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In this paper, we focus on the Generalized Belief Propagation (GBP) algorithm to solve trapping sets in Low-Density Parity-Check (LDPC) codes. Trapping sets are topological structures in Tanner graphs of LDPC codes that are not correctly decoded by Belief Propagation (BP), leading to exhibit an error-floor in the Bit-Error Rate (BER). Stemming from statistical physics of spin glasses, GBP consists in passing messages between clusters of Tanner graph nodes in another graph called the region-graph. Here, we introduce a specific clustering of nodes, based on a novel local loopfree principle, that breaks trapping sets such that the resulting region-graph is locally loopfree. We then construct a hybrid decoder made of BP and GBP that proves to be a powerful decoder as it clearly improves the BER and defeats the error-floor.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes, discovered by Gallager [START_REF] Gallager | Low-Density Parity-Check Codes[END_REF] and rediscovered by MacKay and Neal [START_REF] Mackay | Good codes based on very sparse matrices[END_REF], are known as powerful codes to make information robust against transmission channel noise. Great advantage is that they make decoders fast and accurate. Among them, the Belief Propagation (BP) algorithm, introduced by Pearl [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[END_REF], still arouses much interest as it does not require for complex hardware implementation and it may help LDPC codes to approach Shannon's limit [START_REF] Kschischang | Factor Graphs and the Sum-Product Algorithm[END_REF]. BP has been widely studied according to messages behavior [START_REF] Chung | Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation[END_REF], [START_REF] Richardson | The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding[END_REF], convergence and stability [START_REF] Heskes | Stable fixed points of loopy belief propagation are minima of the Bethe free energy[END_REF], [START_REF]On the uniqueness of loopy belief propagation fixed points[END_REF], [START_REF] Murphy | Loopy belief propagation for approximate inference: an empirical study[END_REF] and dynamics [START_REF] Zheng | Study of bifurcation behavior of LDPC decoders[END_REF], [START_REF] Sibel | Evidence of chaos in the Belief Propagation for LDPC codes[END_REF]. In [START_REF] Richardson | Error floors of LDPC codes[END_REF] Richardson introduced the problem of error-floor: an abrupt degradation of the Bit-Error-Rate of BP when channel noise power is very low. In [START_REF] Sankaranarayanan | Failures of the Gallager B Decoder: Analysis and Applications[END_REF], [START_REF] Vasic | Trapping set ontology[END_REF] were connected failures responsible for this phenomenon to trapping sets. These topological structures of LDPC codes Tanner graph are combinations of loops that prevent BP from correctly decoding. In [START_REF] Planjery | Finite alphabet iterative decoders for LDPC codes surpassing floating-point iterative decoders[END_REF], [START_REF] Declercq | Approaching maximum likelihood decoding of finite length LDPC codes via FAID diversity[END_REF] authors examined in detail Finite Alphabet Iterative Decoders (FAID) to solve trapping sets and decrease error-floor, overcoming BP performance. In spite of clear domination of FAID over BP in error-floor region, these decoders are not always defined for LDPC codes of arbitrary nodes degrees. In addition, they are aimed at treating error events from discrete channels, e.g. the Binary Symmetric Channel (BSC) [START_REF] Planjery | Multilevel decoders surpassing belief propagation on the binary symmetric channel[END_REF], therefore error events induced by continuous channels, as the Gaussian channel, are not easily handled. In parallel work in [START_REF] Yedidia | Generalized Belief Propagation and Free Energy Minimization[END_REF], [START_REF] Yedidia | Constructing free energy approximations and Generalized Belief Propagation algorithms[END_REF], Yedidia et al. focused on another decoding approach based on inference in spin glasses [START_REF] Mezard | Information, Physics, and Computation[END_REF], [START_REF] Nishimori | Statistical physics of spin glasses and information processing an introduction[END_REF]: Region-Based Approximation (RBA). This method consists in clustering the Tanner graph to create a new graph, the region-graph, which nodes are called regions. Messages are iteratively exchanged between regions according to the Generalized Belief Propagation (GBP) algorithm. The way clusters are chosen totally determines decoding performance of GBP, given that many clusterings may emerged from a single Tanner graph, [START_REF] Welling | On the Choice of Regions for Generalized Belief Propagation[END_REF], [START_REF] Pakzad | Estimation and marginalization using Kikuchi approximation methods[END_REF]. In this paper we propose an application of RBA and GBP on LDPC codes full of small trapping sets to outperform BP especially in error-floor region. We experimentally show that splitting trapping sets clearly makes GBP decoding more powerful and accurate than BP.

In section II, we shortly describe LDPC codes and BP update rules. We present in section III statistical physics connected to BP, that we extend in section IV to present the GBP algorithm. Follows in section V an introduction of our novel principle of the region-graph construction that locally breaks trapping sets. We end with experimental results in VI that demonstrate the relevancy of our novel method on the Tanner code [START_REF] Tanner | A Class of Group-Structured LDPC Codes[END_REF]. This is an LDPC code of column-weight three, length 155 and rate 2/5, entirely covered with 155 small trapping sets, providing BP performance far enough from Maximum Likelihood Decoding (MLD) such that improvements on iterative decoding are visible [START_REF] Koetter | Graph-covers and Iterative Decoding of Finite Length Codes[END_REF].

II. PRELIMINARIES

A. LDPC codes

An LDPC code is defined as a set of N -codewords C ⊂ {0, 1} N such that any codeword x = [x 1 . . . x N ] is in the kernel of M parity-check equations c = {c 1 , . . . , c M }. Any bit x i is represented by a random variable X i valued in {0, 1}, any parity-check equation c j is represented by a random variable f j valued in {0 (unsatisfied), 1 (satisfied)}. As an example, the Hamming code is defined by 16 codewords that satisfy altogether the following parity-check equations:

(f a ) X 1 ⊕ X 2 ⊕ X 3 ⊕ X 5 = 0 (f b ) X 1 ⊕ X 2 ⊕ X 4 ⊕ X 6 = 0 (f c ) X 1 ⊕ X 3 ⊕ X 4 ⊕ X 7 = 0 X 1 X 2 X 3 X 4 X 5 X 6 X 7 fa f b fc Fig. 1.

Tanner graph of Hamming code

We usually represent an LDPC code by its graphical representation called the Tanner graph G = X ∪ F ∪ E, in which X = [X 1 . . . X N ] and F = {f 1 , . . . , f M }. We draw an edge e ia ∈ E between variable node X i and check node f a if and only if X i is an argument of f a , e.g. the Tanner graph of the Hamming code depicted in Fig. 1.

Given N channel observations y 1 , . . . , y N , decoding an LDPC codes is searching for the most likely word x ∈ {0, 1} N of following distribution:

p(x, y) = p(y|x)p(x) ∝ N i=1 p i (y i |x i ) M a=1 f a (x a ). (1) 
where x a is the state of all variable nodes connected by edges to the check node f a , denoted by X a = {X i ∈ X|e ia ∈ E}, and p i (y i |x i ) is called the likelihood of X i .

B. Belief Propagation

Computing x = arg max x p(x, y) is intractable as it requires to scan 2 N words. N usually reaches several hundreds in tests, as the Tanner code of length N = 155, and several thousands in practice, as DVB-S2 codes of length N = 64800 [START_REF] Morello | DVB-S2: The Second Generation Standard for Satellite Broad-band Services[END_REF]. BP algorithm is a tractable and practical solution to [START_REF] Gallager | Low-Density Parity-Check Codes[END_REF] by approximating all marginal distributions, or marginals, on variable nodes with beliefs {b i } 1≤i≤N s.t.:

x = N i=1 arg max xi b i (x i ). (2) 
BP is an iterative decoder that passes messages along edges of G, which equations, given in [START_REF] Kschischang | Factor Graphs and the Sum-Product Algorithm[END_REF], are for any edge e ia ∈ E, for any value x i ∈ {0, 1}, at any iteration k ≥ 1:

n (k) ia (x i ) ∝ p i (y i |x i ) X b ∋Xi,f b =fa m (k-1) bi (x i ) (3) m (k) ai (x i ) ∝ xa∪xi f a (x a ) Xj ∈Xa\Xi n (k) ja (x j ). (4) 
Quantity n

(k) ia (resp. m (k)
ai ) is the message from X i to f a (resp. from f a to X i ). These messages are usually initialized with likelihoods of adjacent variable nodes. Belief on X i is computed at any iteration k ≥ 1 for any state x i ∈ {0, 1} as:

b (k) i (x i ) ∝ p i (y i |x i ) Xa∋Xi m (k) ai (x i ). (5) 
BP runs while messages still vary from k to k+1, i.e. messages have not converged yet, or while output word x(k) does not satisfy all parity-check equations.

C. Failures

When Tanner graph is tree-like, BP is ensured to converge to optimal MLD. In case the graph presents loopy structures, BP may be trapped into infinite process as neither it converges nor it results in a codeword. Decoding performance are then hard to expect and might present non trivial behavior, see oscillations in Fig. 2(a), studied in [START_REF] Sibel | Evidence of chaos in the Belief Propagation for LDPC codes[END_REF]. Here we focus on specific low-weight error events connected to Tanner graph topology: trapping sets. They are particularly harmful for low channel noise power, reflected by the errorfloor of the BER exhibited in Fig. 2

(b). A trapping set TS(a, b)

is a structure of a variable nodes such that induced subgraph has b odd-degree, or unsatisfied, check nodes, see TS(5, 3) depicted on Fig. 3. Overcoming error-floor may be done according to two strategies: either we construct codes free of small trapping sets as proposed in [START_REF] Nguyen | On the Construction of Structured LDPC Codes Free of Small Trapping Sets[END_REF], or we design dedicated decoders able to handle trapping sets as proposed in this paper.
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III. STATISTICAL PHYSICS OF LDPC CODES

A. Spin glasses

A spin glass [START_REF] Mezard | Information, Physics, and Computation[END_REF] is a vector of N spins S = [S 1 . . . S N ], each one randomly valued in {-1, +1}, that are correlated according to coupling constants {J ij } 1≤i,j≤N , as bits of an LDPC code are correlated by parity-check equations. Coupling constants are summarized by an energy function defined for any state s ∈ {-1, +1} N :

E J (s) = - <i,j> J ij s i s j . ( 6 
)
where < i, j > stands for spins s.t. J ij = 0. Noise on a spin glass is typically modeled by an external magnetic field h = [h 1 . . . h N ] that independently influences all spins such that associated energy function is the scalar product between h and s:

E H (s, h) = - N i=1 h i s i (7) 
According to Boltzmann's law, a noisy spin glass is described by the following distribution for any state s ∈ {-1, +1} N :

p(s, h) ∝ e -E H (s,h)-E J (s) (8) 
which is equivalent to:

p(s, h) ∝ N i=1 e hisi <i,j> e Jij sisj (9) 
This distribution equals distribution Tanner graphs distribution (1) when check nodes degree is two, then solving a spin glass is decoding the equivalent LDPC code which the parity-check equation related to J ij is:

J ij s i s j    > 0 ⇐⇒ x i ⊕ x j = 0 (parity satisfied), < 0 ⇐⇒ x i ⊕ x j = 1 (parity unsatisfied), = 0 ⇐⇒ no parity-check equation.

B. Variational approach

Again, computing ( 9) for all spin states s is not tractable. According to [START_REF] Yedidia | Generalized Belief Propagation and Free Energy Minimization[END_REF], we may use a variational approach by means of a tractable distribution b, called belief, that we make vary to approximate p. The usual fair indicator to estimate relevancy of b is the Kullback-Liebler divergence [START_REF] Kullback | Information Theory and Statistics[END_REF] defined as:

KL(b, p) = s b(s, h) log b(s, h) p(s, h) . ( 10 
)
Anyone can show that minimizing KL(b, p) is minimizing variational free energy:

F b = U b -S b (11) 
with U b and S b the variational averaged energy and entropy, which depend on the arbitrary expression of b.

Bethe Approximation (BA) [START_REF] Bethe | Statistical Theory of Superlattices[END_REF] is a variational approach coming from mean field theory [START_REF]Advanced Mean Field Methods. Theory and Practice[END_REF] in which b is factorized over variable and check nodes:

∀x ∈ {0, 1} N , b(x) ∝ M a=1 b a (x a ) N i=1 b di-1 i (x i ) . ( 12 
)
Denoting by d i the degree of variable node X i , variational quantities U b and S b are then defined as:

U b = - M a=1 xa b a (x a ) log f a (x a ), (13) 
S b = - M a=1 xa b a (x a ) log b a (x a ) - N i=1 (1 -d i ) xi b i (x i ) log b i (x i ). (14) 
As proved in [START_REF] Heskes | Stable fixed points of loopy belief propagation are minima of the Bethe free energy[END_REF], [START_REF] Yedidia | Constructing free energy approximations and Generalized Belief Propagation algorithms[END_REF], stationary points of F b computed by BA strictly equal BP fixed-points, i.e. minimizing F b is determining beliefs {b i } 1≤i≤N of variable nodes [START_REF] Chung | Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation[END_REF]. Messages ( 3) and ( 4) stand for Lagrange multipliers [START_REF] Bertsekas | Nonlinear Programming[END_REF] used to constrain the optimization [START_REF] Pakzad | Estimation and marginalization using Kikuchi approximation methods[END_REF].

IV. GENERALIZED BELIEF PROPAGATION

A. Region-based approximation

In [START_REF] Yedidia | Constructing free energy approximations and Generalized Belief Propagation algorithms[END_REF], [START_REF] Kikuchi | A Theory of Cooperative Phenomena[END_REF] authors introduced a generalization of ( 12) called the Region-Based Approximation (RBA). Instead of factorizing b according to variable and check nodes, RBA consists in factorizing b over subgraphs of G, called regions, any of them being denoted by r = {X r ⊆ X} ∪ {F r ⊆ F} ∪ {E r ⊆ E}. A set of regions R is constrained to cover the whole Tanner graph:

• any region that includes a check node f a has also to include X a , • all variable and check nodes must be included in at least one region.

A set R that fulfills these constraints may be used to approximate joint distribution with:

b(x) ∝ r∈R b cr r (x r ) (15) 
where b r is the belief of region r. Bayesian rule constrains, by means of counting numbers {c r } r∈R , each variable node to only contribute once to RBA, i.e. any X i must participate once on each side of the equation, as in a chemical equation.

According to [START_REF] Yedidia | Constructing free energy approximations and Generalized Belief Propagation algorithms[END_REF], counting numbers are computed as:

∀s ∈ R, c s = 1 - r⊃s c r (16) 
where

s ⊂ r is equivalent to X s ⊂ X r , F s ⊂ F r , E s ⊂ E r .
We define a restrictive inclusion law: s ≺ r if and only if s ⊂ r and no region t could be found in R s.t. s ⊂ t ⊂ r.

Relationships between regions are shared such that:

• s ≺ r means that s belongs to E r the set of children of region r and r belongs to P s the set of parents of s, • s ⊂ r means that s belongs to D r the set of descendants of r and r belongs to A s the set of ancestors of s, • r ∪ D r is the family of r denoted by F r . By associating to each region a node and to each restrictive inclusion an edge, we associate to any set of regions R a graphical representation called a region-graph which construction rules are given in [START_REF] Sibel | A novel region graph construction based on trapping sets for the Generalized Belief Propagation[END_REF]. First regions selected to cover the whole Tanner graph are called clusters. Once they have been selected, we construct a second generation of regions made of intersections between nodes of the clusters. We continue this rule to build any generation l from the former region l -1. A single Tanner graph may be mapped to numerous region-graphs, each one offering a RBA of specific accuracy. The main issue when dealing with RBA is thus the way the Tanner graph is clustered.

B. Message-passing

Equation ( 15) makes variational averaged energy and entropy be:

U b = - r∈R c r xr b r (x r ) log fa∈Fr f a (x a ) (17) 
S b = - r∈R c r xr b r (x r ) log b r (x r ). (18) 
Minimizing variational free energy F b provides regions belief equation. For any r ∈ R, for any state x r ∈ {0,

1} |Xr| : b r (x r ) ∝ Xi∈Xr p i (y i |x i ) p∈Pr m pr (x r )
q∈Dr s∈Pq\Fr m sq (x q ) (19) where m rs is a message between connected regions r, s ∈ E r with:

• f r (x r ) = fa∈Fr\Fs f a (x a ), • p r (y r |x r ) = Xi∈Xr\Xs p i (y i |x i ).
These messages are iteratively passed according to GBP equations where for any couple of regions r, s ∈ E r , for any state x r ∈ {0, 1} |Xr| , at any iteration k ≥ 1:

m (k) rs (x s ) = xr∪xs f r (x r )p r (y r |x r ) u∈R\Fr v∈Fr\Fs m (k-1) uv (x v ) u∈Dr\Fs v∈Ds m (k) uv (x v )
.

(20) As BP, GBP runs while messages do not converge or while output word x, computed according to (2), is not a codeword. To compute x are needed beliefs on variable nodes. As region-graph does not systematically contain regions reduced to single variable nodes, these beliefs are determined by marginalization, e.g. for a variable node X i ∈ X, for any value

x i ∈ {0, 1}: b (k) i (x i ) = xr∪xi b (k) r (x r ) (21) 
where region r is the smallest region that contains X i in R.

V. A NOVEL TANNER GRAPH CLUSTERING

A. Systematic clustering

In [START_REF] Yedidia | Constructing free energy approximations and Generalized Belief Propagation algorithms[END_REF] is introduced a region-graph construction in which each cluster is made of only one check node f a and its neighborhood X a , such that the region-graph is firstly made of M clusters. The low density of LDPC codes implies that parity-check equations does not intersect a lot. Therefore, by this construction, the region-graph of any LDPC code is made of only two generations according to the construction rules mentioned before: the clusters generation and the next generation in which any region is made of a single variable node. The major advantage of this construction is that the implementation is easy as only the knowledge of paritycheck equations is enough. Yet, RBA is aimed at offering better performance than BA lowering the influence of harmful topological structures of G. The systematic construction does not exhibit any connection to the Tanner graph topology, then GBP might not be more accurate than BP by this way.

The optimal but unrealistic clustering consists in gathering all variable and check nodes in a single cluster, GBP is then equivalent to compute Boltzmann's distribution [START_REF] Murphy | Loopy belief propagation for approximate inference: an empirical study[END_REF] which is intractable. We specify that a relevant clustering is balanced between two crucial properties:

• any cluster is aimed at absorbing a harmful topological structure to reduce its effect on decoding, • any cluster must be sensibly sized to make GBP of practical interest as a decoder. The systematic construction fulfills the first property as check nodes of LDPC codes have several connections, but the first property is not taken into account.

B. Novel principle

Here, we extend a study carried out in [START_REF] Welling | On the Choice of Regions for Generalized Belief Propagation[END_REF] that helps improving GBP performance: for any region-graph, upper clusters are added to split, merge and remove regions under specific rules, detailed in this paper. The authors introduce the following assumption:

Welling's assumption: Region-based approximation will improve if we add a new region to the region-graph.

This assumption appears wise in the sense that, at the expense of the complexity as upper clusters are larger than former clusters, it is aimed at removing loops in region-graph. Tanner graph is a particular region-graph, therefore Welling's addition helps modify Tanner graph introducing clusters that we connect to check nodes.

In our work, we take into account that adding upper clusters might increase complexity in such a way that GBP is not practical. Thus, instead of gathering nodes of harmful structures inside clusters, we break them according to our novel construction principle:

Local loopfree principle: Given a harmful subgraph T of a Tanner graph G, when breaking T in n c clusters, resulting region-graph R s made of these n c clusters and their descendants must be loopfree such that GBP algorithm is locally optimal on R s .

X 1 X 2 X 4 fa f d f g X 2 X 3 X 4 f b fe f h X 2 X 4 X 5 fc f f f i Fig. 4. Breaking a TS(5, 3) into three clusters
This principle is an extension of the Welling's addition that helps GBP keep a practical interest as it improves its decoding performance. As our goal is to annihilate the error-floor, we apply our principle on trapping sets. We represent in Fig. 4 the way we break a TS(5, 3) and in Fig. 5 the resulting local regiongraph on which GBP optimally performs as it is loopfree. When applied on an LDPC code, e.g. the Tanner code, this construction cannot provide a whole loopfree regiongraph, as trapping sets may have complex connections between them, that entails suboptimal GBP performance. Fortunately, we emphasize that region-graph loops are larger than Tanner graph loops by our construction, GBP is then less influenced by trapping sets than BP. 
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VI. HYBRID DECODER

We introduced GBP to solve error events that are not decoded by BP, then it appears irrelevant to systematically use GBP even when BP well performs. In addition, even though our local loopfree principle helps not unreasonably increase complexity, BP is a faster decoder.

We then introduce a hybrid decoder that first runs BP, then runs GBP if BP fails. This decoder results in improved BER performance without seriously enlarging computation complexity. We performed it on the Tanner code entirely covered of trapping sets TS(5, 3) breaking them into three clusters as in Fig. 5. We considered BSC and Additive White Gaussian Channel (AWGNC). BP and GBP decoders are run for at most 100 iterations, and quantities depicted in this section are averaged over L = 10 12 channel realizations to observe behavior in BP error-floor region. First quantity to observe in Fig. 6 is the GBP call rate defined as the ratio between the number of BP failures and L. As channel noise power is lowered, GBP is less called given that BP is more and more efficient. A slope degradation takes place on BSC around p = 3.10 -2 and around 5.95dB on AWGNC that matches with the error-floor emergence. Consequently, even though GBP calls still diminishes, GBP is necessary to decode problematic low-weight error events. This change in GBP calls is shown in Fig. 7 that depicts the success rate of GBP defined as the ratio between the number of GBP decodings that converge or that reach codewords and the number of GBP calls. We observe that as p is decreased and E b /N 0 is increased, GBP is more successful. This confirms that our novel region-graph construction entails a decline in trapping sets influence. In addition, when approaching errorfloor region, slope of success rate gradually increases, i.e. robustness against low-weight error events is stronger. Trapping sets are deeply connected one with each other, preventing region-graph from being loopfree. It entails that GBP decoding may not be as fast as BP when dealing with non problematic error events. We display in Fig. 8 the number of iterations K needed to converge or to reach a codeword for BP and GBP. We see that for small values of p and large values of E b /N 0 , BP does not require for many iterations as it is considered only if it performs well in our hybrid decoder. In contrast, GBP needs for a non-negligible number of iterations as it is used to treat non trivial error events. As an example, for p = 10 -2 and E b /N 0 = 6dB, K BP = 0.9 and K GBP = 49.9. Fortunately, as noise power is lowered, we see that K GBP is gradually reduced, meaning that for very low values of p and very high values of E b /N 0 , when BP fails, i.e. k BP = 100, time spent to decode by GBP is not significant. Peculiar behavior around p = 0.1 and 1dB where decoders suffers from an unexpected resonance are due to problem of dynamics that is extensively studied in [START_REF] Sibel | Evidence of chaos in the Belief Propagation for LDPC codes[END_REF]. To evaluate decoding performance of hybrid decoder compared with BP, we represent in Fig. 9 corresponding BER. Breaking trapping sets proves to be relevant as hybrid decoder outperforms BP, particularly for low values of channels noise power. As examples, we see for p = 5.10 -2 that BER of hybrid decoder is ten times less than BER of BP, and that BP error-floor on AWGNC occurs around 5.8dB whereas GBP does not exhibit such a phenomenon even at 7.0dB. Especially on BSC, slope decreases less than BP slope, that indicates that:

• GBP also suffers from an error-floor,

• all TS(5, 3) though wield less influence on GBP. Error-floor is not completely defeated, as Tanner graph also contains other trapping sets of various topologies and sizes, see [START_REF] Vasic | Trapping set ontology[END_REF] for detail. Nevertheless, we succeed in making a decoder more robust against noise.

VII. CONCLUSION

In this paper, we introduced GBP algorithm to decode pathological error events for BP. We brought out a novel principle for constructing region-graph, that ensures local optimality of GBP. This helped break trapping sets to reduce their harmful influence on performance. Simulation results demonstrated that GBP running on the new region-graph clearly offers reliability and robustness compared with BP, at the expense of a slight increase in computation time that is though reduced as we increase channel noise power. Error-floor is then decreased, proving that breaking trapping sets ensures a better error correction capability, i.e. a better tolerance to low-weight error events.
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