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Formal Poincaré-Dulac renormalization for holomorphic germs

We shall describe an alternative approach to a general renormalization procedure for formal self-maps, originally suggested by Chen-Dora and Wang-Zheng-Peng, giving formal normal forms simpler than the classical Poincaré-Dulac normal form. As example of application we shall compute a complete list of normal forms for bi-dimensional superattracting germs with non-vanishing quadratic term; in most cases, our normal forms will be the simplest possible ones (in the sense of Wang-Zheng-Peng). We shall also discuss a few examples of renormalization of germs tangent to the identity, revealing interesting second-order resonance phenomena. Λ

Introduction

In the study of a class of holomorphic dynamical systems, an important goal often is the classification under topological, holomorphic or formal conjugation. In particular, for each dynamical system in the class one would like to have a definite way of choosing a (hopefully simpler, possibly unique) representative in the same conjugacy class; a normal form of the original dynamical system.

The formal classification of one-dimensional germs is well-known (see, e.g., [A2]): if

f (z) = λz + a µ z µ + O µ+1 ∈ C[[z]]
is a one-dimensional formal power series with complex cofficients and vanishing constant term, where a µ = 0 and O µ+1 is a remainder term of order at least µ + 1, then f is formally conjugated to:

-g(z) = λz if λ = 0 and λ is not a root of unity; -g(z) = z µ if λ = 0; and to -g(z) = λzz nq+1 + αz 2nq+1 if λ is a primitive q-th root of unity, for suitable n ≥ 1 and α ∈ C that are formal invariant (and where q = 1 and n = µ when λ = 1).

In several variables, the most famous kind of normal form for local holomorphic dynamical systems (i.e., germs of holomorphic vector fields at a singular point, or germs of holomorphic selfmaps with a fixed point) is the Poincaré-Dulac normal form with respect to formal conjugation. Let us recall very quickly its definition, at least in the setting we are interested here, that is of formal self-maps with a fixed point, that we can assume to be the origin in C n .

Let F ∈ O n be a formal transformation in n complex variables, where O n denotes the space of n-tuples of power series in n variables with vanishing constant term, and let Λ denote the (not necessarily invertible) linear term of F ; up to a linear change of variables, we can assume that Λ is in Jordan normal form. For simplicity, given a linear map Λ ∈ M n,n (C) we shall denote by O n the set of formal transformations in O n with Λ as linear part. If λ 1 , . . . , λ n are the eigenvalues of Λ, we shall say that a multi-index Q = (q 1 , . . . , q n ) ∈ N n with q 1 + • • • + q n ≥ 2 is Λ-resonant if there is j ∈ {1, . . . , n} such that λ q 1 1 • • • λ q n n = λ j . If this happens, we shall say that the monomial z q 1 1 • • • z q n n e j is Λ-resonant, where {e 1 , . . . , e n } is the canonical basis of C n . Then (see, e.g., [Ar], [R1, 2], [Rü]) given F ∈ O n Λ it is possible to find a (not unique, in general) invertible formal transformation Φ ∈ O n I with identity linear part such that G = Φ -1 • F • Φ contains only Λresonant monomials.

The formal transformation G is a Poincaré-Dulac normal form of F ; notice that, since Φ ∈ O n I , the linear part of G is still Λ. More generally, we shall say that a G ∈ O n Λ is in Poincaré-Dulac normal form if G contains only Λ-resonant monomials.

The importance of this result cannot be underestimated, and it has been applied uncountably many times; however it has some limitations. For instance, if Λ = O or Λ = I then all monomials are resonant; and thus in these cases any F ∈ O n Λ is in Poincaré-Dulac normal form, and a further simplification (a renormalization) is necessary. Actually, even when a Poincaré-Dulac normal form is different from the original germ, it is often possible to further simplify the germ by applying invertible transformations preserving the property of being in Poincaré-Dulac normal form.

This idea of renormalizing Poincaré-Dulac normal forms is by now well-established in the context of vector fields, where the renormalized normal forms are often called hypernormal forms, and can be obtained by using several different techniques; a (far from exhaustive) list of relevant papers one might consult is [START_REF] Algaba | Hypernormal forms for equilibria of vector fields. Codimension one linear degeneracies[END_REF][START_REF] Algaba | Quasi-homogeneous normal forms[END_REF][START_REF] Baider | Unique normal forms for vector fields and Hamiltonians[END_REF][START_REF] Baider | Unique normal forms for planar vector fields[END_REF]BBS,[START_REF] Belitskii | Invariant normal forms of formal series[END_REF][START_REF] Brjuno | Analytic form of differential equations[END_REF][START_REF] Brjuno | Analytic form of differential equations[END_REF][START_REF] Broer | Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case[END_REF][START_REF] Gaeta | Further reduction of Poincaré-Dulac normal forms in symmetric systems[END_REF][START_REF] Giorgilli | Estimates for normal forms of differential equations near an equilibrium point[END_REF][START_REF] Ichikawa | On finite determinacy of formal vector fields[END_REF][START_REF] Kobuki | Linear grading function and further reduction of normal forms[END_REF][START_REF] Lombardi | Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, analytic invariant sets and exponentially small approximation[END_REF][START_REF] Malonza | An improved theory of asymptotic unfoldings[END_REF][START_REF] Murdock | Hypernormal form theory: foundations and algorithms[END_REF][START_REF] Murdock | A new transvectant algorithm for nilpotent normal forms[END_REF][START_REF] Sanders | Normal form theory and spectral sequences[END_REF]; see also [START_REF] Murdock | Normal forms and unfoldings for local dynamical systems[END_REF] for a fine introduction to the subject. On the other hand, with a few exceptions (see, for instance, [START_REF] Belitskii | Normal forms relative to a filtering action of a group[END_REF][START_REF] Chen | Normal forms for differentiable maps near a fixed point[END_REF][START_REF] Chen | Further reductions of normal forms for dynamical systems[END_REF]) this idea has been exploited in the context of self-maps only recently. One example is [START_REF] Abate | Formal classification of holomorphic maps tangent to the identity[END_REF], where it is applied to a particular class of self-maps with identity linear part. Another, more recent, example can be found in [BZ], where it is applied to self-maps with invertible linear part whose resonances with respect to some of the eigenvalues are generated over N by one multi-index. More important for our aims are [START_REF] Wang | Further reduction of normal forms of formal maps[END_REF]2], where the authors, inspired by [START_REF] Kobuki | Linear grading function and further reduction of normal forms[END_REF][START_REF] Chen | Normal forms for differentiable maps near a fixed point[END_REF][START_REF] Chen | Further reductions of normal forms for dynamical systems[END_REF][START_REF] Yu | The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue[END_REF], construct an a priori infinite sequence of renormalizations giving simpler and simpler normal forms.

Let us roughly describe the main ideas underlying the theory of renormalization of formal transformations. For each ν ≥ 2 let H ν denote the space of n-tuples of homogeneous polynomials in n variables of degree ν. Then every F ∈ O n Λ admits a homogeneous expansion

F = Λ + ν≥2 F ν ,
where F ν ∈ H ν is the ν-homogeneous term of F . We shall also use the notation {G} ν to denote the ν-homogeneous term of a formal transformation G.

If Φ = I + ν≥2 H ν ∈ O n I is the homogeneous expansion of an invertible formal transformation, then it turns out that, if

L Λ : O n → O n is defined by setting L Λ (H) = H•Λ-ΛH, then L Λ (H ν ) ⊆ H ν and {Φ -1 • F • Φ} ν = F ν -L Λ (H ν ) + R ν (0.1)
for all ν ≥ 2, where R ν is a remainder term depending only on F ρ and H σ with ρ, σ < ν. This suggests to consider for each ν ≥ 2 splittings of the form

H ν = Im L ν Λ ⊕ N ν and H ν = Ker L ν Λ ⊕ M ν
where L ν Λ = L Λ | H ν , and N ν and M ν are suitable complementary subspaces. Then (0.1) implies that we can inductively choose H ν ∈ M ν so that {Φ -1 • F • Φ} ν ∈ N ν for all ν ≥ 2; we shall say that G = Φ -1 • F • Φ is a first order normal form of F (with respect to the chosen complementary subspaces). Furthermore, it is not difficult to see that the quadratic (actually, the first non-linear non-vanishing) homogeneous term of G is a formal invariant, that is it is the same for all first order normal forms of F . Notice that when Λ = O or Λ = I we have L Λ ≡ O, and thus in these cases every F ∈ O n Λ is a first order normal form. When Λ is diagonal, Ker L Λ is generated by the resonant monomials, and Im L Λ is generated by the non-resonant monomials. Furthermore, for each ν ≥ 2 we have the splitting

H ν = Im L ν Λ ⊕ Ker L ν Λ ,
and thus taking N µ = Ker L ν Λ and M µ = Im L ν Λ we have recovered the classical Poincaré-Dulac normal form (when Λ has a nilpotent part the situation is only slightly more complicated; see [START_REF] Murdock | Normal forms and unfoldings for local dynamical systems[END_REF]Section 4.5] for details).

Summing up, a Poincaré-Dulac formal normal form is composed by homogeneous terms contained in a complementary space of the image of the operator L Λ . Furthermore, the quadratic homogeneous term is uniquely determined, and we can still act on the normal form by transformations having all homogeneous terms in the kernel of L Λ .

The k-th renormalization follows the same pattern. Assume that F is in (k -1)-th normal form. Then there is a suitable (not necessarily linear if k ≥ 3) operator L k , depending on the first k homogeneous terms of F , so that we can bring F in a normal form G whose all homogeneous terms belong to a chosen complementary subspace * of the image of L k , and the first k + 1 homogeneous terms of G are uniquely determined; we shall say that G is in k-th order normal form (with respect to the chosen subspaces).

A formal transformation G is in infinite order normal form if it is in k-th normal form for all k, with respect to some choice of complementary subspaces and using the operators L k defined using the first k homogeneous terms of G. The main result of [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF] then states that every element of O n Λ can be brought to a (possibly not unique) infinite order normal form by a sequence of formal conjugations tangent to the identity.

In the first section of this paper we shall describe an alternative approach, equivalent to the one proposed by Wang-Zheng-Peng but possibly simpler, to the determination of higher order normal forms, based on homogeneous polynomials and symmetric multilinear maps instead of on higher order derivatives. We shall concentrate in particular on second order normal forms because, as we shall see, in most cases we shall be interested in second order normal forms will automatically be infinite order normal forms.

To apply these procedures we need a rule for choosing complementary subspaces. It turns out that an efficient way of doing this is by taking orthogonal complements with respect to the Fischer Hermitian product, defined by (see [F])

z p 1 1 • • • z p n n e h , z q 1 1 • • • z q n n e k =    0 if h = k or p j = q j for some j; p 1 ! • • • p n ! (p 1 + • • • + p n )! if h = k and p j = q j for all j. (0.2)
With this choice, as we shall see in Sections 2 and 3, the expression of the second order (and often infinite order) normal forms can be quite simple. For instance, in Section 2 we shall apply this procedure to the case of superattracting (i.e., with Λ = O) 2-dimensional formal transformations, case that has no analogue in the vector field setting, proving the following

Theorem 0.1: Let F ∈ O 2 O be of the form F (z, w) = F 2 (z, w) + O 3 . Then: (i) if F 2 (z, w) = (z 2 , zw) or F 2 (z, w) = (-z 2 , -z 2 -zw) then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + ϕ(w) -zψ ′ (w), 2ψ(w) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(ii) if F 2 (z, w) = (-zw, -z 2 -w 2 ) then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + -2ϕ(z + w) + 2ψ(w -z), ϕ(z + w) + ψ(w -z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(iii) if F 2 (z, w) = (zw, zw + w 2 ) then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + wϕ ′ (z) + ψ(z), 2ϕ(z) -wϕ ′ (z) -ψ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(iv) if F 2 (z, w) = -ρz 2 , (1 -ρ)zw with ρ = 0, 1 then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + (ρ -1)zϕ ′ (w) + ψ(w), -2ρϕ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(v) if F 2 (z, w) = (-z 2 + zw, w 2 then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + ϕ( z 2 + w), -1 4 ϕ( z 2 + w) + ψ(z) , where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3; (vi) if F 2 (z, w) = ρz 2 + zw, (1 + ρ)zw + w 2 with ρ = 0, -1 then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w)+ 1 ρ 1 - √ -ρ 2m 2 ρ ϕ(m ρ z + w) + 1 + √ -ρ 2n 2 ρ ϕ(n ρ z + w) + 1 + ρ 2 √ -ρ 1 m 2 ρ ψ(m ρ z + w) - 1 n 2 ρ ψ(n ρ z + w) , 1 - √ -ρ 2 ϕ(m ρ z + w) + 1 + √ -ρ 2 ϕ(n ρ z + w) + ρ(1 + ρ) 2 √ -ρ ψ(m ρ z + w) -ψ(n ρ z + w)
where √ -ρ is any square root of -ρ,

m ρ = √ -ρ -ρ ρ(1 + ρ) , n ρ = - √ -ρ + ρ ρ(1 + ρ) ,
and ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(vii) if F 2 (z, w) = ρ(-z 2 + zw), (1 -ρ)(zw -w 2 ) with ρ = 0, 1 then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w)+ z ∂ ∂z ϕ(z + w) + ψ(z + w) -ϕ(z + w), ρ -1 ρ z ∂ ∂z ϕ(z + w) -ψ(z + w) -3ϕ(z + w) + 2ψ(z + w)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3;

(ix) if F 2 (z, w) = (-z 2 , -w 2 ) then F is formally conjugated to an unique infinite order normal form G(z, w) = F 2 (z, w) + ϕ(w), ψ(z)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3; (x) if F 2 (z, w) = (-ρz 2 , (1ρ)zww 2 ) with ρ = 0, 1 then F is formally conjugated to an unique infinite order normal form

G(z, w) = F 2 (z, w) + ϕ(w) + (1 -ρ) 2 4ρ ψ 2 1 -ρ z + w , ψ 2 1 -ρ z + w where ϕ, ψ ∈ C[[ζ]
] are power series of order at least 3;

(xi) if F 2 (z, w) = (-ρz 2 + (1 -τ )zw, (1 -ρ)zw -τ w 2 ) with ρ, τ = 0, 1 and ρ + τ = 1 then F is
formally conjugated to an unique infinite order normal form

G(z, w) = F 2 (z, w)+ τ ρ √ ρ + τ -1 + √ ρτ 2m 2 ρ,τ ϕ(m ρ,τ z + w) + √ ρ + τ -1 - √ ρτ 2n 2 ρ,τ ϕ(n ρ,τ z + w) + 1 m 2 ρ,τ ψ(m ρ,τ z + w) - 1 n 2 ρ,τ ψ(n ρ,τ z + w) , √ ρ + τ -1 + √ ρτ 2 ϕ(m ρ,τ z + w) + √ ρ + τ -1 - √ ρτ 2 ϕ(n ρ,τ z + w) + ψ(m ρ,τ z + w) -ψ(n ρ,τ z + w) ,
where

m ρ,τ = √ ρτ √ ρ + τ -1 -ρτ ρ(ρ -1) , n ρ,τ = - √ ρτ √ ρ + τ -1 + ρτ ρ(ρ -1) . and ϕ, ψ ∈ C[[ζ]
] are power series of order at least 3.

Notice that the uniqueness of the infinite normal form implies that the power series ϕ and ψ appearing in this statement are formal invariants of the original map, in stark contrast with the onedimensional case where the only formal invariant is the degree of the first non-linear non-vanishing term. Furthermore, the possibility of expressing the normal forms by using only two power series of one variables (and their derivatives) comes from the use of Fischer Hermitian product, which is particularly suited to this aim; other choices of complementary subspaces would lead to much more involved normal forms.

In [A1] we showed that the quadratic terms considered in Theorem 0.1 form an almost complete list of all possible quadratic terms up to linear change of coordinates; the only exceptions are four degenerate cases where one of the coordinates is identically zero. In these remaining cases we shall anyway be able to compute a second order normal form: C[[z, w]] are power series of order at least 3; (ii) if F 2 (z, w) = (0, zw) then F is formally conjugated to a unique second order normal form

Proposition 0.2: Let F ∈ O 2 O be of the form F (z, w) = F 2 (z, w) + O 3 . Then: (i) if F 2 (z, w) = (0, -z 2 ) then F is formally conjugated to a unique second order normal form G(z, w) = F 2 (z, w) + Φ(z, w), ψ(w) , where ψ ∈ C[[ζ]] and Φ ∈
G(z, w) = F 2 (z, w) + Φ(z, w), 0 ,
where Φ ∈ C [[z, w]] is a power series of order at least 3; C[[z, w]] are power series of order at least 3; (iv) if F 2 (z, w) = (z 2zw, 0) then F is formally conjugated to a unique second order normal form

(iii) if F 2 (z, w) = (-z 2 , 0) then F is formally conjugated to a unique second order normal form G(z, w) = F 2 (z, w) + ψ(w), Φ(z, w) , where ψ ∈ C[[ζ]] and Φ ∈
G(z, w) = F 2 (z, w) + 0, Φ(z, w) ,
where Φ ∈ C [[z, w]] is a power series of order at least 3.

Finally, in Section 3 we shall also discuss a few interesting examples with Λ = I, showing in particular the appearance of non-trivial second-order resonance phenomena. For instance, we shall prove the following

Proposition 0.3: Let F ∈ O 2 I be of the form F (z, w) = (z, w) + F 2 (z, w) + O 3 , with F 2 (z, w) = -ρz 2 , (1 -ρ)zw and ρ = 0. Put E = [0, 1] ∩ Q ∪ - 1 n n ∈ N * and F = [0, 1] ∩ Q ∪ 1 + 1 n , 1 + 2 n n ∈ N * .
Then:

(i) if ρ / ∈ E ∪ F then F is formally conjugated to a unique second order normal form G(z, w) = (z, w) + F 2 (z, w) + az 3 + ϕ(w) + (1 -ρ)zψ ′ (w), (1 -ρ)wψ ′ (w) + (3ρ -1)ψ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3, and a ∈ C;

(ii) if ρ = 1 + 1 n ∈ F \ E then F is formally conjugated to a unique second order normal form G(z, w) = (z, w) + F 2 (z, w) + a 0 z 3 + a 1 z 2 w n+1 + ϕ(w) - 1 n zψ ′ (w), - 1 n wψ ′ (w) + 2 + 3 n ψ(w) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3, and a 0 , a 1 ∈ C;

(iii) if ρ = 1 + 2 m ∈ F \ E with m odd then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F 2 (z, w) + a 0 z 3 + ϕ(w) - 2 m z wψ ′ (w) + ψ(w) , - 2 m w 2 ψ ′ (w) + 2 + 4 m wψ(w) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least respectively 3 and 2, and

a 0 ∈ C; (iv) if ρ = -1
n ∈ E \ F then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F 2 (z, w) + a 0 z 3 + ϕ(w) + 1 + 1 n z wψ ′ (w) + ψ(w) , a 1 z n+2 + ψ(z) + 1 + 1 n w 2 ψ ′ (w) - 2 n wψ(w) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least respectively 3 and 2, and

a 0 a 1 ∈ C; (v) if ρ = 1 ∈ E ∩ F then F is formally conjugated to a unique second order normal form G(z, w) = (z, w) + F 2 (z, w) + ϕ 1 (w) + z 3 ψ(w), ϕ 2 (w) + zϕ 3 (w) , where ϕ 1 , ϕ 2 ∈ C[[ζ]] are power series of order at least 3, ϕ 2 ∈ C[[ζ]
] is a power series of order at least 2, and

ϕ 3 ∈ C[[ζ]] is a power series; (vi) if ρ = a/b ∈ (0, 1) ∩ Q ⊂ E \ F then F is formally conjugated to a unique second order normal form G(z, w) = (z, w) + F 2 (z, w) + ϕ(w) + z 3 ϕ 0 (z b-a w a ) + (b -a) ∂ ∂w z 2 wχ(z b-a w a ) + 1 - a b z wψ ′ (w) + ψ(w) , a ∂ ∂z z 2 wχ(z b-a w a ) + 1 - a b w 2 ψ ′ (w) + 2 a b wψ(w) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3, and ϕ 0 , χ ∈ C [[ζ]] are power series of order at least 1.

In future papers we plan to study the dynamics of the normal forms we obtained, and to discuss the convergence of the normalizing transformations.

Renormalization

In this section we shall present the renormalization procedure for formal transformations, concentrating on the parts that will be useful for our aims. One of the main differences between our approach and the one followed by Wang, Zheng and Peng is that we shall systematically use the relations between homogeneous polynomials and symmetric multilinear maps instead of relying on higher order derivatives as in [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF].

Let us start collecting a few results on homogeneous polynomials and maps we shall need later.

Definition 1.1: We shall denote by H d the space of homogenous maps of degree d, i.e., of n-tuples of homogeneous polynomials of degree d ≥ 1 in the variables (z 1 , . . . , z n ). It is well known (see, e.g., [C, pp. 79-88]) that to each P ∈ H d is associated a unique symmetric multilinear map P :

(C n ) d → C n such that P (z) = P (z, . . . , z) for all z ∈ C n . We also set H = d≥2 H d .
Roughly speaking, the symmetric multilinear map associated to a homogeneous map H encodes the derivatives of H. For instance, it is easy to check that for each H ∈ H d we have

(Jac H)(z) • v = d H(v, z, . . . , z) (1.1) for all z, v ∈ C n .
Later on we shall need to compute the multilinear map associated to a homogeneous map obtained as a composition. The formula we are interested in is contained in the next lemma.

Lemma 1.1: Assume that P ∈ H d is of the form

P (z) = K H d 1 (z), . . . , H d r (z) , where K is r-multilinear, d 1 + • • • + d r = d, and H d j ∈ H d j for j = 1, . . . , r. Then P (v, w, . . . , w) = 1 d r j=1 d j K H d 1 (w), . . . , Hd j (v, w, . . . , w), . . . , H d r (w)
for all v, w ∈ C n .

Proof : Write z = w + εv. Then P (w) + dε P (v, w, . . . , w) + O(ε 2 ) = P (w + εv) = K Hd 1 (w + εv, . . . , w + εv), . . . , Hd r (w + εv, . . . , w + εv)

= K H d 1 (w), . . . , H d r (w) + ε r j=1 d j K H d 1 (w), . . . , Hd j (v, w, . . . , w), . . . , H d r (w) + O(ε 2 ) ,
and we are done.

Definition 1.2: Given a linear map Λ ∈ M n,n (C), we define a linear operator

L Λ : H → H by setting L Λ (H) = H • Λ -ΛH .
We shall say that a homogeneous map 

H ∈ H d is Λ-resonant if L Λ (H) = O,
H Λ = d≥2 H d Λ .
When Λ is diagonal, then the Λ-resonant monomials are exactly the resonant monomials appearing in the classical Poincaré-Dulac theory.

Definition 1.3: If Q = (q 1 , . . . , q n ) ∈ N n is a multi-index and z = (z 1 , . . . , z n ) ∈ C n , we shall put z Q = z q 1 1 • • • z q n n . Given Λ = diag(λ 1 , . . . , λ n ) ∈ M n,n (C), we shall say that Q ∈ N n with q 1 + • • • + q n ≥ 2 is Λ-resonant on the j-th coordinate if λ q 1 1 • • • λ q n n = λ j . If Q is Λ-resonant
on the j-th coordinate, we shall also say that the monomial z Q e j is Λ-resonant, where {e 1 , . . . , e n } is the canonical basis of C n .

Remark 1.1:

If Λ = diag(λ 1 , . . . , λ n ) ∈ M n,n (C) is diagonal, and z Q e j ∈ H d is a homogeneous monomial (with q 1 + • • • + q n = d)
, then (identifying the matrix Λ with the vector, still denoted by Λ, of its diagonal entries) we have

L Λ (z Q e j ) = (Λ Q -λ j )z Q e j . Therefore z Q e j is Λ-resonant if and only if Q is Λ-resonant in the j-th coordinate. In particular, a basis of H d
Λ is given by the Λ-resonant monomials, and we have

H d = H d Λ ⊕ Im L Λ | H d for all d ≥ 2.
It is possible to detect the Λ-resonance by using the associated multilinear map:

Lemma 1.2: If Λ ∈ M n,n (C) and H ∈ H d then H is Λ-resonant if and only if H(Λv 1 , . . . , Λv d ) = Λ H(v 1 , . . . , v d ) (1.2) for all v 1 , . . . , v d ∈ C n . In particular, if H ∈ H d Λ then (Jac H) • Λ • Λ = Λ • (Jac H) . (1.3) Proof : One direction is trivial. Conversely, assume H ∈ H d Λ . By definition, H is Λ-resonant if and only if H(Λw, . . . , Λw) = Λ H(w, . . . , w) for all w ∈ C n . Put w = z + εv 1 ; then H(Λz, . . . , Λz) + εd H(Λv 1 , Λz, . . . , Λz) + O(ε 2 ) = H Λ(z + εv 1 ), . . . , Λ(z + εv 1 ) = Λ H(z + εv 1 , . . . , z + εv 1 ) = Λ H(z, . . . , z) + εd Λ H(v 1 , z, . . . , z) + O(ε 2 ) , and thus H(Λv 1 , Λz, . . . , Λz) = Λ H(v 1 , z, . . . , z) ; (1.4) in particular (1.3) is a consequence of (1.1). Now put z = z 1 + εv 2 in (1.4). We get H(Λv 1 , Λz 1 , . . . , Λz 1 ) + ε(d -1) H(Λv 1 , Λv 2 , Λz 1 , . . . , Λz 1 ) + O(ε 2 ) = H Λv 1 , Λ(z 1 + εv 2 ), . . . , Λ(z 1 + εv 2 ) = Λ H(v 1 , z 1 + εv 2 , . . . , z 1 + εv 2 ) = Λ H(v 1 , z 1 , . . . , z 1 ) + ε(d -1)Λ H(v 1 , v 2 , z, . . . , z) + O(ε 2 ) ,
and hence

H(Λv 1 , Λv 2 , Λz 1 , . . . , Λz 1 ) = Λ H(v 1 , v 2 , z 1 , . . . , z 1 ) for all v 1 , v 2 , z 1 ∈ C n .
Proceeding in this way we get (1.2).

We now introduce the operator needed for the second order normalization.

Definition 1.4: Given P ∈ H µ and Λ ∈ M n,n (C), let L P,Λ : H d → H d+µ-1 be given by L P,Λ (H)(z) = d H P (z), Λz, . . . , Λzµ P H(z), z, . . . , z .

Remark 1.2: Equation (1.1) implies that

d H P (z), Λz, . . . , Λz = (Jac H)(Λz) • P (z) . Therefore L P,Λ (H) = (Jac H) • Λ • P -(Jac P ) • H ;
In the notations of [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF] we have L P,Λ (H) = [H, P ), and

L P,Λ | H d Λ = T d [P ] when P ∈ H µ Λ .
Using multilinear maps it is easy to prove the following useful fact:

Lemma 1.3: Take Λ ∈ M n,n (C) and P ∈ H µ Λ . Then L P,Λ (H d Λ ) ⊆ H d+µ-1 Λ for all d ≥ 2.
Proof : Using Lemma 1.2 and the definition of

L P,Λ , if H ∈ H d Λ we get L P,Λ (H)(Λz) = d H P (Λz), Λ 2 z, . . . , Λ 2 z -µ P H(Λz), Λz, . . . , Λz = d H ΛP (z), Λ 2 z, . . . , Λ 2 z -µ P ΛH(z), Λz, . . . , Λz = d Λ H P (z), Λz, . . . , Λz -µΛ P H(z), z, . . . , z = ΛL P,Λ (H)(z) .
To state and prove the main technical result of this section we fix a few more notations. We shall often write {F } d for F d . In particular, if F ∈ O n Λ then {F } 1 = Λ. The homogeneous terms behave in a predictable way with respect to composition and inverse: indeed it is easy to see that if

F = d≥1 F d and G = d≥1 G d are two elements of O n then {F • G} d = 1≤r≤d d 1 +•••+d r =d Fr (G d 1 , . . . , G d r ) (1.6)
for all d ≥ 1; and that if Φ = I + 

K d = -H d - 2≤r≤d-1 d 1 +•••+d r =d Kr (H d 1 , . . . , H d r ) (1.7)
for all d ≥ 2. In particular we have 

K d • Λ = -H d • Λ - 2≤r≤d-1 d 1 +•••+d r =d Kr (H d 1 • Λ, . . . , H d r • Λ) = ΛH d - 2≤r≤d-1 d 1 +•••+d r =d Kr (ΛH d 1 , . . . , ΛH d r ) = ΛK d because K 2 , . . . , K d-1 are Λ-resonant (and we are using Lemma 1.2). Definition 1.6: Given Λ ∈ M n,n (C), we shall say that F ∈ O n is Λ-resonant if F • Λ = ΛF . Clearly, F is Λ-resonant if and only if {F } d ∈ H d Λ for all d ∈ N.
The main technical result of this section is the following:

Theorem 1.5: Given F ∈ O n O , let F = Λ + d≥µ F d be its homogeneous expansion, with F µ = O.
Then for every Φ ∈ O n I with homogeneous expansion Φ = I + d≥2 H d and every ν ≥ 2 we have

{Φ -1 • F • Φ} ν = F ν -L Λ (H ν ) -L F µ ,Λ (H ν-µ+1 ) + Q ν + R ν , (1.8) 
where Q ν depends only on Λ and on H γ with γ < ν, while R ν depends only on F ρ with ρ < ν and on H γ with γ < νµ + 1, and we put L F µ ,Λ (H 1 ) = O. Furthermore, we have:

(i) if H 2 , . . . , H ν-1 ∈ H Λ then Q ν = O; in particular, if Φ is Λ-resonant then L Λ (H ν ) = Q ν = O for all ν ≥ 2; (ii) if Φ is Λ-resonant then {Φ -1 • F • Φ} ν = O for 2 ≤ ν < µ, {Φ -1 • F • Φ} µ = F µ , and
{Φ -1 • F • Φ} µ+1 = F µ+1 -L F µ ,Λ (H 2 ) ; (iii) if F = Λ then R ν = O for all ν ≥ 2; (iv) if F 2 , . . . , F ν-1 and H 2 , . . . , H ν-µ are Λ-resonant then R ν is Λ-resonant.
Proof : Using twice (1.6) we get and: (1)

{Φ -1 • F • Φ} ν = 1≤s≤ν ν 1 +•••+ν s =ν Ks ({F • Φ} ν 1 , . . . , {F • Φ} ν s ) = 1≤s≤ν ν 1 +•••+ν s =ν 1≤r 1 ≤ν 1 d 11 +•••+d 1r 1 =ν 1 • • • 1≤r s ≤ν s d s1 +•••+d sr s =ν s Ks Fr 1 (H d 11 , . . . ,H d 1r 1 ), . . . , Fr s (H d s1 ,. . . ,H d sr s ) = T ν + S 1 (ν) + s≥2 S s (ν) , where Φ -1 = I + d≥2 K d is the homogeneous expansion of Φ -1 ,
T ν = 1≤s≤ν ν 1 +•••+ν s =ν Ks (ΛH ν 1 , . . . , ΛH ν s )
is obtained considering only the terms with r 1 = . . . = r s = 1;

(2)

S 1 (ν) = µ≤r≤ν d 1 +•••+d r =ν Fr (H d 1 , . . . , H d r )
contains the terms with s = 1 and r 1 > 1; and

(3) . . . contains the terms with fixed s ≥ 2 and at least one r j greater than 1 (and thus greater than or equal to µ, because

S s (ν) = ν 1 +•••+ν s =ν 1≤r 1 ≤ν 1 . . .
F 2 = . . . = F µ-1 = O by assumption).
Let us first study T ν . The summand corresponding to s = 1 is ΛH ν ; the summand corresponding to s = ν is K ν • Λ; therefore

T ν = ΛH ν + K ν • Λ + 2≤s≤ν-1 ν 1 +•••+ν s =ν Ks (ΛH ν 1 , . . . , ΛH ν s ) = -L Λ (H ν ) + Q ν ,
where, using (1.7) to express K ν ,

Q ν = 2≤s≤ν-1 ν 1 +•••+ν s =ν Ks (ΛH ν 1 , . . . , ΛH ν s ) -Ks (H ν 1 • Λ, . . . H ν s • Λ) depends only on Λ and H γ with γ < ν because 2 ≤ s ≤ ν -1 in the sum. In particular, if H 1 , . . . , H ν-1 ∈ H Λ then Q ν = O, and (i) is proved.
Now let us study S 1 (ν). First of all, we clearly have S 1 (ν) = O for 2 ≤ ν < µ, and S 1 (µ) = F µ . When ν > µ we can write

S 1 (ν) = F ν + µ≤r≤ν-1 d 1 +•••+d r =ν Fr (H d 1 , . . . , H d r ) = F ν + µ Fµ (H ν-µ+1 , I, . . . , I) + d 1 +•••+d µ =ν 1<max{d j }<ν-µ+1 Fµ (H d 1 , . . . , H d µ ) + µ+1≤r≤ν-1 d 1 +•••+d r =ν Fr (H d 1 , . . . , H d r ) .
in particular, S 1 (µ + 1) = F µ+1 + µ Fµ (H 2 , I, . . . , I). Notice that the two remaining sums depend only on F ρ with ρ < ν and on H γ with γ < νµ + 1 (in the first sum is clear; for the second one, if d j ≥ νµ + 1 for some j we then would have

d 1 + • • • + d r ≥ ν -µ + 1 + r -1 ≥ ν + 1, impossible). Summing up we have S 1 (ν) =        O for 2 ≤ ν < µ, F µ for ν = µ, F µ+1 + µ Fµ (H 2 , I, . . . , I) for ν = µ + 1, F ν + µ Fµ (H ν-µ+1 , I, . . . , I) + R 1 ν for ν > µ + 1, where R 1 ν = d 1 +•••+d µ =ν 1<max{d j }<ν-µ+1 Fµ (H d 1 , . . . , H d µ ) + µ+1≤r≤ν-1 d 1 +•••+d r =ν Fr (H d 1 , . . . , H d r )
depends only on F ρ with ρ < ν and on H γ with γ < νµ + 1.

Let us now discuss S s (ν) for s ≥ 2. First of all, the condition max{r 1 , . . . , r s } ≥ µ implies

µ + s -1 ≤ r 1 + • • • + r s ≤ ν 1 + • • • + ν s = ν , that is s ≤ ν -µ + 1. In particular, S s (ν) = O if ν ≤ µ or if s > ν -µ + 1. Moreover, if we had d ij ≥ ν -µ + 1
for some 1 ≤ i ≤ s and 1 ≤ j ≤ r s we would get

ν = d 11 + • • • + d sr s ≥ ν -µ + 1 + r 1 + • • • + r s -1 ≥ ν -µ + 1 + µ + s -1 -1 = ν + s -1 > ν ,
impossible. This means that S s (ν) depends only on F ρ with ρ < ν for all s, on H γ with γ < ν -µ+1 when s < νµ + 1, and that S ν-µ+1 (ν) depends on H ν-µ+1 just because it contains Kν-µ+1 . Furthermore, the conditions max{r 1 , . . . , r ν-µ+1 } ≥ µ and ν 1 + . . . + ν ν-µ+1 = ν imply that

S ν-µ+1 (ν) = (ν -µ + 1) Kν-µ+1 (F µ , Λ, . . . , Λ) = -(ν -µ + 1) Hν-µ+1 (F µ , Λ, . . . , Λ) + R 2 ν ,
where (using Lemmas 1.1 and (1.7))

R 2 ν = 2≤r≤ν-µ d 1 +•••+d r =ν-µ+1 r j=1 d j Kr H d 1 • Λ, . . . , Hd j (F µ , Λ, . . . , Λ), . . . , H d r • Λ depends only on Λ, F µ and H γ with γ < ν -µ + 1.
Putting everything together, we have

{Φ -1 • F • Φ} ν = T ν + S 1 (ν) + ν-µ+1 s=2 S s (ν) = F ν -L Λ (H ν ) + Q ν +    O if 2 ≤ ν ≤ µ, -L F µ ,Λ (H 2 ) if ν = µ + 1, -L F µ ,Λ (H ν-µ+1 ) + R ν if ν > µ + 1, where R ν = R 1 ν + R 2 ν + ν-µ s=2 S s (ν)
depends only on F ρ with ρ < µ and on H γ with γ < νµ + 1. In particular, if F = Λ then we have S s (ν) = O for all s ≥ 1 and hence R ν = O for all ν ≥ 2.

In this way we have proved (1.8) and parts (i), (ii) and (iii). Concerning (iv), it suffices to notice that if F 2 , . . . , F ν-1 and H 2 , . . . , H ν-µ+1 are Λ-resonant, then also R 1 ν , S 2 (ν), . . . , S ν-µ (ν) and R 2 ν (by Lemmas 1.2 and 1.4) are Λ-resonant.

Remark 1.3: In [WZP2, Theorem 2.4] the remainder term R ν is expressed by using combinations of higher order derivatives instead of combinations of multilinear maps.

We can now introduce the second order normal forms, using the Fischer Hermitian product to provide suitable complementary spaces.

Definition 1.7: The Fischer Hermitian product on H is defined by

z p 1 1 • • • z p n n e h , z q 1 1 • • • z q n n e k =    0 if h = k or p j = q j for some j; p 1 ! • • • p n ! (p 1 + • • • + p n )!
if h = k and p j = q j for all j.

Definition 1.8:

Given Λ ∈ M n,n (C), we shall say that a G ∈ O n Λ is in second order normal form if G = Λ or (G = Λ and) the homogeneous expansion G = Λ + d≥µ G d of G satisfies the following conditions: (a) G µ = O; (b) G d ∈ H d ∩ (Im L G µ ,Λ
) ⊥ for all d > µ (where we are using Fischer Hermitian product).

Given F ∈ O n Λ , we shall say that G ∈ O n Λ is a second order normal form of F if G is in second order normal form and G = Φ -1 • F • Φ for some Φ ∈ O n I .
We can now prove the existence of second order normal forms:

Theorem 1.6: Let Λ ∈ M n,n (C) be given. Then each F ∈ O n
Λ admits a second order normal form. More precisely, if

F = Λ + d≥µ F d is in Poincaré-Dulac normal form (and F ≡ Λ) then there exists a unique Λ-resonant Φ = I + d≥2 H d ∈ O n I such that H d ∈ (Ker L F µ ,Λ ) ⊥ for all d ≥ 2 and G = Φ -1 •F •Φ is in second order normal form. Furthermore, if Λ is diagonal we also have G d ∈ H d Λ for all d ≥ µ.
Proof : By the classical theory we can assume that F is in Poincaré-Dulac normal form. If F ≡ Λ we are done; assume then that F ≡ Λ. First of all, by Theorem 1.

5 if Φ is Λ-resonant we have {Φ -1 • F • Φ} d = F d for all d ≤ µ. Now consider the splittings H d = Im L F µ ,Λ | H d-µ+1 Λ ⊥ (Im L F µ ,Λ | H d-µ+1 Λ ) ⊥ and H d-µ+1 Λ = Ker L F µ ,Λ | H d-µ+1 Λ ⊥ (Ker L F µ ,Λ | H d-µ+1 Λ ) ⊥ . If d = µ+1 we can find a unique G µ+1 ∈ (Im L F µ ,Λ ) ⊥ ∩H µ+1 and a unique H 2 ∈ (Ker L F µ ,Λ ) ⊥ ∩H 2 Λ such that F µ+1 = G µ+1 + L F µ ,Λ (H 2 ). Then Theorem 1.5 yields {Φ -1 • F • Φ} µ+1 = F µ+1 -L F µ ,Λ ({Φ} 2 ) = G µ+1 + L F µ ,Λ (H 2 ) -L F µ ,Λ ({Φ} 2 ) ; so to get {Φ -1 •F •Φ} µ+1 ∈ (Im L F µ ,Λ ) ⊥ ∩H µ+1 with {Φ} 2 ∈ (Ker L F µ ,Λ ) ⊥ ∩H 2 Λ we must necessarily take {Φ} 2 = H 2 .
Assume, by induction, that we have uniquely determined

H 2 , . . . , H d-µ ∈ (Im L F µ ,Λ ) ⊥ ∩ H Λ , and thus R d ∈ H d in (1.8). Hence there is a unique G d ∈ (Im L F µ ,Λ ) ⊥ ∩ H d and a unique H d-µ+1 ∈ (Ker L F µ ,Λ ) ⊥ ∩ H d-µ+1 Λ such that F d + R d = G d + L F µ ,Λ (H d-µ+1 ). Thus to get {Φ -1 • F • Φ} d ∈ (Im L F µ ,Λ ) ⊥ ∩ H d with {Φ} d-µ+1 ∈ (Ker L F µ ,Λ ) ⊥ ∩ H d-µ+1 Λ the only possi- ble choice is {Φ} d-µ+1 = H d-µ+1 , and thus {Φ -1 • F • Φ} d = G d . Finally, if Λ is diagonal then F d ∈ H d Λ for all d ≥ µ. Furthermore, Lemma 1.3 yields Im L F µ ,Λ | H d-µ+1 Λ ⊆ H d
Λ for all d ≥ µ; recalling Theorem 1.5.(vi) we then see can we can always find G d ∈ H d Λ , and we are done.

The definition and construction of k-th order normal forms is similar; the idea is to extract from the remainder term R ν the pieces depending on H γ with γ varying in a suitable range, and use them to build operators generalizing L Λ and L P,Λ . Since we shall not need it here we refer to [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF] for details; for our needs it suffices to recall that given

F = Λ+ d≥2 F d ∈ O n
Λ it is possible to introduce a sequence of (not necessarily linear) operators

L (d) [Λ, F 2 , . . . , F d ]: Ker L (d-1) × H d+1 → H d+1 for d ≥ 1, with L (1) [Λ](H 2 ) = L Λ (H 2 ) and L (2) [Λ, F 2 ](H 2 , H 3 ) = L Λ (H 3 ) + L F 2 ,Λ (H 2 ).
Definition 1.9: We shall say that

G = Λ + d≥2 G d ∈ O n Λ is in infinite order normal form if G d ∈ W ⊥ d for all d ≥ 2
, where W d is a vector subspace of maximal dimension contained in the image of L (d-1) [Λ, G 2 , . . . , G d-1 ]. We shall also say that G is an infinite order normal form of F ∈ O n Λ if it is in infinite order normal form and it is formally conjugated to F .

We end this section quoting a result from [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF] giving a condition ensuring that a second order normal form is actually an infinite order normal form: Proposition 1.7: ([WZP2, Theorem 4.9]) Let Λ ∈ M n,n (C) be diagonal, and

F = Λ+ d≥2 F d ∈ O n Λ with F 2 = O and Λ-resonant. Assume that Ker L F 2 ,Λ | H d Λ = {O} for all d ≥ 2.
Then the second order normal form of F is the unique infinite order normal form of F .

Superattracting germs

In this section we shall completely describe the second order normal forms obtained when n = µ = 2 and Λ = O, that is for 2-dimensional superattracting germs with non-vanishing quadratic term. Except in four degenerate instances, the second order normal forms will be infinite order normal forms, and will be expressed just in terms of two power series of one variable, thus giving a drastic simplification of the germs.

In [A1] we showed that, up to a linear change of variable, we can assume that the quadratic term F 2 is of one (and only one) of the following forms:

(∞) F 2 (z, w) = (z 2 , zw);

(1 00 ) F 2 (z, w) = (0, -z 2 );

(

1 10 ) F 2 (z, w) = -z 2 , -(z 2 + zw) ; (1 11 ) F 2 (z, w) = -zw, -(z 2 + w 2 ) ; (2 001 ) F 2 (z, w) = (0, zw); (2 011 ) F 2 (z, w) = (zw, zw + w 2 ); (2 10ρ ) F 2 (z, w) = -ρz 2 , (1 -ρ)zw), with ρ = 0; (2 11ρ ) F 2 (z, w) = ρz 2 + zw, (1 + ρ)zw + w 2 , with ρ = 0; (3 100 ) F 2 (z, w) = (z 2 -zw, 0); (3 ρ10 ) F 2 (z, w) = ρ(-z 2 + zw), (1 -ρ)(zw -w 2 ) , with ρ = 0, 1; (3 ρτ 1 ) F 2 (z, w) = -ρz 2 + (1 -τ )zw, (1 -ρ)zw -τ w 2
, with ρ, τ = 0 and ρ + τ = 1 (where the labels refer to the number of characteristic directions and to their indices; see also [START_REF] Abate | Poincaré-Bendixson theorems for meromorphic connections and holomorphic homogeneous vector fields[END_REF]).

We shall use the standard basis {u d,j , v d,j } j=0,...,d of H d , where u d,j = (z j w d-j , 0) and v d,j = (0, z j w d-j ) , and we shall endow H d with Fischer Hermitian product, so that {u d,j , v d,j } j=0,...,d is an orthogonal basis and

u d,j 2 = v d,j 2 = d j -1
.

When Λ = O, we have H Λ = H, and the operator L = L F 2 ,Λ : H d → H d+1 is given by

L(H) = -Jac(F 2 ) • H .
To apply Proposition 1.7, we need to know when Ker L| H

d = {O}. Since dim Ker L| H d + dim Im L| H d = dim H d = dim H d+1 -2 = dim Im L| H d + dim(Im L| H d ) ⊥ -2 , we find that Ker L| H d = {O} if and only if dim(Im L| H d ) ⊥ = 2 . (2.1)
We shall now study separately each case.

• Case (∞).

In this case we have

L(u d,j ) = -2u d+1,j+1 -v d+1,j and L(v d,j ) = -v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span (u d+1,2 , . . . , u d+1,d+1 , 2u d+1,1 + v d+1,0 , v d+1,1 , . . . , v d+1,d+1 ) , and thus (Im L| H d ) ⊥ = Span (u d+1,0 , (d + 1)u d+1,1 -2v d+1,0 ) .

In particular, thanks to (2.1) and Proposition 1.7, a second order normal form is automatically an infinite order normal form. It then follows that every formal power series of the form

F (z, w) = (z 2 + O 3 , zw + O 3 )
(where O 3 denotes a remainder term of order at least 3) has a unique infinite order normal form

G(z, w) = z 2 + ϕ(w) + zψ ′ (w), zw -2ψ(w)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3. Notice that (here and in later formulas) the appearance of the derivative (which simplifies the expression of the normal form) is due to the fact we are using the Fischer Hermitian product; using another Hermitian product might lead to more complicated normal forms.

• Case (1 00 ).

In this case we have L(u d,j ) = 2v d+1,j+1 and L(v d,j ) = 0 for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span (v d+1,1 , . . . , v d+1,d+1 ) ,
and thus

(Im L| H d ) ⊥ = Span (u d+1,0 , . . . , u d+1,d+1 , v d+1,0 ) .
This a degenerate case, where we cannot use Proposition 1.7. Anyway, Theorem 1.6 still apply, and it follows that every formal power series of the form

F (z, w) = (O 3 , -z 2 + O 3 )
has a second order normal form

G(z, w) = Φ(z, w), -z 2 + ψ(w)
where C[[z, w]] are power series of order at least 3.

ψ ∈ C[[ζ]] and Φ ∈
• Case (1 10 ).

In this case we have

L(u d,j ) = 2u d+1,j+1 + 2v d+1,j+1 + v d+1,j and L(v d,j ) = v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span (2u d+1,1 + v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) , and thus (Im L| H d ) ⊥ = Span (u d+1,0 , (d + 1)u d+1,1 -2v d+1,0 ) .

It then follows that every formal power series of the form

F (z, w) = (-z 2 + O 3 , -z 2 -zw + O 3 )
has a unique infinite order normal form

G(z, w) = -z 2 + ϕ(w) + zψ ′ (w), -z 2 -zw -2ψ(w)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

• Case (1 11 ).

In this case we have

L(u d,j ) = u d+1,j + 2v d+1,j+1 and 
L(v d,j ) = u d+1,j+1 + 2v d+1,j
for all d ≥ 2 and j = 0, . . . , d. It follows that

Im L| H d = Span(u d+1,0u d+1,2 , . . . , u d+1,d-1u d+1,d+1 , v d+1,2v d+1,0 , . . . , v d+1,d+1v d+1,d-1 , u d+1,0 + 2v d+1,1 , u d+1,1 + 2v d+1,0 ) , and a few computations yield

(Im L| H d ) ⊥ = Span   d+1 j=0 d + 1 j (v d+1,j -2u d+1,j ), d+1 j=0 (-1) j d + 1 j (v d+1,j + 2u d+1,j )   = Span -2(z + w) d+1 , (z + w) d+1 , 2(w -z) d+1 , (w -z) d+1
.

It then follows that every formal germ of the form

F (z, w) = (-zw + O 3 , -z 2 -w 2 + O 3 )
has a unique infinite order normal form

G(z, w) = -zw -2ϕ(z + w) + 2ψ(w -z), -z 2 -w 2 + ϕ(z + w) + ψ(w -z)
where ϕ, ψ ∈ C [[ζ]] are arbitrary power series of order at least 3. Again, the fact that the normal form is expressed in terms of power series evaluated in z + w and zw is due to the fact we are using Fischer Hermitian product.

• Case (2 001 ).

In this case we have

L(u d,j ) = -v d+1,j and L(v d,j ) = -v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. It follows that

Im L| H d = Span (v d+1,0 , . . . , v d+1,d+1 )
and hence (Im L| H d ) ⊥ = Span (u d+1,0 , . . . , u d+1,d+1 ) .

We are in a degenerate case; hence every formal germ of the form

F (z, w) = (O 3 , zw + O 3 ) has a second order normal form G(z, w) = Φ(z, w), zw
where Φ ∈ C [[z, w]] is a power series of order at least three.

• Case (2 011 ).

In this case we have

L(u d,j ) = -u d+1,j -v d+1,j and L(v d,j ) = -u d+1,j+1 -2v d+1,j -v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. It follows that

Im L| H d = Span(u d+1,0 , . . . , u d+1,d-1 , v d+1,0 , . . . , v d+1,d-1 , u d+1,d + v d+1,d , u d+1,d+1 + v d+1,d+1 + 2v d+1,d ) ,
and hence

(Im L| H d ) ⊥ = Span ((d + 1)u d+1,d -(d + 1)v d+1,d + 2v d+1,d+1 , u d+1,d+1 -v d+1,d+1 ) .
It then follows that every formal germ of the form

F (z, w) = (zw + O 3 , zw + w 2 + O 3 )
has a unique infinite order normal form

G(z, w) = zw + wϕ ′ (z) + ψ(z), zw + w 2 + 2ϕ(z) -wϕ ′ (z) -ψ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

• Case (2 10ρ ).

In this case we have

L(u d,j ) = 2ρu d+1,j+1 + (ρ -1)v d+1,j and L(v d,j ) = (ρ -1)v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider. If ρ = 1 then Im L| H d = Span (u d+1,1 , . . . , u d+1,d+1 ) , and hence (Im L| H d ) ⊥ = Span (u d+1,0 , v d+1,0 , . . . , v d+1,d+1 ) .

We are in the third degenerate case; hence every formal germ of the form

F (z, w) = (-z 2 + O 3 , O 3 )
has a second order normal form C[[z, w]] are power series of order at least 3.

G(z, w) = -z 2 + ψ(w), Φ(z, w) , where ψ ∈ C[[ζ]] and Φ ∈
If instead ρ = 1 (recalling that ρ = 0 too) then

Im L| H d = Span (2ρu d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) ,
and hence

(Im L| H d ) ⊥ = Span (u d+1,0 , (ρ -1)(d + 1)u d+1,1 -2ρv d+1,0 ) .
It then follows that every formal germ of the form

F (z, w) = -ρz 2 + O 3 , (1 -ρ)zw + O 3
with ρ = 0, 1 has a unique infinite order normal form

G(z, w) = -ρz 2 + (ρ -1)zϕ ′ (w) + ψ(w), (1 -ρ)zw -2ρϕ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

• Case (2 11ρ ).

In this case we have

L(u d,j ) = -2ρu d+1,j+1 -u d+1,j -(1 + ρ)v d+1,j L(v d,j ) = -u d+1,j+1 -2v d+1,j -(1 + ρ)v d+1,j+1 (2.2) 
for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider.

If ρ = -1 then Im L| H d = Span (u d+1,0 -2u d+1,1 , . . . , u d+1,d -2u d+1,d+1 , u d+1,1 + 2v d+1,0 , . . . , u d+1,d + 2v d+1,d ) ,
and hence

(Im L| H d ) ⊥ = Span   d+1 j=0 d + 1 j 1 2 j (u d+1,j - 1 4 v d+1,j ), v d+1,d+1   = Span z 2 + w d+1 , - 1 4 z 2 + w d+1 , (0, z d+1 ) .
It then follows that every formal germ of the form

F (z, w) = (-z 2 + zw + O 3 , w 2 + O 3 )
has a unique infinite order normal form

G(z, w) = -z 2 + zw + ϕ( z 2 + w), w 2 - 1 4 ϕ( z 2 + w) + ψ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

If instead ρ = -1 (recalling that ρ = 0 too) then a basis of Im L| H d is given by the vectors listed in (2.2), and a computation shows that (Im L| H d ) ⊥ is given by homogeneous maps of the form

d+1 j=0 (a j u d+1,j + b j v d+1,j )
where the coefficients a j , b j satisfy the following relations:

                   c j b j = - 2 1 + ρ c j-1 b j-1 - 1 ρ(1 + ρ) c j-2 b j-2 for j = 2, . . . , d + 1, c j a j = 1 ρ c j-2 b j-2 for j = 2, . . . , d + 1, a 0 = (3ρ -1)b 0 + 2 ρ(1 + ρ) d + 1 b 1 , a 1 = -2(d + 1)b 0 -(1 + ρ)b 1 ,
where c -1 j = d+1 j and b 0 , b 1 ∈ C are arbitrary. Solving these recurrence equations one gets

b j = 1 2 √ -ρ d + 1 j ρ(1 + ρ) d + 1 (m j ρ -n j ρ )b 1 + ρ(m j ρ -n j ρ ) + √ -ρ(m j ρ + n j ρ ) b 0 ,
where √ -ρ is any square root of -ρ, and

m ρ = √ -ρ -ρ ρ(1 + ρ) , n ρ = - √ -ρ + ρ ρ(1 + ρ) .
It follows that the unique infinite order normal form of a formal germ of the form

F (z, w) = ρz 2 + zw + O 3 , (1 + ρ)zw + w 2 + O 3 with ρ = 0, -1 is G(z, w) = ρz 2 + zw + 1 ρ 1 - √ -ρ 2m 2 ρ ϕ(m ρ z + w) + 1 + √ -ρ 2n 2 ρ ϕ(n ρ z + w) + 1 + ρ 2 √ -ρ 1 m 2 ρ ψ(m ρ z + w) - 1 n 2 ρ ψ(n ρ z + w) , (1 + ρ)zw + w 2 + 1 - √ -ρ 2 ϕ(m ρ z + w) + 1 + √ -ρ 2 ϕ(n ρ z + w) + ρ(1 + ρ) 2 √ -ρ ψ(m ρ z + w) -ψ(n ρ z + w)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

• Case (3 100 ).

In this case we have

L(u d,j ) = u d+1,j -2u d+1,j+1 and L(v d,j ) = u d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. It follows that

Im L| H d = Span (u d+1,0 , . . . , u d+1,d+1 )

and hence (Im L| H d ) ⊥ = Span (v d+1,0 , . . . , v d+1,d+1 ) .

We are in the last degenerate case; hence every formal germ of the form

F (z, w) = (z 2 -zw + O 3 , O 3 )
has a second order normal form

G(z, w) = z 2 -zw, Φ(z, w) ,
where Φ ∈ C [[z, w]] is a power series of order at least 3.

• Case (3 ρ10 ).

In this case we have

L(u d,j ) = ρ(2u d+1,j+1 -u d+1,j ) + (ρ -1)v d+1,j L(v d,j ) = -ρu d+1,j+1 + (ρ -1)(v d+1,j+1 -2v d+1,j ) (2.3)
for all d ≥ 2 and j = 0, . . . , d. Then a basis of Im L| H d is given by the homogeneous maps listed in (2.3), and a computation shows that (Im L| H d ) ⊥ is given by homogeneous maps of the form

d+1 j=0 (a j u d+1,j + b j v d+1,j )
where the coefficients a j , b j satisfy the following relations: 

           c j+1 a j+1 = ρ -1 ρ (c j+1 b j+1 -2c j b j ) for j = 0, . . . , d, c j+1 b j+1 = 2c j b j -c j-1 b j-1 for j = 1, . . . , d, c 0 a 0 = 2c 1 a 1 + ρ -1 ρ c 0 b 0 , where c -1 j = d+1
a j = ρ-1 ρ d+1 j 2-j d+1 b 1 + (j -3)b 0 for j = 0, . . . , d + 1,
where b 0 , b 1 ∈ C are arbitrary. So every formal germ of the form

F (z, w) = ρ(-z 2 + zw) + O 3 , (1 -ρ)(zw -w 2 ) + O 3
with ρ = 0, 1 has a unique infinite order normal form

G(z, w) = ρ(-z 2 + zw) + z ∂ ∂z ϕ(z + w) + ψ(z + w) -ϕ(z + w), (1 -ρ)(zw -w 2 ) + ρ -1 ρ z ∂ ∂z ϕ(z + w) -ψ(z + w) -3ϕ(z + w) + 2ψ(z + w)
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3.

• Case (3 ρτ 1 ).

In this case we have

L(u d,j ) = (τ -1)u d+1,j + 2ρu d+1,j+1 + (ρ -1)v d+1,j and L(v d,j ) = (τ -1)u d+1,j+1 + 2τ v d+1,j + (ρ -1)v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. As before, we have a few subcases to consider. Assume first ρ = τ = 1. Then

Im L| H d = Span (u d+1,1 , . . . , u d+1,d+1 , v d+1,0 , . . . , v d+1,d ) ; hence (Im L| H d ) ⊥ = Span (u d+1,0 , v d+1,d+1 ) ,
It then follows that every formal germ of the form

F (z, w) = (-z 2 + O 3 , -w 2 + O 3 )
has a unique infinite order normal form

G(z, w) = -z 2 + ϕ(w), -w 2 + ψ(z) ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3. Assume now ρ = 1. Then a computation shows that (Im L| H d ) ⊥ is given by homogeneous maps of the form d+1 j=0 (a j u d+1,j + b j v d+1,j )

where the coefficients a j , b j satisfy the following relations:

               c j+1 a j+1 = τ ρ c j-1 b j-1 for j = 1, . . . , d, c j+1 b j+1 = - 2τ ρ -1 c j b j - τ (τ -1) ρ(ρ -1) c j-1 b j-1 for j = 1, . . . , d, (τ -1)c 1 a 1 + (ρ -1)c 1 b 1 + 2τ c 0 b 0 = 0 , (τ -1)c 0 a 0 + (ρ -1)c 0 b 0 + 2ρc 1 a 1 = 0 , (2.4) 
where

c -1 j = d+1 j and b 0 , b 1 ∈ C are arbitrary. When τ = 1 conditions (2.4) reduce to                c j+1 a j+1 = 1 ρ c j-1 b j-1 for j = 1, . . . , d, c j+1 b j+1 = - 2 ρ -1 c j b j for j = 1, . . . , d, (ρ -1)c 1 b 1 + 2c 0 b 0 = 0 , (ρ -1)c 0 b 0 + 2ρc 1 a 1 = 0 , whose solution is          a j = d + 1 j 1 ρ 2 1 -ρ j-2 b 0 for j = 1, . . . , d + 1, b j = d + 1 j 2 1 -ρ j b 0 for j = 0, . . . , d + 1,
where a 0 , b 0 ∈ C are arbitrary. Therefore

(Im L| H d ) ⊥ = Span (w d+1 , 0), (1 -ρ) 2 4ρ 2 1 -ρ z + w d+1 , 2 1 -ρ z + w d+1 ,
and thus every formal germ of the form

F (z, w) = -ρz 2 + O 3 , (1 -ρ)zw -w 2 + O 3
with ρ = 1 has a unique infinite order normal form

G(z, w) = -ρz 2 + ϕ(w) + (1 -ρ) 2 4ρ ψ 2 1 -ρ z + w , (1 -ρ)zw -w 2 + ψ 2 1 -ρ z + w ,
where ϕ, ψ ∈ C [[ζ]] are arbitrary power series of order at least 3.

The case ρ = 1 and τ = 1 is treated in the same way; we get that every formal germ of the form

F (z, w) = -z 2 + (1 -τ )zw + O 3 , -τ w 2 + O 3
with τ = 1 has a unique infinite order normal form

G(z, w) = -z 2 + (1 -τ )zw + ψ 1 -τ 2 z + w , -τ w 2 + ϕ(z) + (1 -τ ) 2 4τ ψ 1 -τ 2 z + w ,
where ϕ, ψ ∈ C [[ζ]] are power series of order at least 3. Finally assume ρ, τ = 1 (and ρ + τ = 1). Solving the recurrence equations (2.4) we find

b j = 1 2 ρτ (ρ + τ -1) d + 1 j ρ(ρ -1) d + 1 (m j ρ,τ -n j ρ,τ )b 1 + ρτ (m j ρ,τ -n j ρ,τ ) + ρτ (ρ + τ -1)(m j ρ,τ + n j ρ,τ ) b 0 ,
for j = 0, . . . , d + 1, where ρτ (ρ + τ -1) is any square root of ρτ (ρ + τ -1), and

m ρ,τ = ρτ (ρ + τ -1) -ρτ ρ(ρ -1) , n ρ,τ = - ρτ (ρ + τ -1) + ρτ ρ(ρ -1) .
Moreover, from (2.4) we also get

a j = τ 2ρ ρτ (ρ + τ -1) d + 1 j ρ(ρ -1) d + 1 (m j-2 ρ,τ -n j-2 ρ,τ )b 1 + ρτ (m j-2 ρ,τ -n j-2 ρ,τ ) + ρτ (ρ + τ -1)(m j-2 ρ,τ + n j-2 ρ,τ ) b 0 ,
again for j = 0, . . . , d + 1. It follows that the unique infinite order normal form of a formal germ of the form

F (z, w) = -ρz 2 + (1 -τ )zw + O 3 , (1 -ρ)zw -τ w 2 + O 3
with ρ, τ = 0, 1 and ρ + τ = 1, is

G(z, w) = -ρz 2 + (1 -τ )zw + τ ρ √ ρ + τ -1 + √ ρτ 2m 2 ρ,τ
ϕ(m ρ,τ z + w)

+ √ ρ + τ -1 - √ ρτ 2n 2 ρ,τ ϕ(n ρ,τ z + w) + 1 m 2 ρ,τ ψ(m ρ,τ z + w) - 1 n 2 ρ,τ ψ(n ρ,τ z + w) , (1 -ρ)zw -τ w 2 + √ ρ + τ -1 + √ ρτ 2 ϕ(m ρ,τ z + w) + √ ρ + τ -1 - √ ρτ 2 ϕ(n ρ,τ z + w) + ψ(m ρ,τ z + w) -ψ(n ρ,τ z + w) ,
where the square roots of ρτ and of ρ + τ -1 are chosen so that their product is equal to the previously chosen square root of ρτ (ρ + τ -1), and ϕ, ψ ∈ C [[ζ]] are power series of order at least 3 -and we have finished proving Theorem 0.1 and Proposition 0.2.

Germs tangent to the identity

In this section we shall assume n = µ = 2 and Λ = I, that is we shall be interested in 2-dimensional germs tangent to the identity of order 2. We shall keep the notations introduced in the previous section. It should be recalled that in his monumental work [ É1] (see [ É2] for a survey) Écalle studied the formal classification of germs tangent to the identity in dimension n, giving a complete set of formal invariants for germs satisfying a generic condition: the existence of at least one non-degenerate characteristic direction (an eigenradius, in Écalle's terminology). A characteristic direction of a germ tangent to the identity F is a non-zero direction v such that F µ (v) = λv for some λ ∈ C, where F µ is the first (nonlinear) non-vanishing term in the homogeneous expansion of F . The characteristic direction v is degenerate if λ = 0. For this reason, we decided to discuss here the cases without non-degenerate characteristic directions, that is the cases (1 00 ), (1 10 ) and (2 001 ), that cannot be dealt with Écalle's methods. Furthermore, we shall also study the somewhat special case (∞), where all directions are characteristic; and we shall examine in detail case (2 10ρ ), where interesting second-order resonance phenomena appear.

When Λ = I the operator L = L F 2 ,Λ is given by

L(H) = Jac(H) • F 2 -Jac(F 2 ) • H .
In particular, L(F 2 ) = O always; therefore we cannot apply Proposition 1.7 (nor other similar conditions stated in [START_REF] Wang | Further reduction of normal forms and unique normal forms of smooth maps[END_REF]), and we shall compute the second order normal form only.

• Case (∞).

In this case we have

L(u d,j ) = (d -2)u d+1,j+1 -v d+1,j and L(v d,j ) = (d -1)v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span (u d+1,2 , . . . , u d+1,d+1 , (d -2)u d+1,1v d+1,0 , v d+1,1 , . . . , v d+1,d+1 ) for d > 2, Span (v 3,0 , . . . , v 3,3 ) for d = 2. Thus (Im L| H d ) ⊥ = Span (u d+1,0 , (d + 1)u d+1,1 + (d -2)v d+1,0 ) for d > 2, Span (u 3,0 , . . . , u 3,3 ) for d = 2. It then follows that every formal power series of the form

F (z, w) = (z + z 2 + O 3 , w + zw + O 3 )
has as second order normal form G(z, w) = z + z 2 + a 0 z 3 + a 1 z 2 w + a 2 zw 2 + ϕ(w) + zψ ′ (w), zw + wψ ′ (w) -3ψ(w) where ϕ ∈ C [[ζ]] is a power series of order at least 3, ψ ∈ C [[ζ]] is a power series of order at least 4 and a 0 , a 1 , a 2 ∈ C.

• Case (1 00 ). In this case we have

L(u d,j ) = (j -d)u d+1,j+2 + 2v d+1,j+1
and

L(v d,j ) = (j -d)v d+1,j+2
for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span (2v d+1,1du d+1,2 , u d+1,3 , . . . , u d+1,d+1 , v d+1,2 , . . . , v d+1,d+1 ) , and thus (Im L| H d ) ⊥ = Span (u d+1,0 , u d+1,1 , v d+1,0 , u d+1,2 + v d+1,1 ) .

It then follows that every formal power series of the form

F (z, w) = (z + O 3 , w -z 2 + O 3 )
has as second order normal form

G(z, w) = z + wϕ 1 (w) + zϕ 2 (w) + z 2 ψ(w), w -z 2 + wϕ 3 (w) + zwψ(w) ,
where ϕ 1 , ϕ 2 , ϕ 3 ∈ C [[ζ]] are power series of order at least 2, and ψ ∈ C [[ζ]] is a power series of order at least 1.

• Case (1 10 ).

In this case we have

L(u d,j ) = (2 -d)u d+1,j+1 -(d -j)u d+1,j+2 + 2v d+1,j+1 + v d+1,j and L(v d,j ) = (1 -d)v d+1,j+1 -(d -j)v d+1,j+2
for all d ≥ 2 and j = 0, . . . , d. Therefore

Im L| H d = Span ((2 -d)u d+1,1 + v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d > 2, Span (v 3,0 -2u 3,2 , u 3,3 , v 3,1 , v 3,2 , v 3,3 ) for d = 2, and thus (Im L| H d ) ⊥ = Span (u d+1,0 , (d + 1)u d+1,1 + (d -2)v d+1,0 ) for d > 2, Span (u 3,0 , u 3,1 , 3u 3,2 + 2v 3,0 )
for d = 2. It then follows that every formal power series of the form

F (z, w) = (z -z 2 + O 3 , w -z 2 -zw + O 3 ) has as second order normal form G(z, w) = z -z 2 + ϕ(w) + a 1 zw 2 + 3a 2 z 2 w + zψ ′ (w), w -z 2 -zw + 2a 2 w 3 + wψ ′ (w) -3ψ(w) , where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]
] is a power series of order at least 4, and a 1 , a 2 ∈ C.

• Case (2 001 ). In this case we have

L(u d,j ) = (d -j)u d+1,j+1 -v d+1,j and L(v d,j ) = (d -j -1)v d+1,j+1
for all d ≥ 2 and j = 0, . . . , d. It follows that

Im L| H d = Span (du d+1,1v d+1,0 , u d+1,2 , . . . , u d+1,d , v d+1,1 , . . . , v d+1,d+1 )

and hence (Im L| H d ) ⊥ = Span (u d+1,0 , u d+1,d+1 , (d + 1)u d+1,1 + dv d+1,0 ) .

It then follows that every formal germ of the form

F (z, w) = (z + O 3 , w + zw + O 3 )
has as second order normal form

G(z, w) = z + ϕ 1 (z) + ϕ 2 (w) + zψ ′ (w), zw + wψ ′ (w) -ψ(w) where ϕ 1 , ϕ 2 , ψ ∈ C[[ζ]
] are power series of order at least 3.

• Case (2 10ρ ).

In this case we have

L(u d,j ) = (d-j -dρ+2ρ)u d+1,j+1 +(ρ-1)v d+1,j and L(v d,j ) = (d-j -dρ+ρ-1)v d+1,j+1 (3.1) 
for all d ≥ 2 and j = 0, . . . , d. Here we shall see the resonance phenomena we mentioned at the beginning of this section: for some values of ρ the dimension of the kernel of L| H d increases, and in some cases we shall end up with a normal form depending on power series evaluated in monomials of the form z b-a w a . Let us put

E d = d -j -1 d -1 j = 0, . . . , d \ {0} and F d = d -j d -2 j = 0, . . . , d -1
(we are excluding 0 because ρ = 0 by assumption), where E d is defined for all d ≥ 2 whereas F d is defined for all d ≥ 3, and set

E = d≥2 E d = (0, 1] ∩ Q ∪ - 1 n n ∈ N * and F = d≥3 F d = (0, 1] ∩ Q ∪ 1 + 1 n , 1 + 2 n n ∈ N * . So E is the set of ρ ∈ C * such that L(v d,j ) = 0 for some d ≥ 2 and 0 ≤ j ≤ d, while F is the set of ρ ∈ C * such that L(u d,j ) = (ρ -1)v d+1,j for some d ≥ 3 and 0 ≤ j ≤ d -1.
Let us first discuss the non-resonant case, when ρ ∈ E ∪ F. Then none of the coefficients in (3.1) vanishes, and thus

Im L| H 2 = Span (2u 3,1 + (ρ -1)v 3,0 , u 3,2 , v 3,1 , v 3,2 , v 3,3 ) and Im L| H d = Span ((d -dρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) , for d ≥ 3, and hence (Im L| H d ) ⊥ = Span (u d+1,0 , (1 -ρ)(d + 1)u d+1,1 + (d(1 -ρ) + 2ρ)v d+1,0 ) for d ≥ 3, Span (u 3,0 , u 3,3 , 3(1 -ρ)u 3,1 + 2v 3,0 ) for d = 2.
It then follows that every formal germ of the form

F (z, w) = (z -ρz 2 + O 3 , w + (1 -ρ)zw + O 3 )
with ρ ∈ E ∪ F (and ρ = 0) has as second order normal form 

G(z, w) = z -ρz 2 + az 3 + ϕ(w) + (1 -ρ)zψ ′ (w), w + (1 -ρ)zw + (1 -ρ)wψ ′ (w) + (3ρ - 
. , d + 1. Since ρ > 1, if d > 2 it also follows that u d+1,j+1 ∈ Im L| H d for j = 1, . . . , d. Now, if ρ = 1 + (1/n) then d d -2 = ρ ⇐⇒ d = 2(n + 1) , and d -1 d -2 = ρ ⇐⇒ d = n + 2 .
Taking care of the case d = 2 separately, we then have

Im L| H d =          Span ((d -dρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d ≥ 3, d = n + 2, 2(n + 1), Span (u d+1,1 + (ρ -1)v d+1,0 , u d+1,3 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d = n + 2, Span (u d+1,2 , . . . , u d+1,d+1 , v d+1,0 , . . . , v d+1,d+1 ) for d = 2(n + 1), Span (2u 3,1 + (ρ -1)v 3,0 , u 3,2 , v 3,1 , v 3,2 , v 3,3 ) for d = 2,
and hence

(Im L| H d) ⊥ =      Span (u d+1,0 , (1 -ρ)(d + 1)u d+1,1 + (d(1 -ρ) + 2ρ)v d+1,0 ) for d ≥ 3, d = n + 2, 2(n + 1), Span (u d+1,0 , u d+1,2 , (1 -ρ)(d + 1)u d+1,1 + v d+1,0 ) for d = n + 2, Span (u d+1,0 , u d+1,1 ) for d = 2(n + 1), Span (u 3,0 , u 3,3 , 3(1 -ρ)u 3,1 + 2v 3,0 ) for d = 2.
It then follows that every formal germ of the form

F (z, w) = z -1 + 1 n z 2 + O 3 , w - 1 n zw + O 3
with n ∈ N * has as second order normal form 

G(z, w) = z -1 + 1 n z 2 + ϕ(w) + (1 -ρ)zψ ′ (w) + a 0 z 3 + a 1 z 2 w n+1 ,

Definition 1. 5 :

 5 We shall denote by O n = d≥1 H d the space of n-tuples of formal power series with vanishing constant term. Furthermore, given Λ ∈ M n,n (C) we shall denote by O n Λ the subset of F ∈ O n with dF O = Λ. Every F ∈ O n can be written in a unique way as a formal sum F = d≥1 F d (1.5) with F d ∈ H d ; (1.5) is the homogeneous expansion of F , and F d is the d-homogeneous term of F .

d≥2H

  d belongs to O n I then the homogeneous expansion of the inverse transformation Φ -1 = I + d≥2 K d is given by

  1≤r s ≤ν s max{r 1 ,...,r s }≥µ d 11 +•••+d 1r 1 =ν 1

j

  and b 0 , b 1 ∈ C are arbitrary. Solving these recurrence equations we find  -(j -1)b 0 for j = 0, . . . , d + 1,

  1)ψ(z) , where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a ∈ C. Assume now ρ ∈ F \ E. Then L(v d,j ) = O always, and thus v d+1,j ∈ Im L| H d for all d ≥ 2 and all j = 1, . .

  1ρ)wψ ′ (w) + (3ρ -1)ψ(w) , where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a 0 , a 1 ∈ C.If instead ρ = 1 + (2/m) with m odd (if m is even we are again in the previous case) thend d -2 = ρ ⇐⇒ d = m + 2 , ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d ≥ 3, d = m + 2, Span (u d+1,2 , . . . , u d+1,d+1 , v d+1,0 , . . . , v d+1,d+1 )ford = m + 2, Span (2u 3,1 + (ρ -1)v 3,0 , u 3,2 , v 3,1 , v 3,2 , v 3,3 ) for d = 2,and thus(Im L| H d ) ⊥ =    Span (u d+1,0 , (1ρ)(d + 1)u d+1,1 + (ddρ + 2ρ)v d+1,0 ) for d ≥ 3, d = m + 2, Span (u d+1,0 , u d+1,1 ) for d = m + 2, Span (u 3,0 , u 3,3 , 3(1ρ)u 3,1 + 2v 3,0 ) for d = 2.It then follows that every formal germ of the formF (z, w) = z -1 + 2 m z 2 + O 3 , w -2 m zw + O 3with m ∈ N * odd has as second order normal formG(z, w) = z -1 + 2 m z 2 + ϕ(w) + a 0 z 3 + (1ρ)z(wψ ′ (w) + ψ(w)), w -2 m zw + (1ρ)w 2 ψ ′ (w) + 2ρwψ(w) , where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 2, and a 0 ∈ C. Now let us consider the case ρ = -1/n ∈ E \ F. In this case the coefficients in the expression of L(u d,j ) are always different from zero (with the exception of d = j = 2), whereasdjdρ + ρ -1 = 0 ⇐⇒ j = d = n + 1 . ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d ≥ 3, d = n + 1, Span ((ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d ) for d = n + 1, Span (2u 3,1 + (ρ -1)v 3,0 , u 3,2 , v 3,1 , v 3,2 , v 3,3 ) for d = 2, d+1,0 , (1ρ)(d + 1)u d+1,1 + (ddρ + 2ρ)v d+1,0 ) for d ≥ 3, d = n + 1, Span (u d+1,0 , v d+1,d+1 , (1ρ)(d + 1)u d+1,1 + (ddρ + 2ρ)v d+1,0 ) for d = n + 1, Span (u 3,0 , u 3,3 , 3(1ρ)u 3,1 + 2v 3,0 )for d = 2.It then follows that every formal germ of the formF (z, w) = z + 1 n z 2 + O 3 , w + 1 + 1 n zw + O 3with n ∈ N * has as second order normal formG(z, w) = z + 1 n z 2 + ϕ(w) + a 0 z 3 + (1ρ)z(wψ ′ (w) + ψ(w)), w + 1 + 1 n zw + ψ(z) + a 1 z n+2 + (1ρ)w 2 ψ ′ (w) + 2ρwψ(w) , where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 2, and a 0 , a 1 ∈ C.Let us now discuss the extreme case ρ = 1. It is clear thatIm L| H d = Span (u d+1,1 , u d+1,2 , u d+1,4 , . . . , u d+1,d+1 , v d+1,2 , . . . , v d+1,d+1 ) ,and hence (Im L| H d ) ⊥ = Span (u d+1,0 , u d+1,3 , v d+1,0 , v d+1,1 ) , It then follows that every formal germ of the formF (z, w) = zz 2 + O 3 , w + O 3has as second order normal formG(z, w) = zz 2 + ϕ 1 (w) + z 3 ψ(w), w + ϕ 2 (w) + zϕ 3 (w) , where ϕ 1 , ϕ 2 ∈ C[[ζ]] are power series of order at least 3,ϕ 3 ∈ C[[ζ]] is a power series of order at least 2, andψ ∈ C[[ζ]] is a power series. We are left with the case ρ ∈ (0, 1)∩ Q. Write ρ = a/b with a, b ∈ N coprime and 0 < a < b. Now dj -1 -a b (d -1) = 0 ⇐⇒ j = (d -1)(ba) b ;since a and b are coprime, this happens if and only if d = bℓ + 1 and j = (ba)ℓ for some ℓ ≥ 1. Analogously,dj -a b (d -2) = 0 ⇐⇒ j = d -a(d -2) b ;again, being a and b coprime, this happens if and only if d = bℓ + 2 and j = (ba)ℓ + 2 for some ℓ ≥ 0. It follows thatIm L| H d ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) for d ≥ 3, d ≡ 1, 2 (mod b) Span ((ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,(b-a)ℓ+2 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,(b-a)ℓ+1 , . . . , v d+1,d+1 , a b u d+1,(b-a)ℓ+2 -a b -1 v d+1,(b-a)ℓ+1) for d = bℓ + 1, Span ((ddρ + 2ρ)u d+1,1 + (ρ -1)v d+1,0 , u d+1,2 , . . . , u d+1,(b-a)ℓ+3 , . . . , u d+1,d+1 , v d+1,1 , . . . , v d+1,d+1 ) ford = bℓ + 2, Span (2u 3,1 + (ρ -1)v 3,0 , u 3,2 , v 3,1 , v 3,2 , v 3,3 ) for d = 2,(where the hat indicates that that term is missing from the list), and thus(Im L| H d ) d+1,0 , (1ρ)u d+1,1 + (ddρ + 2ρ)v d+1,0 ) for d ≥ 3, d ≡ 1, 2 (mod b), Span (u d+1,0 , (1ρ)u d+1,1 + (ddρ + 2ρ)v d+1,0 , (ba)(aℓ + 1)u d+1,(b-a)ℓ+2 + a (ba)ℓ + 2 v d+1,(b-a)ℓ+1 ) for d = bℓ + 1, Span u d+1,0 , u d+1,(b-a)ℓ+3 , (1ρ)u d+1,1 + (ddρ + 2ρ)v d+1,0 for d = bℓ + 2, Span (u 3,0 , u 3,3 , 3(1ρ)u 3,1 + 2v 3,0 ) for d = 2.It then follows that every formal germ of the formF (z, w) = z -a b z 2 + O 3 , w+1 -a b zw + O 3 with a/b ∈ (0, 1) ∩ Q and a, b coprime, has as second order normal form G(z, w) = z -a b z 2 + ϕ(w) + z 3 ϕ 0 (z b-a w a ) + (ba) ∂ ∂w z 2 wχ(z b-a w a ) + 1 -(z b-a w a ) + 1 -a b w 2 ψ ′ (w) + 2 a b wψ(w) , where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and ϕ 0 , χ ∈ C[[ζ]] are power series of order at least 1 -and we have proved Proposition 0.3.

  be the homogeneous expansion of the inverse. Then if H 2 , . . . , H d are Λ-resonant for some Λ ∈ M n,n (C) and d ≥ 2 then also K d is Λ-resonant.Proof : We argue by induction. Assume that H 2 , . . . , H d are Λ-resonant. If d = 2 then K 2 = -H 2 and thus K 2 is clearly Λ-resonant. Assume the assertion true for d -1; in particular, K 2 , . . . , K d-1 are Λ-resonant. Then

Lemma 1.4: Let Φ = I + d≥2 H d ∈ O n I , and let Φ -1 = I + d≥2 K d

  Ks Fr 1 (H d 11 , . . . , H d 1r 1 ), . . . , Fr s (H d s1 , . . . , H d sr s )

	d s1 +•••+d sr s =ν s
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