂ C
n be a convex domain. Then:

(i) (z, w) ⊂ D for all z ∈ D and w ∈ ∂D;
(ii) if x, y ∈ ∂D then either (x, y) ⊂ ∂D or (x, y) ⊂ D.

This suggests the following

Definition 1.3: Let D ⊂ C
n be a convex domain. Given x ∈ ∂D, we put

ch(x) = {y ∈ ∂D | [x, y] ⊂ ∂D} ;

we shall say that x is a strictly convex point if ch(x) = {x}. More generally, given F ⊆ ∂D we put

ch(F ) =
⋃

x∈F

ch(x) .

A similar construction having a more holomorphic character is the following:

Definition 1.4: Let D ⊂ C
n be a convex domain. A complex supporting functional at x ∈ ∂D is a

C-linear map σ:Cn → C such that Reσ(z) < Reσ(x) for all z ∈ D. A complex supporting hyperplane
at x ∈ ∂D is an affine complex hyperplane L ⊂ C

n of the form L = x + kerσ, where σ is a complex
supporting functional at x (the existence of complex supporting functionals and hyperplanes is guaranteed
by the Hahn-Banach theorem). Given x ∈ ∂D, we shall denote by Ch(x) the intersection of D with of
all complex supporting hyperplanes at x. Clearly, Ch(x) is a closed convex set containing x; in particular,
Ch(x) ⊆ ch(x). If Ch(x) = {x} we say that x is a strictly C-linearly convex point; and we say that D is
strictly C-linearly convex if all points of ∂D are strictly C-linearly convex. Finally, if F ⊂ ∂D we set

Ch(F ) =
⋃

x∈F

Ch(x) ⊆ ch(F ) .

Remark 1.5: If ∂D is of class C1 then for each x ∈ ∂D there exists a unique complex supporting
hyperplane at x, and thus Ch(x) coincides with the intersection of the complex supporting hyperplane
with ∂D, which is smaller than the flat region introduced in [A3, p. 277] as the intersection of ∂D with the
real supporting hyperplane. But non-smooth points can have more than one complex supporting hyperplanes;
this happens for instance in the polydisk (see Section 4).
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1.2. Intrinsic geometry

The intrinsic (complex) geometry of convex domains is conveniently described using the (intrinsic) Kobayashi
distance. We refer to [A3], [JP] and [K] for details and much more on the Kobayashi (pseudo)distance in
complex manifolds; here we shall just recall what is needed for our aims. Let k∆ denote the Poincaré distance
on the unit disk ∆ ⊂ C. If X is a complex manifold, the Lempert function δX :X ×X → R+ of X is

δX(z, w) = inf{k∆(ζ, η) | there exists a holomorphic map φ: ∆ → X with φ(ζ) = z and φ(η) = w}

for all z, w ∈ X. In general, the Kobayashi pseudodistance kX :X ×X → R+ of X is the largest pseudodis-
tance on X bounded above by δX ; when D ⊂⊂ C

n is a bounded convex domain in C
n, Lempert [Le] has

proved that δD is an actual distance, and thus it coincides with the Kobayashi distance kD of D.
The main property of the Kobayashi (pseudo)distance is that it is contracted by holomorphic maps:

if f :X → Y is a holomorphic map then kY
(
f(z), f(w)

)
≤ kX(z, w) for all z, w ∈ X. In particular,

biholomorphisms are isometries, and holomorphic self-maps are kX -nonexpansive.
The Kobayashi distance of convex domains enjoys several interesting properties; for instance, it coincides

with the Carathéodory distance, and it is a complete distance (see, e.g., [A3] or [Le]); in particular, kD-
bounded subsets of D are relatively compact in D. We shall also need is the following estimates:

Lemma 1.6: ([Le, KKR1, KS]) Let D ⊂⊂ C
n be a bounded convex domain. Then:

(i) if z1, z2, w1, w2 ∈ D and s ∈ [0, 1] then

kD
(
sz1 + (1 − s)w1, sz2 + (1 − s)w2

)
≤ max

{
kD(z1, z2), kD(w1, w2)

}
;

(ii) if z, w ∈ D and s, t ∈ [0, 1] then

kD
(
sz + (1 − s)w, tz + (1 − t)w

)
≤ kD(z, w) .

As a consequence we have:

Lemma 1.7: Let D ⊂⊂ C
n be a bounded convex domain, x, y ∈ ∂D, and let {zν}, {wν} ⊂ D be two

sequences converging to x and y respectively. If

sup
ν∈N

kD(zν , wν) = c < +∞

then [x, y] ⊂ ∂D. In particular, if x (or y) is a strictly convex point then x = y.

Proof : By Lemma 1.2 we know that either (x, y) ⊂ D, or (x, y) ⊂ ∂D. Assume by contradiction that
(x, y) ⊂ D. Lemma 1.6 yields

kD
(
szν + (1 − s)wν , tzν + (1 − t)wν

)
≤ kD(zν , wν) ≤ c

for each ν ∈ N and for all s, t ∈ (0, 1). Hence

kD
(
sx + (1 − s)y, tx + (1 − t)y

)
= lim

ν→∞
kD

(
szν + (1 − s)wν , tzν + (1 − t)wν

)
≤ c

for all s, t ∈ (0, 1). But this implies that (x, y) is relatively compact in D, which is impossible because
x, y ∈ ∂D. �

1.3. Dynamics

In this subsection we recall a few known facts about the dynamics of holomorphic (or more generally kD-
nonexpansive) self-maps of convex domains.

When D ⊂⊂ C
n is a bounded domain, by Montel’s theorem the space Hol(D,D) is relatively compact

in Hol(D,Cn). In particular, if f ∈ Hol(D,D) then every sequence {fkj} of iterates contains a subsequence
converging to a holomorphic map h ∈ Hol(D,Cn). Analogously, using this time Ascoli-Arzelà theorem, if
f :D → D is kD-nonexpansive then every sequence {fkj} of iterates contains a subsequence converging to a
continuous map h:D → D ⊂ C

n.
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Definition 1.8: Let D ⊂⊂ C
n be a bounded domain, and f :D → D a holomorphic or kD-nonexpansive

self-map. A map h:D → C
n is a limit point of the sequence {fk} of iterates of f if there is a subsequence

{fkj} of iterates converging (uniformly on compact subsets) to h; we shall denote by Γ(f) the set of all limit
points of {fk}. The target set T (f) of f is then defined as the union of the images of limit points of the
sequence of iterates:

T (f) =
⋃

h∈Γ(f)

h(D) .

Definition 1.9: A sequence {fk} ⊂ C(X,Y ) of continuous maps between topological spaces is com-
pactly divergent if for each pair of compact subsets H ⊆ X and K ⊆ Y there is k0 ∈ N such that
fk(H) ∩K = ∅ for all k ≥ k0.

When D is a convex domain, the target set either is contained in D if f has a fixed point or is contained
in ∂D if f has no fixed points. More precisely, we have the following statement (see [A1, A4, C, KKR1, KS,
Bu1]):

Theorem 1.10: Let D ⊂⊂ C
n be a bounded convex domain, and f :D → D a kD-nonexpansive (e.g.,

holomorphic) self-map. Then the following assertions are equivalent:

(i) f has a fixed point in D;
(ii) the sequence {fk} is not compactly divergent;

(iii) the sequence {fk} has no compactly divergent subsequences;
(iv) {fk(z)} is relatively compact in D for all z ∈ D;
(v) there exists z0 ∈ D such that {fk(z0)} is relatively compact in D;

(vi) there exists z0 ∈ D such that {fk(z0)} admits a subsequence relatively compact in D.

Remark 1.11: For more general taut domains (and f holomorphic) the statements (ii)–(vi) are still
equivalent. For some classes of domains, these statements are equivalent to f having a periodic point (see [A4]
and [Hu]); however, there exist holomorphic self-maps of a taut topologically contractible smooth domain
satisfying (ii)–(vi) but without fixed points (see [AH]).

When the sequence of iterates of f is not compactly divergent (i.e., when f has a fixed point if D
is convex) then the target set of f has already been characterized ([Be], [A1, 5]). In particular, using
Theorem 1.10 and repeating word by word the proof of [A3, Theorem 2.1.29] we obtain

Theorem 1.12: Let D ⊂⊂ C
n be a bounded convex domain, and f :D → D a kD-nonexpansive (e.g.,

holomorphic) self-map of D. Assume that f has a fixed point in D. Then T (f) is a kD-nonexpansive
(respectively, holomorphic) retract of D. More precisely, there exists a unique kD-nonexpansive (respectively,
holomorphic) retraction ρ:D → T (f) which is a limit point of {fk}, such that every limit point of {fk}
is of the form γ ◦ ρ, where γ:T (f) → T (f) is a (biholomorphic) invertible kD-isometry, and f |T (f) is a
(biholomorphic) invertible kD-isometry.

In this paper we want to describe the target set of fixed points free self-maps of bounded convex domains.

2. Strictly convex domains

Since Wolff’s proof of the Wolff-Denjoy theorem [W], horospheres have been the main tool needed for the
study of the dynamics of fixed points free holomorphic self-maps. Let us recall the general definitions
introduced in [A1, 3].

Definition 2.1: Let D ⊂⊂ C
n be a bounded domain, z0 ∈ D, x ∈ ∂D and R > 0. The small horosphere

Ez0(x,R) and the large horosphere Fz0(x,R) of center x, pole z0 and radius R are defined by

Ez0(x,R) =
{
z ∈ D

∣∣ lim sup
w→x

[
kD(z, w) − kD(z0, w)

]
< 1

2 logR
}
,

Fz0(x,R) =
{
z ∈ D

∣∣ lim inf
w→x

[
kD(z, w) − kD(z0, w)

]
< 1

2 logR
}
.

The following lemma contains some basic properties of horospheres, immediate consequence of the
definition and of Lemma 1.6:
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Lemma 2.2: Let D ⊂⊂ C
n be a bounded domain, z0 ∈ D and x ∈ ∂D. Then:

(i) we have Ez0(x,R) ⊆ Fz0(x,R) for every R > 0;
(ii) we have Ez0(x,R1) ∩D ⊆ Ez0(x,R2) and Fz0(x,R1) ∩D ⊆ Fz0(x,R2) for every 0 < R1 < R2;

(iii) we have BD

(
z0,

1
2 logR

)
⊆ Ez0(x,R) for all R > 1, where BD(z0, r) denotes the Kobayashi ball of

center z0 and radius r;
(iv) we have Fz0(x,R) ∩BD

(
z0,−

1
2 logR) = ∅ for all 0 < R < 1;

(v)
⋃

R>0

Ez0(x,R) =
⋃

R>0

Fz0(x,R) = D and
⋂

R>0

Ez0(x,R) =
⋂

R>0

Fz0(x,R) = ∅;

(vi) if moreover D is convex then Ez0(x,R) is convex for every R > 0.

Large horospheres are not always convex, even if D is convex; an example is given by the horospheres
in the polydisk (see Section 4). However, large horospheres in convex domains are always star-shaped with
respect to the center:

Lemma 2.3: Let D ⊂⊂ C
n be a bounded convex domain, z0 ∈ D, R > 0 and x ∈ ∂D. Then we have

[x, z] ⊂ Fz0(x,R) for all z ∈ Fz0(x,R). In particular, x always belongs to Fz0(x,R).

Proof : Given z ∈ Fz0(x,R), choose a sequence {xν} ⊂ D converging to x and such that the limit of
kD(z, xν) − kD(z0, xν) exists and is less than 1

2 logR. Given 0 < s < 1, let hs
ν :D → D be

∀w ∈ D hs
ν(w) = sw + (1 − s)xν ;

then hs
ν(xν) = xν , and moreover

∀z1, z2 ∈ D kD
(
hs
ν(z1), hs

ν(z2)
)
≤ kD(z1, z2)

because hs
ν is a holomorphic self-map of D. In particular,

lim sup
ν→+∞

[
kD

(
hs
ν(z), xν) − kD(z0, xν)

]
≤ lim

ν→+∞

[
kD(z, xν) − kD(z0, xν)

]
< 1

2 logR .

Furthermore we have
∣∣kD

(
sz + (1 − s)x, xν

)
− kD

(
hs
ν(z), xν

)∣∣ ≤ kD
(
sz + (1 − s)xν , sz + (1 − s)x

)
→ 0

as ν → +∞. Therefore

lim inf
w→x

[
kD

(
sz + (1 − s)x,w

)
− kD(z0, w)

]
≤ lim sup

ν→+∞

[
kD

(
sz + (1 − s)x, xν

)
− kD(z0, xν)

]

≤ lim sup
ν→+∞

[
kD

(
hs
ν(z), xν

)
− kD(z0, xν)

]
+ lim

ν→+∞

[
kD

(
sz + (1 − s)x, xν

)
− kD

(
hs
ν(z), xν

)]

< 1
2 logR ,

and thus sz+(1−s)x ∈ Fz0(x,R). Letting s → 1 we get x ∈ Fz0(x,R), and we have proved the assertion for
z ∈ Fz0(x,R). If z ∈ ∂Fz0(x,R), it suffices to apply the statement to a sequence in Fz0(x,R) approaching z.

�

One of the main points in the proof given in [A1] of the Wolff-Denjoy theorem for strongly convex C2

domains is the fact that in such domains the intersection between the closure of a large horosphere and the
boundary of the domain reduces to the center of the horosphere. The following corollary will play the same
rôle for not necessarily smooth convex domains:

Corollary 2.4: Let D ⊂⊂ C
n be a bounded convex domain, z0 ∈ D, and x ∈ ∂D. Then

⋂

R>0

Fz0(x,R) ⊆ ch(x) . (2.1)

In particular, if x is a strictly convex point then
⋂

R>0

Fz0(x,R) = {x}.

Proof : First of all, Lemma 2.2 implies that the intersection in (2.1) is not empty and contained in ∂D. Take
x̃ ∈

⋂
R>0 Fz0(x,R) different from x. Then Lemma 2.3 implies that the whole segment [x, x̃] is contained in

the intersection, and thus in ∂D; hence x̃ ∈ ch(x), and we are done. �
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Let us turn now to the study of the target set. A first step in this direction is the following:

Proposition 2.5: Let D ⊂⊂ C
n be a bounded convex domain. Then:

(i) for every connected complex manifold X and every holomorphic map h:X → C
n such that h(X) ⊂ D

and h(X) ∩ ∂D 6= ∅ we have

h(X) ⊆
⋂

x∈X

Ch
(
h(x)

)
⊆ ∂D .

In particular, if h is a limit point of the sequence of iterates of a holomorphic self-map of D without
fixed points we have

h(D) ⊆
⋂

z∈D

Ch
(
h(z)

)
.

(ii) Let f :D → D be a kD-nonexpansive self-map without fixed points, and h:D → C
n a limit point of

{fk}. Then

h(D) ⊆
⋂

z∈D

ch
(
h(z)

)
.

Proof : (i) The fact that h(X) ⊆ ∂D is an immediate consequence of the maximum principle (see, e.g., [AV,
Lemma 2.1]).

Let now L = h(x0)+kerσ be a complex supporting hyperplane at h(x0). Then Re(σ ◦h) ≤ Reσ
(
h(x0)

)

on X; therefore, by the maximum principle, σ ◦ h ≡ σ
(
h(x0)

)
, that is h(X) ⊂ L. Since this holds for all

complex supporting hyperplanes at h(x0) the assertion follows.
(ii) Let {fkj} be a subsequence of iterates converging to h. Since f has no fixed points, we know by

Theorem 1.10 that h(D) ⊆ ∂D. Furthermore

∀z, w ∈ D kD
(
fkj (z), fkj (w)

)
≤ kD(z, w) < +∞ ;

therefore Lemma 1.7 implies [h(z), h(w)] ⊂ ∂D, and the assertion follows. �

The disadvantage of these statements is that the right-hand side still depends on the given limit point
of the sequence of iterates; instead we would like to determine a subset of the boundary containing the whole
target set. This can be accomplished as follows:

Lemma 2.6: Let D ⊂⊂ C
n be a bounded convex domain, and f :D → D a kD-nonexpansive (respectively,

holomorphic) self-map without fixed points. Assume there exist ∅ 6= E ⊆ F ⊂ D such that fk(E) ⊂ F for
all k ∈ N. Then we have

T (f) ⊆ ch
(
F ∩ ∂D

)

if f is kD-nonexpansive, or
T (f) ⊆ Ch

(
F ∩ ∂D

)

if f is holomorphic.

Proof : Let h be a limit point of the sequence of iterates of f . Since f has no fixed points, we know that
h(D) ⊆ ∂D. Take z0 ∈ E; by assumption, the whole orbit of z0 is contained in F . Therefore h(z0) ∈ F ∩∂D,
and the assertion follows from Proposition 2.5. �

The Wolff lemma [A1, Theorem 2.3], whose proof can easily be adapted to the case of kD-nonexpansive
maps, is exactly what we need to apply Lemma 2.6:

Lemma 2.7: Let D ⊂⊂ C
n be a convex domain, and let f :D → D be kD-nonexpansive and without fixed

points. Then there exists x ∈ ∂D such that for every z0 ∈ D, R > 0 and k ∈ N we have

fk
(
Ez0(x,R)

)
⊆ Fz0(x,R) .

We can now give a proof of a Wolff-Denjoy theorem for kD-nonexpansive self-maps of strictly convex
domains in the same spirit as the proof given in [A1] of the Wolff-Denjoy theorem for holomorphic self-maps
of C2 strongly convex domains, without requiring the machinery introduced in [Bu2] and [BKR]:
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Theorem 2.8: Let D ⊂⊂ C
n be a bounded strictly convex domain, and f :D → D a kD-nonexpansive (e.g.,

holomorphic) self-map without fixed points. Then there exists a x0 ∈ ∂D such that T (f) = {x0}, that is the
sequence of iterates {fk} converges to the constant map x0.

Proof : Fix z0 ∈ D. Lemmas 2.7 and 2.6 give x0 ∈ ∂D such that

T (f) ⊆
⋂

R>0

ch
(
Fz0(x0, R) ∩ ∂D

)
.

But D is strictly convex; therefore ch
(
Fz0(x0, R) ∩ ∂D

)
= Fz0(x0, R) ∩ ∂D, and the assertion follows from

Corollary 2.4. �

In [A2] the first author characterized converging one-parameter semigroups of holomorphic self-maps of
smooth strongly convex domains. Theorem 2.8 allows us to extend that characterization to (not necessarily
smooth) strictly convex domains:

Corollary 2.9: Let D ⊂⊂ C
n be a bounded strictly convex domain, and Φ:R+ → Hol(D,D) a one-

parameter semigroup of holomorphic self-maps of D. Then Φ converges if and only if

(i) either Φ has a fixed point z0 ∈ D and the spectral generator at z0 of Φ has no nonzero purely imaginary
eigenvalues, or

(ii) Φ has no fixed points.

Proof : It follows arguing as in [A2, Theorem 1.3], replacing the references to [A1] by Theorem 2.8. �

3. Weakly convex domains

As mentioned in the introduction, this approach works too when D is convex but not strictly convex. Simply
applying the same argument used to prove Theorem 2.8 one obtains

T (f) ⊆
⋂

R>0

ch
(
Fz0(x0, R) ∩ ∂D

)

in the kD-nonexpansive case, and

T (f) ⊆
⋂

R>0

Ch
(
Fz0(x0, R) ∩ ∂D

)
(3.1)

in the holomorphic case (and it is easy to see that these intersections do not depend on z0 ∈ D). This
already can be used to strengthen the Wolff-Denjoy theorem obtained in [A3, Theorem 2.4.27] for weakly
convex C2 domains. Indeed, we can prove the following:

Proposition 3.1: Let D ⊂⊂ C
n be a C2 bounded convex domain, and x ∈ ∂D. Then for every z0 ∈ D and

R > 0 we have
Fz0(x,R) ∩ ∂D ⊆ Ch(x) .

In particular, if x is a strictly C-linearly convex point then Fz0(x,R) ∩ ∂D = {x}.

Proof : For every x ∈ ∂D let nx denote the unit outer normal vector to ∂D in x, and put σx(z) = (z,nx),
where (· , ·) is the canonical Hermitian product. Then σx is a complex supporting functional at x such that
σx(y) = σx(x) for some y ∈ ∂D if and only if y ∈ Ch(x).

We can now argue as in the proof of [A3, Proposition 2.4.26] replacing the P -function Ψ: ∂D×C
n → C

given by Ψ(x, z) = exp
(
σx(z) − σx(x)

)
, with the P -function Ψ̂: ∂D × C

n → C given by

Ψ̂(x, z) =
1

1 −
(
σx(z) − σx(x)

) .

�
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Corollary 3.2: Let D ⊂⊂ C
n be a C2 bounded convex domain, and f :D → D a holomorphic self-map

without fixed points. Then there exists x0 ∈ ∂D such that T (f) ⊆ Ch(x0). In particular, if D is strictly
C-linearly convex then the sequence of iterates {fk} converges to the constant map x0.

Proof : It follows from (3.1), Proposition 3.1, and the fact that in C2 convex domains each point in the
boundary admits a unique complex supporting hyperplane. �

Remark 3.3: We conjecture that the final assertion of this corollary should also hold for not necessarily
smooth strictly C-linearly convex domains.

In weakly convex non-smooth domains large horospheres might be too large, and the right-hand side of
(3.1) might coincide with the whole boundary of the domain (see Section 4 for an example in the polydisk);
so to get an effective statement we need to replace them with smaller sets.

Small horospheres might be too small; as shown by Frosini [F], there are holomorphic self-maps of
the polydisk with no invariant small horospheres. We thus need another kind of horospheres, defined by
Kapeluszny, Kuczumow and Reich [KKR2], and studied in detail by Budzyńska [Bu2]. To introduce them
we begin with a definition:

Definition 3.4: Let D ⊂⊂ C
n be a bounded domain, and z0 ∈ D. A sequence x = {xν} ⊂ D

converging to x ∈ ∂D is a horosphere sequence at x if the limit of kD(z, xν) − kD(z0, xν) as ν → +∞ exists
for all z ∈ D.

Remark 3.5: It is easy to see that the notion of horosphere sequence does not depend on the point z0.

Remark 3.6: In [BKR] it is shown that every sequence in D converging to x ∈ ∂D contains a subse-
quence which is a horosphere sequence at x. In strongly convex C3 domains all sequences converging to a
boundary point are horosphere sequences (see [A3, Theorem 2.6.47] and [BPT]); in Section 4 we shall give
an explicit example of horosphere sequence in the polydisk.

Definition 3.7: Let D ⊂⊂ C
n be a bounded convex domain. Given z0 ∈ D, let x be a horosphere

sequence at x ∈ ∂D, and take R > 0. Then the sequence horosphere Gz0(x,R,x) is defined as

Gz0(x,R,x) =
{
z ∈ D

∣∣ lim
ν→+∞

[
kD(z, xν) − kD(z0, xν)

]
< 1

2 logR
}
.

The basic properties of sequence horospheres are contained in the following:

Proposition 3.8: ([KKR2, Bu2, BKR]) Let D ⊂⊂ C
n be a bounded convex domain. Fix z0 ∈ D, and let

x = {xν} ⊂ D be a horosphere sequence at x ∈ ∂D for z0. Then:
(i) Ez0(x,R) ⊆ Gz0(x,R,x) ⊆ Fz0(x,R) for all R > 0;

(ii) Gz0(x,R,x) is nonempty and convex for all R > 0;
(iii) Gz0(x,R1,x) ∩D ⊂ Gz0(x,R2,x) for all 0 < R1 < R2;
(iv) BD(z0,

1
2 logR) ⊂ Gz0(x,R,x) for all R > 1;

(v) BD(z0,−
1
2 logR) ∩Gz0(x,R,x) = ∅ for all 0 < R < 1;

(vi)
⋃

R>0

Gz0(x,R,x) = D and
⋂

R>0

Gz0(x,R,x) = ∅.

Remark 3.9: If x is a horosphere sequence at x ∈ ∂D then it is not difficult to check that the family
{Gz(x, 1,x)}z∈D and the family {Gz0(x,R,x)}R>0 with, z0 ∈ D given, coincide.

It turns out that we can always find invariant sequence horospheres:

Lemma 3.10: Let D ⊂⊂ C
n be a convex domain, and let f :D → D be kD-nonexpansive and without fixed

points. Then there exists x ∈ ∂D and a horosphere sequence x at x such that

f
(
Gz0(x,R,x)

)
⊆ Gz0(x,R,x)

for every z0 ∈ D and R > 0.

Proof : Arguing as in the proof of [A1, Theorem 2.3] we can find a sequence {fν} of kD-contractions with a
unique fixed point xν ∈ D such that fν → f and xν → x ∈ ∂D as ν → +∞. Up to a subsequence, we can
also assume (Remark 3.6) that x = {xν} is a horosphere sequence at x.
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Now, for every z ∈ D we have

∣∣kD
(
f(z), xν

)
− kD

(
fν(z), xν

)∣∣ ≤ kD
(
fν(z), f(z)

)
→ 0

as ν → +∞. Therefore if z ∈ Gz0(x,R,x) we get

lim
ν→+∞

[
kD

(
f(z), xν

)
− kD(z0, xν)

]

≤ lim sup
ν→+∞

[
kD

(
fν(z), xν

)
− kD(z0, xν)

]
+ lim sup

ν→+∞

[
kD

(
f(z), xν

)
− kD

(
fν(z), xν

)]

≤ lim
ν→+∞

[
kD(z, xν) − kD(z0, xν)

]
< 1

2 logR

because fν(xν) = xν for all ν ∈ N, and we are done. �

Putting everything together we can prove the following Wolff-Denjoy theorem for (not necessarily strictly
or smooth) convex domains:

Theorem 3.11: Let D ⊂⊂ C
n be a bounded convex domain, and f :D → D a kD-nonexpansive (respec-

tively, holomorphic) self-map without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x

at x such that for any z0 ∈ D we have

T (f) ⊆
⋂

z∈D

ch
(
Gz(x, 1,x) ∩ ∂D

)
=

⋂

R>0

ch
(
Gz0(x,R,x) ∩ ∂D

)

if f is kD-nonexpansive, or

T (f) ⊆
⋂

z∈D

Ch
(
Gz(x, 1,x) ∩ ∂D

)
=

⋂

R>0

Ch
(
Gz0(x,R,x) ∩ ∂D

)

if f is holomorphic.

Proof : The equality of the intersections (and thus the independence of z0) is an immediate consequence of
Remark 3.9. Then the assertion follows from Lemmas 3.10 and 2.6. �

Corollary 3.12: Let D ⊂⊂ C
n be a bounded strictly C-linearly convex domain, and f :D → D a holomor-

phic self-map of D without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x at x such
that for any z0 ∈ D we have

T (f) ⊆
⋂

z∈D

Gz(x, 1,x) =
⋂

R>0

Gz0(x,R,x) .

Proof : It follows immediately from Theorem 3.11 and the definition of strictly C-linearly convex domain.�

4. The polydisk

The polydisk ∆n ⊂ C
n is the unit ball for the norm

‖z‖ = max{|zj | | j = 1, . . . , n} ,

and therefore

∀z, w ∈ ∆n k∆n(z, w) =
1

2
log

1 + ‖γz(w)‖

1 − ‖γz(w)‖
,

where

γz(w) =

(
w1 − z1
1 − z1w1

, . . . ,
wn − zn
1 − znwn

)

is an automorphism of the polydisk with γz(z) = 0.
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Thanks to the homogeneity of ∆n, we can restrict ourselves to consider only horospheres with pole z0
at the origin, and we have (see [A3, chapter 2.4.2] for detailed computations) the following description for
horospheres with center ξ ∈ ∂∆n and radius R > 0:

EO(ξ, R) =

{
z ∈ ∆n

∣∣∣∣ max
j

{
|ξj − zj |

2

1 − |zj |2

∣∣∣∣ |ξj | = 1

}
< R

}

and

FO(ξ, R) =

{
z ∈ ∆n

∣∣∣∣ min
j

{
|ξj − zj |

2

1 − |zj |2

∣∣∣∣ |ξj | = 1

}
< R

}
.

Moreover, EO(ξ, R) = FO(ξ, R) if and only if ξ has only one component of modulus 1.
Given ξ ∈ ∂∆n, a not difficult computation shows that

ch(ξ) =
⋃

|ξj |=1

{η ∈ ∂∆n | ηj = ξj} and Ch(ξ) =
⋂

|ξj |=1

{η ∈ ∂∆n | ηj = ξj} .

This implies that in the polydisk large horospheres are too large to give a sensible Wolff-Denjoy theorem.
Indeed we have ch

(
FO(ξ, R) ∩ ∂∆n

)
= Ch

(
FO(ξ, R) ∩ ∂∆n

)
= ∂∆n if ξ has at least two components of

modulus 1, and

ch
(
FO(ξ, R) ∩ ∂∆n

)
= Ch

(
FO(ξ, R) ∩ ∂∆n

)
= ∂∆n \ {η ∈ ∂∆n | ηj0 6= ξj0 , |ηj | < 1 for j 6= j0}

if |ξj0 | = 1 and |ξj | < 1 for j 6= j0.
Let us then compute the sequence horospheres. Fix a horosphere sequence x = {xν} converging

to ξ ∈ ∂∆n. Arguing as in [A3, chapter 2.4.2], we arrive to the following

GO(ξ, R,x) =

{
z ∈ ∆n

∣∣∣∣ max
j

{
|ξj − zj |

2

1 − |zj |2
lim

ν→+∞
min
h

{
1 − |xν,h|

2

1 − |xν,j |2

}∣∣∣∣ |ξj | = 1

}
< R

}
.

Since if |ξj | = 1 we clearly have

αj := lim
ν→+∞

min
h

{
1 − |xν,h|

2

1 − |xν,j |2

}
≤ 1 ,

we get

GO(ξ, R,x) =

{
z ∈ ∆n

∣∣∣∣ max
j

{
αj

|ξj − zj |
2

1 − |zj |2

∣∣∣∣ |ξj | = 1

}
< R

}
.

In other words, we can write GO(ξ, R,x) as a product

GO(ξ, R,x) =

n∏

j=1

Ej ,

where, denoting by E∆(σ,R) ⊂ ∆ the standard horocycle of center σ ∈ ∂∆, pole the origin and radius R > 0,
we put

Ej =

{
∆ if |ξj | < 1,
E∆(ξj , R/αj) if |ξj | = 1.

As a consequence,

ch
(
GO(ξ, R,x) ∩ ∂∆n

)
= Ch

(
GO(ξ, R,x) ∩ ∂∆n

)
=

n⋃

j=1

∆ × · · · × Cj(ξ) × · · · × ∆ ,

where

Cj(ξ) =

{
{ξj} if |ξj | = 1,
∂∆ if |ξj | < 1.

Notice that the right-hand sides do not depend either on R or on the horosphere sequence x, but only on ξ.
So Theorem 3.11 in the polydisk assumes the following form:
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Corollary 4.1: Let f : ∆n → ∆n be a k∆n -nonexpansive (e.g., holomorphic) self-map without fixed points.
Then there exists ξ ∈ ∂∆n such that

T (f) ⊆

n⋃

j=1

∆ × · · · × Cj(ξ) × · · · × ∆ , (4.1)

where

Cj(ξ) =

{
{ξj} if |ξj | = 1,
∂∆ if |ξj | < 1.

This is the best one can do, in the sense that while it is true that the image of a limit point of the
sequence of iterates of f is always contained in just one of the set appearing in the right-hand side of (4.1),
it is impossible to determine a priori in which one on the basis of the point ξ only; it is necessary to know
something more about the map f . Indeed, Hervé has proved the following:

Theorem 4.2: ([He1]) Let F = (f, g): ∆2 → ∆2 be a holomorphic self-map of the bidisk, and write
fw = f(·, w) and gz = g(z, ·). Assume that Fix(F ) = ∅. Then one and only one of the following cases
occurs:

(0) if g(z, w) ≡ w (respectively, f(z, w) ≡ z) then the sequence of iterates of F converges uniformly on
compact sets to h(z, w) = (σ,w), where σ is the common Wolff point of the fw’s (respectively, to
h(z, w) = (z, τ), where τ is the common Wolff point of the gz’s);

(1) if Fix(fw) = ∅ for all w ∈ ∆ and Fix(gz) = {y(z)} ⊂ ∆ for all z ∈ ∆ (respectively, if Fix(fw) = {x(w)}
and Fix(gz) = ∅) then T (f) ⊆ {σ} × ∆, where σ ∈ ∂∆ is the common Wolff point of the fw’s
(respectively, T (f) ⊆ ∆ × {τ}, where τ is the common Wolff point of the gz’s);

(2) if Fix(fw) = ∅ for all w ∈ ∆ and Fix(gz) = ∅ for all z ∈ ∆ then either T (f) ⊆ {σ}×∆ or T (f) ⊆ ∆×{τ},
where σ ∈ ∂∆ is the common Wolff point of the fw’s, and τ ∈ ∂∆ is the common Wolff point of the gz;

(3) if Fix(fw) = {x(w)} ⊂ ∆ for all w ∈ ∆ and Fix(gz) = {y(z)} ⊂ ∆ for all z ∈ ∆ then there are
σ, τ ∈ ∂D such that the sequence of iterates converges to the constant map (σ, τ).

We end this paper providing, as promised, an example of horosphere sequence. Given ξ ∈ ∂∆n, put
xν = (1−1/ν)1/2ξ; we claim that x = {xν} is a horosphere sequence. Indeed, arguing as in [A3, chapter 2.4.2]
we see it suffices to show that

max
|ξj |=1

{
min
h

{
1 − |xν,h|

2

1 − |xν,j |2

}
|1 − zjxν,j |

2

1 − |zj |2

}

converges as ν → +∞. But indeed with this choice of xν we have

max
|ξj |=1

{
min
h

{
1 − |xν,h|

2

1 − |xν,j |2

}
|1 − zjxν,j |

2

1 − |zj |2

}
= max

|ξj |=1

{
min
h

{
ν(1 − |ξh|

2) + |ξh|
2
} |1 − zjxν,j |

2

1 − |zj |2

}

= max
|ξj |=1

{
|1 − zjxν,j |

2

1 − |zj |2

}
→ max

|ξj |=1

{
|ξj − zj |

2

1 − |zj |2

}
.

In particular, using this horosphere sequence one obtains GO(ξ, R,x) = EO(ξ, R).
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[Bu3] M. Budzyńska: The Denjoy-Wolff theorem for condensing mappings in a bounded and strictly
convex domain in a complex Banach space. Preprint, 2012.
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81–86.



Wolff-Denjoy theorems in non-smooth convex domains 13
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