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Introduction

Studying the dynamics of a holomorphic self-map f : ∆ → ∆ of the unit disk ∆ ⊂ C one is naturally led to consider two different cases. If f has a fixed point then Schwarz's lemma readily implies that either f is an elliptic automorphism, or the sequence {f k } of iterates of f converges (uniformly on compact sets) to the fixed point. The classical Wolff-Denjoy theorem ( [W], [D]) says what happens when f has no fixed points: Theorem 0.1: (Wolff-Denjoy) Let f : ∆ → ∆ be a holomorphic self-map without fixed points. Then there exists a point τ ∈ ∂∆ such that the sequence {f k } of iterates of f converges (uniformly on compact sets) to the constant map τ .

Since its discovery, a lot of work has been devoted to obtain similar statements in more general situations (surveys covering different aspects of this topic are [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF][START_REF] Reich | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces[END_REF][START_REF] Elin | Shoikhet: Linearization models for complex dynamical systems[END_REF]). In one complex variable, there are results in multiply connected domains, multiply and infinitely connected Riemann surfaces, and even in the settings of one-parameter semigroups and of random dynamical systems (see, e.g., [H, L, B]). In several complex variables, the first Wolff-Denjoy theorems are due to Hervé [START_REF] Hervé | Itération des transformations analytiques dans le bicercle-unité[END_REF]2]; in particular, in [START_REF] Hervé | Quelques propriétés des applications analytiques d'une boule à m dimensions dans ellemême[END_REF] he proved a statement identical to the one above for fixed points free self-maps of the unit ball B n ⊂ C n . Hervé's theorem has also been generalized in various ways to open unit balls of complex Hilbert and Banach spaces (see, e.g., [BKS, S] and references therein).

A breakthrough occurred in 1988, when the first author (see [A1]) showed how to prove a Wolff-Denjoy theorem for holomorphic self-maps of smoothly bounded strongly convex domains in C n . The techniques introduced there turned out to be quite effective in other contexts too (see, e.g., [START_REF] Abate | Angular derivatives in several complex variables[END_REF][START_REF] Abate | Backward iteration in strongly convex domains[END_REF][START_REF] Bracci | Fixed points of commuting holomorphic mappings other than the Wolff point[END_REF][START_REF] Bracci | Dilatation and order of contact for holomorphic self-maps of strongly convex domains[END_REF]); but in particular they led to Wolff-Denjoy theorems in smooth strongly pseudoconvex domains and smooth domains of finite type (see, e.g., [START_REF] Abate | Iteration theory, compactly divergent sequences and commuting holomorphic maps[END_REF][START_REF] Huang | A non-degeneracy property of extremal mappings and iterates of holomorphic selfmappings[END_REF][START_REF] Ren | Dynamics on weakly pseudoconvex domains[END_REF][START_REF] Bracci | A note on random holomorphic iteration in convex domains[END_REF]).

Two natural questions were left open by the previous results : how much does the boundary smoothness matter? And, what happens in weakly (pseudo)convex domains? As already shown by the results obtained by Hervé [He1] in the bidisk, if we drop both boundary smoothness and strong convexity the situation becomes much more complicated; but most of Hervé's techniques were specific for the bidisk, and so not necessarily applicable to more general domains. On the other hand, for smooth weakly convex domains a Wolff-Denjoy theorem was already obtained in [A3] (but here we shall get a better result; see Corollary 3.2).

In 2012, Budzyńska [START_REF] Budzyńska | The Denjoy-Wolff theorem in C n[END_REF] (see also [BKR] and [START_REF] Budzyńska | The Denjoy-Wolff theorem for condensing mappings in a bounded and strictly convex domain in a complex Banach space[END_REF] for infinite dimensional generalizations) finally proved a Wolff-Denjoy theorem for holomorphic fixed point free self-maps of a bounded strictly convex domain in C n , under no smoothness assumption on the boundary; but she did not deal with weakly convex domains.

In Section 2 of this paper (Section 1 is devoted to recalling a few known preliminary facts) we shall give a simpler proof of Budzyńska's result, using only tools already introduced in [A1] and no additional machinery; it is worth mentioning that the final proof is also simpler than the proof presented in [A1] for the smooth case. In Section 3 we shall furthermore show how, combining our ideas with Budzyńska's new tools, one can obtain a Wolff-Denjoy theorem for weakly convex domains with no smoothness assumptions, thus addressing the second natural question mentioned above. Finally, in Section 4 we shall specialize our results to the polydisk, and we shall see that Hervé's results imply that our statements are essentially optimal.

Preliminaries

In this section we shall collect a few more or less known facts on bounded convex domains in C n .

Euclidean geometry.

Let us begin by recalling a few standard definitions and notations. An easy but useful observation is:

Definition 1.1: Given x, y ∈ C n let [x, y] = {sx + (1 -s)y ∈ C n | s ∈ [0, 1]} and (x, y) = {sx + (1 -s)y ∈ C n | s ∈ (0,
Lemma 1.2: Let D ⊂ C n be a convex domain. Then: (i) (z, w) ⊂ D for all z ∈ D and w ∈ ∂D; (ii) if x, y ∈ ∂D then either (x, y) ⊂ ∂D or (x, y) ⊂ D.
This suggests the following

Definition 1.3: Let D ⊂ C n be a convex domain. Given x ∈ ∂D, we put ch(x) = {y ∈ ∂D | [x, y] ⊂ ∂D} ;
we shall say that x is a strictly convex point if ch(x) = {x}. More generally, given F ⊆ ∂D we put ch(F ) = x∈F ch(x) .

A similar construction having a more holomorphic character is the following:

Definition 1.4: Let D ⊂ C n be a convex domain. A complex supporting functional at x ∈ ∂D is a C-linear map σ: C n → C such that Re σ(z) < Re σ(x) for all z ∈ D. A complex supporting hyperplane at x ∈ ∂D is an affine complex hyperplane L ⊂ C n of the form L = x + ker σ, where σ is a complex supporting functional at x (the existence of complex supporting functionals and hyperplanes is guaranteed by the Hahn-Banach theorem). Given x ∈ ∂D, we shall denote by Ch(x) the intersection of D with of all complex supporting hyperplanes at x. Clearly, Ch(x) is a closed convex set containing x; in particular, Ch(x) ⊆ ch(x). If Ch(x) = {x} we say that x is a strictly C-linearly convex point; and we say that D is strictly C-linearly convex if all points of ∂D are strictly C-linearly convex. Finally, if F ⊂ ∂D we set

Ch(F ) = x∈F Ch(x) ⊆ ch(F ) .
Remark 1.5: If ∂D is of class C 1 then for each x ∈ ∂D there exists a unique complex supporting hyperplane at x, and thus Ch(x) coincides with the intersection of the complex supporting hyperplane with ∂D, which is smaller than the flat region introduced in [A3, p. 277] as the intersection of ∂D with the real supporting hyperplane. But non-smooth points can have more than one complex supporting hyperplanes; this happens for instance in the polydisk (see Section 4).

Intrinsic geometry

The intrinsic (complex) geometry of convex domains is conveniently described using the (intrinsic) Kobayashi distance. We refer to [A3], [JP] and [K] for details and much more on the Kobayashi (pseudo)distance in complex manifolds; here we shall just recall what is needed for our aims. Let k ∆ denote the Poincaré distance on the unit disk ∆ ⊂ C. If X is a complex manifold, the Lempert function δ

X : X × X → R + of X is δ X (z, w) = inf{k ∆ (ζ, η)
| there exists a holomorphic map φ: ∆ → X with φ(ζ) = z and φ(η) = w} for all z, w ∈ X. In general, the Kobayashi pseudodistance k X : X × X → R + of X is the largest pseudodistance on X bounded above by δ X ; when D ⊂⊂ C n is a bounded convex domain in C n , Lempert [Le] has proved that δ D is an actual distance, and thus it coincides with the Kobayashi distance k D of D.

The main property of the Kobayashi (pseudo)distance is that it is contracted by holomorphic maps:

if f : X → Y is a holomorphic map then k Y f (z), f (w) ≤ k X (z, w) for all z, w ∈ X.
In particular, biholomorphisms are isometries, and holomorphic self-maps are k X -nonexpansive.

The Kobayashi distance of convex domains enjoys several interesting properties; for instance, it coincides with the Carathéodory distance, and it is a complete distance (see, e.g., [A3] or [Le]); in particular, k Dbounded subsets of D are relatively compact in D. We shall also need is the following estimates:

Lemma 1.6: ([Le, KKR1, KS]) Let D ⊂⊂ C n be a bounded convex domain. Then: (i) if z 1 , z 2 , w 1 , w 2 ∈ D and s ∈ [0, 1] then k D sz 1 + (1 -s)w 1 , sz 2 + (1 -s)w 2 ≤ max k D (z 1 , z 2 ), k D (w 1 , w 2 ) ; (ii) if z, w ∈ D and s, t ∈ [0, 1] then k D sz + (1 -s)w, tz + (1 -t)w ≤ k D (z, w) .
As a consequence we have:

Lemma 1.7: Let D ⊂⊂ C n be a bounded convex domain, x, y ∈ ∂D, and let {z ν }, {w ν } ⊂ D be two sequences converging to x and y respectively. If

sup ν∈N k D (z ν , w ν ) = c < +∞ then [x, y] ⊂ ∂D.
In particular, if x (or y) is a strictly convex point then x = y.

Proof : By Lemma 1.2 we know that either (x, y) ⊂ D, or (x, y) ⊂ ∂D. Assume by contradiction that (x, y) ⊂ D. Lemma 1.6 yields

k D sz ν + (1 -s)w ν , tz ν + (1 -t)w ν ≤ k D (z ν , w ν ) ≤ c
for each ν ∈ N and for all s, t ∈ (0, 1). Hence

k D sx + (1 -s)y, tx + (1 -t)y = lim ν→∞ k D sz ν + (1 -s)w ν , tz ν + (1 -t)w ν ≤ c
for all s, t ∈ (0, 1). But this implies that (x, y) is relatively compact in D, which is impossible because x, y ∈ ∂D.

Dynamics

In this subsection we recall a few known facts about the dynamics of holomorphic (or more generally k Dnonexpansive) self-maps of convex domains. When D ⊂⊂ C n is a bounded domain, by Montel's theorem the space Hol(D, D) is relatively compact in Hol (D, C n ). In particular, if f ∈ Hol (D, D) then every sequence {f kj } of iterates contains a subsequence converging to a holomorphic map h ∈ Hol(D, C n ). Analogously, using this time Ascoli-Arzelà theorem, if f : D → D is k D -nonexpansive then every sequence {f kj } of iterates contains a subsequence converging to a continuous map h: D → D ⊂ C n . Definition 1.8: Let D ⊂⊂ C n be a bounded domain, and f : D → D a holomorphic or k D -nonexpansive self-map. A map h: D → C n is a limit point of the sequence {f k } of iterates of f if there is a subsequence {f kj } of iterates converging (uniformly on compact subsets) to h; we shall denote by Γ(f ) the set of all limit points of {f k }. The target set T (f ) of f is then defined as the union of the images of limit points of the sequence of iterates:

T (f ) = h∈Γ(f ) h(D) .
Definition 1.9:

A sequence {f k } ⊂ C(X, Y ) of continuous maps between topological spaces is com- pactly divergent if for each pair of compact subsets H ⊆ X and K ⊆ Y there is k 0 ∈ N such that f k (H) ∩ K = ∅ for all k ≥ k 0 .
When D is a convex domain, the target set either is contained in D if f has a fixed point or is contained in ∂D if f has no fixed points. More precisely, we have the following statement (see [START_REF] Abate | Horospheres and iterates of holomorphic maps[END_REF][START_REF] Abate | Iteration theory, compactly divergent sequences and commuting holomorphic maps[END_REF][START_REF] Ca Lka | On conditions under which isometries have bounded orbits[END_REF][START_REF] Kapeluszny | The Denjoy-Wolff theorem for condensing holomorphic mappings[END_REF][START_REF] Kuczumow | Iterates of holomorphic and k D -nonexpansive mappings in convex domains in C n[END_REF][START_REF] Budzyńska | Local uniform linear convexity with respect to the Kobayashi distance[END_REF]):

Theorem 1.10: Let D ⊂⊂ C n be a bounded convex domain, and f : D → D a k D -nonexpansive (e.g., holomorphic) self-map. Then the following assertions are equivalent:

(i) f has a fixed point in D; (ii) the sequence {f k } is not compactly divergent; (iii) the sequence {f k } has no compactly divergent subsequences; (iv) {f k (z)} is relatively compact in D for all z ∈ D; (v) there exists z 0 ∈ D such that {f k (z 0 )} is relatively compact in D;
(vi) there exists z 0 ∈ D such that {f k (z 0 )} admits a subsequence relatively compact in D.

Remark 1.11: For more general taut domains (and f holomorphic) the statements (ii)-(vi) are still equivalent. For some classes of domains, these statements are equivalent to f having a periodic point (see [A4] and [Hu]); however, there exist holomorphic self-maps of a taut topologically contractible smooth domain satisfying (ii)-(vi) but without fixed points (see [AH]).

When the sequence of iterates of f is not compactly divergent (i.e., when f has a fixed point if D is convex) then the target set of f has already been characterized ( [Be], [A1, 5]). In particular, using Theorem 1.10 and repeating word by word the proof of [A3, Theorem 2.1.29] we obtain Theorem 1.12: Let D ⊂⊂ C n be a bounded convex domain, and f : D → D a k D -nonexpansive (e.g., holomorphic) self-map of D. Assume that f has a fixed point in D. Then T (f ) is a k D -nonexpansive (respectively, holomorphic) retract of D. More precisely, there exists a unique k D -nonexpansive (respectively, holomorphic) retraction ρ: D → T (f ) which is a limit point of {f k }, such that every limit point of {f k } is of the form γ • ρ, where γ:

T (f ) → T (f ) is a (biholomorphic) invertible k D -isometry, and f | T (f ) is a (biholomorphic) invertible k D -isometry.
In this paper we want to describe the target set of fixed points free self-maps of bounded convex domains.

Strictly convex domains

Since Wolff's proof of the Wolff-Denjoy theorem [W], horospheres have been the main tool needed for the study of the dynamics of fixed points free holomorphic self-maps. Let us recall the general definitions introduced in [A1, 3].

Definition 2.1: Let D ⊂⊂ C n be a bounded domain, z 0 ∈ D, x ∈ ∂D and R > 0. The small horosphere E z0 (x, R) and the large horosphere F z0 (x, R) of center x, pole z 0 and radius R are defined by

E z0 (x, R) = z ∈ D lim sup w→x k D (z, w) -k D (z 0 , w) < 1 2 log R , F z0 (x, R) = z ∈ D lim inf w→x k D (z, w) -k D (z 0 , w) < 1 2 log R .
The following lemma contains some basic properties of horospheres, immediate consequence of the definition and of Lemma 1.6: Lemma 2.2: Let D ⊂⊂ C n be a bounded domain, z 0 ∈ D and x ∈ ∂D. Then:

(i) we have

E z0 (x, R) ⊆ F z0 (x, R) for every R > 0; (ii) we have E z0 (x, R 1 ) ∩ D ⊆ E z0 (x, R 2 ) and F z0 (x, R 1 ) ∩ D ⊆ F z0 (x, R 2 ) for every 0 < R 1 < R 2 ; (iii) we have B D z 0 , 1 2 log R ⊆ E z0 (x, R
) for all R > 1, where B D (z 0 , r) denotes the Kobayashi ball of center z 0 and radius r;

(iv) we have

F z0 (x, R) ∩ B D z 0 , -1 2 log R) = ∅ for all 0 < R < 1; (v) R>0 E z0 (x, R) = R>0 F z0 (x, R) = D and R>0 E z0 (x, R) = R>0 F z0 (x, R) = ∅; (vi) if moreover D is convex then E z0 (x, R) is convex for every R > 0.
Large horospheres are not always convex, even if D is convex; an example is given by the horospheres in the polydisk (see Section 4). However, large horospheres in convex domains are always star-shaped with respect to the center:

Lemma 2.3: Let D ⊂⊂ C n be a bounded convex domain, z 0 ∈ D, R > 0 and x ∈ ∂D. Then we have [x, z] ⊂ F z0 (x, R) for all z ∈ F z0 (x, R).
In particular, x always belongs to F z0 (x, R).

Proof : Given z ∈ F z0 (x, R), choose a sequence {x ν } ⊂ D converging to x and such that the limit of

k D (z, x ν ) -k D (z 0 , x ν ) exists and is less than 1 2 log R. Given 0 < s < 1, let h s ν : D → D be ∀w ∈ D h s ν (w) = sw + (1 -s)x ν ;
then h s ν (x ν ) = x ν , and moreover

∀z 1 , z 2 ∈ D k D h s ν (z 1 ), h s ν (z 2 ) ≤ k D (z 1 , z 2 ) because h s ν is a holomorphic self-map of D. In particular, lim sup ν→+∞ k D h s ν (z), x ν ) -k D (z 0 , x ν ) ≤ lim ν→+∞ k D (z, x ν ) -k D (z 0 , x ν ) < 1 2 log R .
Furthermore we have

k D sz + (1 -s)x, x ν -k D h s ν (z), x ν ≤ k D sz + (1 -s)x ν , sz + (1 -s)x → 0 as ν → +∞. Therefore lim inf w→x k D sz + (1 -s)x, w -k D (z 0 , w) ≤ lim sup ν→+∞ k D sz + (1 -s)x, x ν -k D (z 0 , x ν ) ≤ lim sup ν→+∞ k D h s ν (z), x ν -k D (z 0 , x ν ) + lim ν→+∞ k D sz + (1 -s)x, x ν -k D h s ν (z), x ν < 1 2 log R ,
and thus sz + (1 -s)x ∈ F z0 (x, R). Letting s → 1 we get x ∈ F z0 (x, R), and we have proved the assertion for z ∈ F z0 (x, R). If z ∈ ∂F z0 (x, R), it suffices to apply the statement to a sequence in F z0 (x, R) approaching z.

One of the main points in the proof given in [A1] of the Wolff-Denjoy theorem for strongly convex C 2 domains is the fact that in such domains the intersection between the closure of a large horosphere and the boundary of the domain reduces to the center of the horosphere. The following corollary will play the same rôle for not necessarily smooth convex domains:

Corollary 2.4: Let D ⊂⊂ C n be a bounded convex domain, z 0 ∈ D, and x ∈ ∂D. Then R>0 F z0 (x, R) ⊆ ch(x) .
(2.1)

In particular, if x is a strictly convex point then

R>0 F z0 (x, R) = {x}.
Proof : First of all, Lemma 2.2 implies that the intersection in (2.1) is not empty and contained in ∂D. Take x ∈ R>0 F z0 (x, R) different from x. Then Lemma 2.3 implies that the whole segment [x, x] is contained in the intersection, and thus in ∂D; hence x ∈ ch(x), and we are done.

Let us turn now to the study of the target set. A first step in this direction is the following:

Proposition 2.5: Let D ⊂⊂ C n be a bounded convex domain. Then: (i) for every connected complex manifold X and every holomorphic map h: X → C n such that h(X) ⊂ D and h(X)

∩ ∂D = ∅ we have h(X) ⊆ x∈X Ch h(x) ⊆ ∂D .
In particular, if h is a limit point of the sequence of iterates of a holomorphic self-map of D without fixed points we have h(D) ⊆ z∈D Ch h(z) .

(ii) Let f : D → D be a k D -nonexpansive self-map without fixed points, and h: D → C n a limit point of

{f k }. Then h(D) ⊆ z∈D ch h(z) .
Proof : (i) The fact that h(X) ⊆ ∂D is an immediate consequence of the maximum principle (see, e.g., [START_REF] Abate | Common fixed points in hyperbolic Riemann surfaces and convex domains[END_REF]Lemma 2.1]).

Let now L = h(x 0 ) + ker σ be a complex supporting hyperplane at h(x 0 ). Then Re(σ • h) ≤ Re σ h(x 0 ) on X; therefore, by the maximum principle, σ • h ≡ σ h(x 0 ) , that is h(X) ⊂ L. Since this holds for all complex supporting hyperplanes at h(x 0 ) the assertion follows.

(ii) Let {f kj } be a subsequence of iterates converging to h. Since f has no fixed points, we know by Theorem 1.10 that h(D) ⊆ ∂D. Furthermore

∀z, w ∈ D k D f kj (z), f kj (w) ≤ k D (z, w) < +∞ ;
therefore Lemma 1.7 implies [h(z), h(w)] ⊂ ∂D, and the assertion follows.

The disadvantage of these statements is that the right-hand side still depends on the given limit point of the sequence of iterates; instead we would like to determine a subset of the boundary containing the whole target set. This can be accomplished as follows:

Lemma 2.6: Let D ⊂⊂ C n be a bounded convex domain, and f : D → D a k D -nonexpansive (respectively, holomorphic) self-map without fixed points. Assume there exist

∅ = E ⊆ F ⊂ D such that f k (E) ⊂ F for all k ∈ N. Then we have T (f ) ⊆ ch F ∩ ∂D if f is k D -nonexpansive, or T (f ) ⊆ Ch F ∩ ∂D if f is holomorphic.
Proof : Let h be a limit point of the sequence of iterates of f . Since f has no fixed points, we know that h(D) ⊆ ∂D. Take z 0 ∈ E; by assumption, the whole orbit of z 0 is contained in F . Therefore h(z 0 ) ∈ F ∩ ∂D, and the assertion follows from Proposition 2.5.

The Wolff lemma [A1, Theorem 2.3], whose proof can easily be adapted to the case of k D -nonexpansive maps, is exactly what we need to apply Lemma 2.6: Lemma 2.7: Let D ⊂⊂ C n be a convex domain, and let f : D → D be k D -nonexpansive and without fixed points. Then there exists x ∈ ∂D such that for every z 0 ∈ D, R > 0 and k ∈ N we have

f k E z0 (x, R) ⊆ F z0 (x, R) .
We can now give a proof of a Wolff-Denjoy theorem for k D -nonexpansive self-maps of strictly convex domains in the same spirit as the proof given in [A1] of the Wolff-Denjoy theorem for holomorphic self-maps of C 2 strongly convex domains, without requiring the machinery introduced in [START_REF] Budzyńska | The Denjoy-Wolff theorem in C n[END_REF] and [BKR]:

Theorem 2.8: Let D ⊂⊂ C n be a bounded strictly convex domain, and f : D → D a k D -nonexpansive (e.g., holomorphic) self-map without fixed points. Then there exists a x 0 ∈ ∂D such that T (f ) = {x 0 }, that is the sequence of iterates {f k } converges to the constant map x 0 .

Proof : Fix z 0 ∈ D. Lemmas 2.7 and 2.6 give x 0 ∈ ∂D such that

T (f ) ⊆ R>0 ch F z0 (x 0 , R) ∩ ∂D .
But D is strictly convex; therefore ch F z0 (x 0 , R) ∩ ∂D = F z0 (x 0 , R) ∩ ∂D, and the assertion follows from Corollary 2.4.

In [A2] the first author characterized converging one-parameter semigroups of holomorphic self-maps of smooth strongly convex domains. Theorem 2.8 allows us to extend that characterization to (not necessarily smooth) strictly convex domains: 

Weakly convex domains

As mentioned in the introduction, this approach works too when D is convex but not strictly convex. Simply applying the same argument used to prove Theorem 2.8 one obtains

T (f ) ⊆ R>0 ch F z0 (x 0 , R) ∩ ∂D
in the k D -nonexpansive case, and

T (f ) ⊆ R>0 Ch F z0 (x 0 , R) ∩ ∂D (3.1)
in the holomorphic case (and it is easy to see that these intersections do not depend on z 0 ∈ D). This already can be used to strengthen the Wolff-Denjoy theorem obtained in [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF]Theorem 2.4.27] for weakly convex C 2 domains. Indeed, we can prove the following:

Proposition 3.1: Let D ⊂⊂ C n be a C 2 bounded convex domain, and x ∈ ∂D. Then for every z 0 ∈ D and R > 0 we have

F z0 (x, R) ∩ ∂D ⊆ Ch(x) .
In particular, if x is a strictly C-linearly convex point then F z0 (x, R) ∩ ∂D = {x}.

Proof : For every x ∈ ∂D let n x denote the unit outer normal vector to ∂D in x, and put σ x (z) = (z, n x ), where (• , •) is the canonical Hermitian product. Then σ x is a complex supporting functional at x such that σ x (y) = σ x (x) for some y ∈ ∂D if and only if y ∈ Ch(x).

We can now argue as in the proof of [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF]Proposition 2.4.26] replacing the P -function Ψ:

∂D × C n → C given by Ψ(x, z) = exp σ x (z) -σ x (x) , with the P -function Ψ: ∂D × C n → C given by Ψ(x, z) = 1 1 -σ x (z) -σ x (x)
.

Corollary 3.2: Let D ⊂⊂ C n be a C 2 bounded convex domain, and f : D → D a holomorphic self-map without fixed points. Then there exists x 0 ∈ ∂D such that T (f ) ⊆ Ch(x 0 ). In particular, if D is strictly C-linearly convex then the sequence of iterates {f k } converges to the constant map x 0 .

Proof : It follows from (3.1), Proposition 3.1, and the fact that in C 2 convex domains each point in the boundary admits a unique complex supporting hyperplane.

Remark 3.3: We conjecture that the final assertion of this corollary should also hold for not necessarily smooth strictly C-linearly convex domains.

In weakly convex non-smooth domains large horospheres might be too large, and the right-hand side of (3.1) might coincide with the whole boundary of the domain (see Section 4 for an example in the polydisk); so to get an effective statement we need to replace them with smaller sets.

Small horospheres might be too small; as shown by Frosini [F], there are holomorphic self-maps of the polydisk with no invariant small horospheres. We thus need another kind of horospheres, defined by Kapeluszny, Kuczumow and Reich [START_REF] Kapeluszny | The Denjoy-Wollf theorem in the open unit ball of a strictly convex Banach space[END_REF], and studied in detail by Budzyńska [START_REF] Budzyńska | The Denjoy-Wolff theorem in C n[END_REF]. To introduce them we begin with a definition:

Definition 3.4: Let D ⊂⊂ C n be a bounded domain, and z 0 ∈ D. A sequence x = {x ν } ⊂ D converging to x ∈ ∂D is a horosphere sequence at x if the limit of k D (z, x ν ) -k D (z 0 , x ν ) as ν → +∞ exists for all z ∈ D.
Remark 3.5: It is easy to see that the notion of horosphere sequence does not depend on the point z 0 .

Remark 3.6: In [BKR] it is shown that every sequence in D converging to x ∈ ∂D contains a subsequence which is a horosphere sequence at x. In strongly convex C 3 domains all sequences converging to a boundary point are horosphere sequences (see [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF]Theorem 2.6.47] and [BPT]); in Section 4 we shall give an explicit example of horosphere sequence in the polydisk. Definition 3.7: Let D ⊂⊂ C n be a bounded convex domain. Given z 0 ∈ D, let x be a horosphere sequence at x ∈ ∂D, and take R > 0. Then the sequence horosphere G z0 (x, R, x) is defined as

G z0 (x, R, x) = z ∈ D lim ν→+∞ k D (z, x ν ) -k D (z 0 , x ν ) < 1 2 log R .
The basic properties of sequence horospheres are contained in the following:

Proposition 3.8: ([KKR2, Bu2, BKR]) Let D ⊂⊂ C n be a bounded convex domain. Fix z 0 ∈ D, and let x = {x ν } ⊂ D be a horosphere sequence at x ∈ ∂D for z 0 . Then:

(i) E z0 (x, R) ⊆ G z0 (x, R, x) ⊆ F z0 (x, R) for all R > 0; (ii) G z0 (x, R, x) is nonempty and convex for all R > 0; (iii) G z0 (x, R 1 , x) ∩ D ⊂ G z0 (x, R 2 , x) for all 0 < R 1 < R 2 ; (iv) B D (z 0 , 1 2 log R) ⊂ G z0 (x, R, x) for all R > 1; (v) B D (z 0 , -1 2 log R) ∩ G z0 (x, R, x) = ∅ for all 0 < R < 1; (vi) R>0 G z0 (x, R, x) = D and R>0 G z0 (x, R, x) = ∅.
Remark 3.9: If x is a horosphere sequence at x ∈ ∂D then it is not difficult to check that the family {G z (x, 1, x)} z∈D and the family {G z0 (x, R, x)} R>0 with, z 0 ∈ D given, coincide.

It turns out that we can always find invariant sequence horospheres: Lemma 3.10: Let D ⊂⊂ C n be a convex domain, and let f : D → D be k D -nonexpansive and without fixed points. Then there exists x ∈ ∂D and a horosphere sequence x at x such that

f G z0 (x, R, x) ⊆ G z0 (x, R, x)
for every z 0 ∈ D and R > 0.

Proof : Arguing as in the proof of [START_REF] Abate | Horospheres and iterates of holomorphic maps[END_REF]Theorem 2.3] we can find a sequence {f ν } of k D -contractions with a unique fixed point x ν ∈ D such that f ν → f and x ν → x ∈ ∂D as ν → +∞. Up to a subsequence, we can also assume (Remark 3.6) that x = {x ν } is a horosphere sequence at x. Now, for every z ∈ D we have

k D f (z), x ν -k D f ν (z), x ν ≤ k D f ν (z), f (z) → 0 as ν → +∞. Therefore if z ∈ G z0 (x, R, x) we get lim ν→+∞ k D f (z), x ν -k D (z 0 , x ν ) ≤ lim sup ν→+∞ k D f ν (z), x ν -k D (z 0 , x ν ) + lim sup ν→+∞ k D f (z), x ν -k D f ν (z), x ν ≤ lim ν→+∞ k D (z, x ν ) -k D (z 0 , x ν ) < 1 2 log R because f ν (x ν ) =
x ν for all ν ∈ N, and we are done.

Putting everything together we can prove the following Wolff-Denjoy theorem for (not necessarily strictly or smooth) convex domains: Theorem 3.11: Let D ⊂⊂ C n be a bounded convex domain, and f : D → D a k D -nonexpansive (respectively, holomorphic) self-map without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x at x such that for any z 0 ∈ D we have

T (f ) ⊆ z∈D ch G z (x, 1, x) ∩ ∂D = R>0 ch G z0 (x, R, x) ∩ ∂D if f is k D -nonexpansive, or T (f ) ⊆ z∈D Ch G z (x, 1, x) ∩ ∂D = R>0 Ch G z0 (x, R, x) ∩ ∂D if f is holomorphic.
Proof : The equality of the intersections (and thus the independence of z 0 ) is an immediate consequence of Remark 3.9. Then the assertion follows from Lemmas 3.10 and 2.6. Corollary 3.12: Let D ⊂⊂ C n be a bounded strictly C-linearly convex domain, and f : D → D a holomorphic self-map of D without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x at x such that for any z 0 ∈ D we have

T (f ) ⊆ z∈D G z (x, 1, x) = R>0 G z0 (x, R, x) .
Proof : It follows immediately from Theorem 3.11 and the definition of strictly C-linearly convex domain.

The polydisk

The polydisk ∆ n ⊂ C n is the unit ball for the norm

z = max{|z j | | j = 1, . . . , n} ,
and therefore

∀z, w ∈ ∆ n k ∆ n (z, w) = 1 2 log 1 + γ z (w) 1 -γ z (w) , where γ z (w) = w 1 -z 1 1 -z 1 w 1 , . . . , w n -z n 1 -z n w n
is an automorphism of the polydisk with γ z (z) = 0.

Thanks to the homogeneity of ∆ n , we can restrict ourselves to consider only horospheres with pole z 0 at the origin, and we have (see [A3, chapter 2.4.2] for detailed computations) the following description for horospheres with center ξ ∈ ∂∆ n and radius R > 0:

E O (ξ, R) = z ∈ ∆ n max j |ξ j -z j | 2 1 -|z j | 2 |ξ j | = 1 < R and F O (ξ, R) = z ∈ ∆ n min j |ξ j -z j | 2 1 -|z j | 2 |ξ j | = 1 < R . Moreover, E O (ξ, R) = F O (ξ, R) if and only if ξ has only one component of modulus 1. Given ξ ∈ ∂∆ n , a not difficult computation shows that ch(ξ) = |ξj |=1 {η ∈ ∂∆ n | η j = ξ j } and Ch(ξ) = |ξj |=1 {η ∈ ∂∆ n | η j = ξ j } .
This implies that in the polydisk large horospheres are too large to give a sensible Wolff-Denjoy theorem. Indeed we have ch

F O (ξ, R) ∩ ∂∆ n = Ch F O (ξ, R) ∩ ∂∆ n = ∂∆ n if ξ has at least two components of modulus 1, and ch F O (ξ, R) ∩ ∂∆ n = Ch F O (ξ, R) ∩ ∂∆ n = ∂∆ n \ {η ∈ ∂∆ n | η j0 = ξ j0 , |η j | < 1 for j = j 0 } if |ξ j0 | = 1 and |ξ j | < 1 for j = j 0 .
Let us then compute the sequence horospheres. Fix a horosphere sequence x = {x ν } converging to ξ ∈ ∂∆ n . Arguing as in [A3, chapter 2.4.2], we arrive to the following

G O (ξ, R, x) = z ∈ ∆ n max j |ξ j -z j | 2 1 -|z j | 2 lim ν→+∞ min h 1 -|x ν,h | 2 1 -|x ν,j | 2 |ξ j | = 1 < R . Since if |ξ j | = 1 we clearly have α j := lim ν→+∞ min h 1 -|x ν,h | 2 1 -|x ν,j | 2 ≤ 1 , we get G O (ξ, R, x) = z ∈ ∆ n max j α j |ξ j -z j | 2 1 -|z j | 2 |ξ j | = 1 < R .
In other words, we can write G O (ξ, R, x) as a product

G O (ξ, R, x) = n j=1 E j ,
where, denoting by E ∆ (σ, R) ⊂ ∆ the standard horocycle of center σ ∈ ∂∆, pole the origin and radius R > 0, we put

E j = ∆ if |ξ j | < 1, E ∆ (ξ j , R/α j ) if |ξ j | = 1. As a consequence, ch G O (ξ, R, x) ∩ ∂∆ n = Ch G O (ξ, R, x) ∩ ∂∆ n = n j=1 ∆ × • • • × C j (ξ) × • • • × ∆ , where C j (ξ) = {ξ j } if |ξ j | = 1, ∂∆ if |ξ j | < 1.
Notice that the right-hand sides do not depend either on R or on the horosphere sequence x, but only on ξ. So Theorem 3.11 in the polydisk assumes the following form:

Corollary 4.1: Let f : ∆ n → ∆ n be a k ∆ n -nonexpansive (e.g., holomorphic) self-map without fixed points. Then there exists ξ ∈ ∂∆ n such that

T (f ) ⊆ n j=1 ∆ × • • • × C j (ξ) × • • • × ∆ , (4.1)
where

C j (ξ) = {ξ j } if |ξ j | = 1, ∂∆ if |ξ j | < 1.
This is the best one can do, in the sense that while it is true that the image of a limit point of the sequence of iterates of f is always contained in just one of the set appearing in the right-hand side of (4.1), it is impossible to determine a priori in which one on the basis of the point ξ only; it is necessary to know something more about the map f . Indeed, Hervé has proved the following: Theorem 4.2: ([He1]) Let F = (f, g): ∆ 2 → ∆ 2 be a holomorphic self-map of the bidisk, and write f w = f (•, w) and g z = g(z, •). Assume that Fix(F ) = ∅. Then one and only one of the following cases occurs:

(0) if g(z, w) ≡ w (respectively, f (z, w) ≡ z) then the sequence of iterates of F converges uniformly on compact sets to h(z, w) = (σ, w), where σ is the common Wolff point of the f w 's (respectively, to h(z, w) = (z, τ ), where τ is the common Wolff point of the g z 's); (1) if Fix(f w ) = ∅ for all w ∈ ∆ and Fix(g z ) = {y(z)} ⊂ ∆ for all z ∈ ∆ (respectively, if Fix(f w ) = {x(w)} and Fix(g z ) = ∅) then T (f ) ⊆ {σ} × ∆, where σ ∈ ∂∆ is the common Wolff point of the f w 's (respectively, T (f ) ⊆ ∆ × {τ }, where τ is the common Wolff point of the g z 's);

(2) if Fix(f w ) = ∅ for all w ∈ ∆ and Fix(g z ) = ∅ for all z ∈ ∆ then either T (f ) ⊆ {σ}×∆ or T (f ) ⊆ ∆×{τ }, where σ ∈ ∂∆ is the common Wolff point of the f w 's, and τ ∈ ∂∆ is the common Wolff point of the g z ;

(3) if Fix(f w ) = {x(w)} ⊂ ∆ for all w ∈ ∆ and Fix(g z ) = {y(z)} ⊂ ∆ for all z ∈ ∆ then there are σ, τ ∈ ∂D such that the sequence of iterates converges to the constant map (σ, τ ).

We end this paper providing, as promised, an example of horosphere sequence. Given ξ ∈ ∂∆ n , put x ν = (1-1/ν) 1/2 ξ; we claim that x = {x ν } is a horosphere sequence. Indeed, arguing as in [A3, chapter 2.4.2] we see it suffices to show that 

-|x ν,h | 2 1 -|x ν,j | 2 |1 -z j x ν,j | 2 1 -|z j | 2 = max |ξj |=1 min h ν(1 -|ξ h | 2 ) + |ξ h | 2 |1 -z j x ν,j | 2 1 -|z j | 2 = max |ξj |=1 |1 -z j x ν,j | 2 1 -|z j | 2 → max |ξj |=1 |ξ j -z j | 2 1 -|z j | 2 .
In particular, using this horosphere sequence one obtains G O (ξ, R, x) = E O (ξ, R).

  1)} denote the closed, respectively open, segment connecting x and y. A set D ⊆ C n is convex if [x, y] ⊆ D for all x, y ∈ D; and strictly convex if (x, y) ⊆ D for all x, y ∈ D.

  Corollary 2.9: Let D ⊂⊂ C n be a bounded strictly convex domain, and Φ: R + → Hol(D, D) a oneparameter semigroup of holomorphic self-maps of D. Then Φ converges if and only if (i) either Φ has a fixed point z 0 ∈ D and the spectral generator at z 0 of Φ has no nonzero purely imaginary eigenvalues, or (ii) Φ has no fixed points. Proof : It follows arguing as in [A2, Theorem 1.3], replacing the references to [A1] by Theorem 2.8.

  ν,h | 2 1 -|x ν,j | 2 |1 -z j x ν,j | 2 1 -|z j | 2 converges as ν → +∞. Butindeed with this choice of x ν we have max |ξj |=1 min h 1