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Ion size effects on electric double layers and ionic transport through
ion-exchange membrane systems

Pierre Magnico
Laboratoire de Mécanique, Modélisation et Procédés Propres (UMR CNRS 6181), IMT La Jetée, Technopôle de Château-Gombert,

38, Rue Frédéric Joliot-Curie, Marseille, France

The density function theory is used to study the density profiles and the transport properties of an ion-exchange membrane system submitted to an 
electric potential drop. As the ionic density increases, hard sphere interaction between ions becomes dominant and the ion size must be taken into 
account. The results show that the density distribution and the transport properties depend on the bulk electrolyte density. At equilibrium the charge 
inside the electric double layer (EDL) adjacent to the membrane decreases and the membrane electric potential increases as the bulk density increases. 
For high bulk density of unsymmetric electrolyte, secondary charge layers are observed inside the EDL. In the membrane the anion-density-to-bulk-
density ratio increases when the bulk density increases from small to moderate values owing to the membrane potential increase. But it decreases 
abruptly at high bulk density values owing to the increase of the non-ideal electrostatic interaction. At a given electric potential drop, the current/
voltage curves follow the variation of this ratio with respect to the bulk density at equilibrium. As the current density approaches the limiting one, the 
amplitude of the secondary charge layers decreases and the EDL thickness increases.

1. Introduction

The Nernst–Planck (NP) equation is commonly used to model

the ion transport through industrial membrane systems. However

the NP equation includes several approximations such as propor-

tionality between the ion velocity and the thermodynamic forces,

absence of cross-linking between ions, no definition of the

diffusion coefficient, ions approximated to point charges [1].

In order to take into account of the complexity of the physico-

chemical properties of industrial membrane systems, the NP

equation has been extended by introducing ion/solvent and ion/

membrane interactions (e.g. ion pairing, dielectric saturation,

dielectric exclusion [2–4]). However, to my knowledge and

contrary to the biological engineering, only few investigations

about the ion size effects on the ion transport through membrane

systems or micro- and nanochannels have been carried out in

chemical engineering [5–16].

In order to take into account of these effects, several theore-

tical models based on the thermodynamic statistics have been

used to investigate the structure of electrolytes in equilibrium

with a charged surface. These studies have shown that even at

moderate density, the electric double layer (EDL) is strongly

modified by the presence of charge layers which cannot be

modelled by the Poisson–Bolzmann (PB) equation. This pertur-

bated EDL induces a modification of the selectivity and of the

electrophoretic properties revealing that pair correlation and

volume exclusion must be taken into account [17–20].

The goal of the present work is to study the effect of the ion

size on the spatial distribution of density and on the properties of

the ion transport through membrane systems. This investigation

has been carried out by means of the density functional theory

(DFT). The DFT is an integral equation theory which determines

the thermodynamic properties of an inhomogeneous fluid. It is

based on the functional minimisation of the grand canonical

potential [21,22]. DFT has been applied successfully to interfacial

and phase behaviour in a wide variety of systems, such as

colloidal fluids, polymeric fluids, liquid crystals and biological

systems [20,23,24]. In this work the membrane system consists in

a one-dimensional charged membrane immersed in a bulk elec-

trolyte solution and separating two baths. This simplistic system,

commonly used to model electrochemical systems [25–28], does

not take account of the membrane pore structure and of the radial

ion distribution in the pore. The use of the homogeneous model

(i.e. the Toerell–Meyer–Sievers model) instead of the three

dimensional space charge model [4,5,13,29,30] is justified if the

screening length associated with the membrane charge density is

greater than half the pore radius [31,32]. However the aim of the

paper is to analyse the perturbation of the EDL adjacent to the
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membrane/bath interface induced by the introduction of the ion

size and to evaluate the induced modification of the transport

properties, even if the membrane charge density ranges up to

10 M. In this analysis, the DFT results are compared to the

ones computed with the classical Poisson–Nernst–Planck (PNP)

equation set over a large range of electrolyte density and of

membrane charge.

In this paper the membrane system, the modified PNP equa-

tion set and the numerical method are first described (the DFT

applied to ionic fluid is presented in Appendix A). In the next

section the density, the electric potential and the charge profiles

are analysed in a membrane system at equilibrium in the case of

an unsymmetric elecrolyte (CaCl2). Results obtained with a

symmetric one (NaCl) are reported in Appendix B. Finally, the

transport properties of the membrane system under an electric

potential drop are studied for the two electrolytes. Profiles of

concentration, of electric potential and of charge are described in

Appendix C.

2. Membrane system and numerical methodology

2.1. Description of the membrane system

The membrane system consists in a negative charged mem-

brane of length L embedded in a binary electrolyte solution the

density of which is ro. The two baths on both sides of the

membrane have a length d. So the membrane system length is

Lþ2d [27]. Along the membrane the fixed charge density Y is

constant. We assume that the membrane and the ions do not

interact chemically. The diffusion coefficient Di and the dielectric

constant e are constant over all the membrane system. However,

owing to the high values of ro and of Y used in this work, the

dependence of these coefficients with respect to the local ion

density would have to be taken into account [10,33,34].

2.2. One-dimensional ion transport

Steady-state ion transport under concentration gradient and

external field is defined by the divergence free of the flux of each

species:

@

@x
Ji ¼ 0 ð1Þ

In the case of small thermodynamic forces the flux are linearly

dependent on these forces, and the following one-dimensional

phenomenological relation is applied:

Ji ¼�
DiriðxÞ

kT

@mi

@x
ð2Þ

where mi is the chemical potential defined at equilibrium, ri(x) the

density of the species i located at x, k the Boltzmann constant,

T the absolute temperature. Eq. (2) means that a system out of

thermodynamic equilibrium may be approximated to a system

at local equilibrium defined by a chemical potential varying

spatially. The DFT is used to derive the expression of mi.

The extension of the Nernst–Planck (NP) equation to high con-

centration lies in additional terms in the chemical potential

expression: a hard sphere contribution mhs
i and an electrostatic

one mes
i . The ions are assimilated to charged hard sphere. mhs

i

represents the excluded volume effect of uncharged spherical

particles and mes
i represents the ion size effect on the screening

efficiency of the electrical double layer located around each ion.

The sum of the two contributions is equivalent to the logarithm of

the activity coefficient of the electrolyte. These two contributions

depend on the density of all the ionic species. Therefore all the NP

equations are coupled via mes
i and mhs

i . In the following, the term

‘ideal’ represents the classical NP approach in which the excess

terms mes
i and mhs

i are omitted in the opposite of the ‘non-ideal’

term. Attempts to justify the use of the DFT (named in this case

dynamic density functional theory—DDFT) in nonequilibrium

situations have been carried out by means of the stochastic

equations of motion for colloidal fluids or by means of the

Newton one for atomic fluid. The main assumptions are that the

equilibrium is local and that the gradient of the chemical

potential computed at equilibrium is a thermodynamic force.

Comparison with Monte Carlo simulations has proved that the

DDFT is accurate enough [35–37]. Here DDFT is replaced by DFT

because the simulations in nonequilibrium regime are carried out

at steady-state.

In the figures, the ideal curves represent the results of the

computations carried out without these excess terms. Therefore

these curves represent the results of computation with the

classical PNP equations. The detail of the computation of mi is

given in [38,39] and is briefly presented in Appendix A.

The adimensionalized PNP/DFT equation set has the following

expression:

@

@x
DiriðxÞ

@mi

@x

� �

¼ 0 ð3Þ

2wI
@2

@x2
FðxÞ ¼�

X

i

ziriðx
0ÞþYðxÞ ð4Þ

With

miðxÞ ¼ LnðriðxÞÞþziwFðxÞþmhs
i ðxÞþmes

i ðxÞ ð5Þ

w¼
e9Fd9
kT

ð6Þ

I¼
1

2

X

i

roiz
2
i ð7Þ

YðxÞ ¼ Y if 0oxoL ð8Þ

YðxÞ ¼ 0 elsewhere

where e the elementary charge, Fd the Donnan potential, roi.the

density of the species i at x¼�d. In Eq. (5), mhs
i ðxÞ and mes

i ðxÞ are

defined in Appendix A.

In Eqs. (3)–(5) and (7), all the variable are used in the reduced

form: the lengths, the fixed charge and ion densities, the diffusion

coefficients, the electric potential and the chemical potential are

normalised by the Debye length ld, a reference salt density rref
o ,

the mean diffusion coefficient (D), the Donnan potential 9Fd9 and
the thermal energy kT respectively. The mean diffusion coefficient

and the Debye length have the following expression:

D¼

P

iroiDi
P

iroi

ð9Þ

ld ¼
ekT

e2
1

2rscaleI

� �1=2

ð10Þ

With rscale ¼ 103
N ar

ref
o where N a is the Avogadro number.

The quantity rscale is used because in the definition of ld and in

the dimensionalized PNP equation set the unit of the density ri

is m�3 and the unit of rref
o is Mole/L. The current density is

normalised by Iref ¼ eDrscale=ld and has the following expression

IC ¼
P

iziJi.

2.3. Resolution of the transport equation set

In Eqs. (3) and (4), the variables are mi, ri, F. In order to lower

the complexity of the problem, the weighted function naðxÞ,

defined in Appendix A and in [38], is considered as an additional
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explicit variable. So Eq. (A.6) is the fourth equation of the

transport equation set.

The two differential equations are discretized by means of the

finite difference method. At iteration nþ1, the densities rn
i , the

electric potential Fn and naðrn
i Þ are known. naðrn

i Þ is the non-local

density determined with the density rn
i computed at iteration n.

The chemical potential mnþ1=2
i is first computed by means of

Eq. (3). In a second step rnþ1
i

and na are computed by means of

the Newton method. In a third step, the Poisson equation (Eq. (4))

is solved in order to compute the electric potential Fnþ1 with the

density profilernþ1
i ðxÞ. Finally, miðr

nþ1
i ,Fnþ1Þ and naðr

nþ1
i Þ are

computed. At this step, the species density in the local reference

fluid rref
i and the screen parameter G are computed with rnþ1

i by

means of the MSA and of the conditions on the electroneutrality

and on the ionic strength [34] (see also Appendix A). This

computation must be carried out by an iterative method.

In all the numerical computations, the bulk density and the

electric potential are imposed at the boundaries located at x¼�d

and x¼Lþd. The same value of density roi is imposed at these

boundaries, the value of the electric potential is zero at x¼�d.

The membrane and the baths have a length of 50 and 100 Debye

length (ld) respectively. The numerical simulations have been

carried out with T¼300 K, e¼78.4, Di¼10�10 m2/s, RNaþ¼1 Å,

RCa2þ ¼1 Å, RCl�¼1.8 Å and rref
o ¼ 1 Mole=L. The cation hydration

is not taken into account. The spatial grid is identical to the one

used in [27]. The grid is affined over 4 Debye lengths on both

sides of the two bath/membrane interfaces and is stretched in the

other regions. The membrane and the two baths are discretized

with 100 nodes and 80 nodes respectively. Numerical simulations

carried out with a higher node number have shown that the

discretisation is accurate enough.

3. Analysis of the DFT results at equilibrium

3.1. Density and electric potential profiles in the case of an

unsymmetric electrolyte

Figs. 1 and 2 display, on both sides of the left bath/membrane

interface, the profiles of the density ratios ri/ro, of the electric

potential and of the local charge density ratio Q/ro. These profiles

are computed with Y/ro¼�10 and for ro varying from 10�4 to 1.

Q is defined as the sum of all the charge densities fixed and

mobile: Q=ro ¼ ð2rCa2þ �rCl� þYÞ=ro. The profiles are compared

to the ones computed with the ideal approximation (i.e.

mhs
i ðxÞ ¼ mes

i ðxÞ ¼ 0). With the normalisation used in these figures,

all the ideal profiles must be identical to the bold curves because

the Donnan potential is a function of Y/ro and because the Poisson

and the Nernst–Planck equations are linear with respect to the

density. Therefore the ideal profiles depend on Y/ro but not on ro.

Here the profiles show that the non-ideality induces a depen-

dence on ro owing to the contribution of mhs
i ðxÞ and of mes

i ðxÞ.

We have to notice that the profiles show differences with the

ideal ones even at ro¼10�4 where non-ideal effects are small but

observable. Inside the membrane, far from the interface, rCa2þ =ro

and rCl�=ro increase with ro when roo0.1 and decrease when

ro40.1. For the counter-ion, if ro40.01 a local spatial maximum

appears the amplitude of which increases with ro. Its location at

x¼1.26 is not sensitive to ro. At high salt density a local minimum

also appears, the location at x¼3.37 seems independent of ro.

To this counter-ion local maximum corresponds a co-ion local

minimum and conversely, to the counter-ion local minimum

corresponds a co-ion local maximum. However, for the co-ion,

their position moves to the membrane centre as ro increases.

Outside the membrane, the cation profiles display a minimum

when roZ0.1. Its location is independent of ro. For the anion, a

maximum is observable also when roZ0.1, but its location moves

to the left boundary.

Qualitative comparisons may be eventually made with MC and

DFT computations carried out around a negatively charged plane.

In [40], the plane is modelled as a semipermeable membrane.

But the membrane is not permeable to all the ions. Its thickness is

0.05 Å. The density profiles displayed in [40] which are related to

simulations shown in Fig. 1 correspond to simulation 20. In this

simulation, the RCl�¼2.13 Å, RCa2þ ¼1 Å, ro¼0.5 M, the surface

charge s¼�0.5 C m�2. The co-ion profile displays one maximum

located at 2RCl� , the amplitude of which is 2r
oCl�

. In Fig. 1, the

maximum outside the membrane is located at 1.3RCl� if

ro¼0.5 M and at 1.1RCl� if ro¼1 M from the left membrane/

bath interface. For the counter-ion density profile, the figure in

[40] does not allow to verify if it has an extrema. Computation

with NaCl 1 M and s¼�0.5 C m�2 (simulation 19) does not

display any layering. This confirms the small ion size effects on

the density and potential profiles reported in Appendix B.

In the EDL the co-ions move from the membrane to the baths

and the counter-ions move in the opposite direction replacing the

anions as ro increases. At the same time, successive anionic and

cationic secondary layers appear in the EDL. This layering on both

sides of the interface induces a secondary layer of negative charge

density Q outside the membrane, a positive and a negative

secondary charge density layer inside the membrane. The posi-

tions of these extrema are independent of ro and correspond to

the positions of the cation density extrema. The whole charge

ratio in the EDL in the bath side (i.e.
R 0
�d Q ðxÞ=ro dx) decreases and

increases in the membrane side as ro increases owing to the

Fig. 1. Electrolyte: CaCl2. Ion density ratio profiles on both sides of the left bath/

membrane interface at equilibrium for several salt density values. Y/ro¼�10.
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electroneutrality condition over the computational domain.

It changes of sign on both sides if ro40.5. The electric potential

increases monotonously as the whole charge ratio in the inner

EDL increases. As long as secondary layers do not appear in the

outer EDL, i.e. roo0.1, the electric potential profile keeps the

same shape as observed for NaCl (see Appendix B). As soon as

these layers appear (ro40.1), an electric potential inversion is

observed. This inversion occurs before the charge inversion.

Fig. 3 displays the correlation between the electric potential at

the membrane centre (noted F1/2) and the whole charge ratio in

the outer EDL (noted Qout ¼
R 0
�d Q ðxÞ=ro dx) for Y/ro¼�2, �5

and �10 and for the two electrolytes. A variable change has

been carried out so that the range of variation of C and x lies

between 0 and 1:

xðr0Þ ¼
Qoutðr0Þ�Qoutðr0 ¼ 1Þ

Qoutðr0 ¼ 10�4
Þ�Qoutðr0 ¼ 1Þ

ð11Þ

Cðr0Þ ¼
F1=2ðr0Þ�F1=2ðr0 ¼ 1Þ

F1=2ðr0 ¼ 10�4
Þ�F1=2ðr0 ¼ 1Þ

ð12Þ

In this figure, for each value of Y/ro, the curves C(r0) vs. x(r0) are

close to the straight line C¼x. The dependency of the electric

potential with respect to Qout does not depend on EDL structure

even if the EDL profile is much modified.

At this step of the description of the EDL structure, it must be

observed that the dependence of the extrema position with

respect to ro is a consequence of the choice of the characteristic

length. In this article, the characteristic length is the Debye length

which decreases with the increasing salt density ro. The position

of all the extrema moves actually to the interface as ro increases.

This means that ld is not a relevant characteristic length for the

exact location of the extrema but it is relevant for the comparison

between profiles with and without non-ideal assumptions

because the EDL thickness remains of the order of the Debye

length. Moreover, the salt density range of variation is 104 and the

Debye length one is 102.

3.2. Influence of the chemical potential components on the ion

partitioning

In order to explain the variation of the density of each species

with ro at the membrane centre, the balance between all the

components of the individual chemical potential mi has been

analysed. Figs. 4 and 5 display the difference of all the chemical

potential contributions mei between the membrane centre (x¼L/2)

and the left boundary (x¼�d) as a function of ro for Y/ro¼�2,

�5 and �10: Dmei ¼ mei ðx¼ L=2Þ�mei ðx¼�dÞ with e¼es, hs, r, f.
The ideal component is divided into two terms: the density

component (mr
i
¼ LnðriÞ) and the electric potential one

(mji ¼Dmji ¼ ziwF). The sum of the difference of all the compo-

nents is equal to Dmi¼mi(x¼L/2)�mi(x¼�d) which must vanish

because the system is at equilibrium. As ro decreases from 1 to 0,

the non-ideal effects must be less and less important so that as ro

approaches 10�4, the curves must converge to values obtained

with the ideal approximation. At this step it must be noticed first

that the difference of the logarithmic component Dmri is equal to

Lnðri=niroÞ, which is equivalent to the logarithm of the ion

partitioning. Therefore the curves Dmri vs. ro for Y/ro¼�10 can

be deduced from Fig. 1 at x¼5. Second, the electric potential at

x¼L/2 depends on the charge profile in the electric double layer

EDL only owing to the electroneutrality condition inside the

membrane. In other word, F is independent of the electrolyte

composition at x¼L/2.

For the cation (Fig. 4) the hs contribution at x¼L/2 and

at x¼�d are equal. Therefore the density ratio rCa2þ =ro curve

(i.e. Dmr
Ca2þ curve) is the result of the balance between Dmj

Ca2þ and

Dmes
Ca2þ .rCa2þ =ro varies slightly with ro owing to the local electro-

neutrality condition and to the magnitude of variation of rCl�=ro

with ro. The variation of these two components is monotonous

but the rate of variation is noticeable when ro40.01. It must be

recalled that when ro40.1, F(L/2) changes of sign and the

electric potential contribution becomes repulsive. It must be also

observed that Dmes
i does not depend on the density ratio but on

the ion density ri itself at x¼�d and x¼L/2. In other words it

depends on the screening ability of each species at these two

locations separately. This explains the variation of Dmes
Ca2þ without

any noticeable variation of Dmr
Ca2þ (i.e. rCa2þ =ro). Owing to the

large charge of cation, Dmes
Ca2þ cannot be neglected if ro40.001

Fig. 2. Electrolyte: CaCl2. Electric potential and charge profiles on both sides of the

left bath/membrane interface at equilibrium for several salt density values.

Y/ro¼�10.

Fig. 3. C(ro) vs. x(ro) for ro ranging from 10�4 to 1 and Y/ro¼�2, �5 and �10.
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and its amplitude of variation with ro is much higher than for

Naþ (see Appendix B). For the co-ion (Fig. 5), two regimes with a

crossover at ro¼0.1 can be observed. If roo0.1, Dmj
Cl�

and Dmr
Cl�

are dominant. This means that the es and the hs components

inside the membrane and at the left boundary are equal. There-

fore the density ratio rCl�=ro depends on the electrical potential

only, i.e. the variation of rCl�=ro does not result from non-ideal

effects at x¼L/2 but from non-ideal effects on the charge

distribution in the EDL. When ro40.1, Dmes
Cl� is the dominant

term. The small repulsive contribution of Dmhs
Cl� amplifies the

decrease of the density ratio.

Simulations carried out with values of Y/ro equal to �2 and

�5 show similar behaviour. The value of the salt density thresh-

old is independent of Y/ro. However the amplitude of variation of

Dmei with ro decreases with Y/ro. As Y/ro decreases, the electro-

lyte composition approaches the composition at the left boundary

and the density decreases inducing less non-ideal effects.

4. Analysis of the current/voltage curves in negatively charged

membrane system

In this section the current/voltage curves when a potential

drop DF is imposed at the computational domain boundaries are

described. The investigation has been carried out in underlimiting

current regime, so as the thickness of the EDL is much smaller

than the bath one. In Fig. 6, ILO is the limiting current density of a

perfectly permselective membrane, i.e. through which the co-ion

flux is null [27,28,41,42]. If the excess contribution of the

chemical potential is not taken into account:

ILO ¼
ðz1�z2ÞD1n2ro

d
ð13Þ

where n2 is the stoichiometric number of species 2 for a binary

electrolyte (n1z1¼�n2z2). It is convenient to use the ratio IC/ILO for

two reasons. First a simple model gives an expression of IL as a

function of ILO. Second, in the ideal case, the current density is linear

with respect to the electrolyte density and depends on the ratio Y/ro.

Therefore IC/ILO is dependent of Y/ro only as Fd and w. So in Fig. 6b

one ideal current/voltage curve only is needed for each electrolyte.

Fig. 6a shows the current/voltage curves for NaCl and CaCl2
with ro¼1, Y/ro¼�2, �5 and �10. It must be noted that the

current density is multiplied by 2.5 in the case of NaCl because it

ranges from 0 to 1.5. In order to carry out a qualitative analysis,

the results obtained at equilibrium will be used. Fig. C1b

(Appendix C) shows that inside the membrane the density ratio

profiles revolve around the equilibrium value without changing

the value of the spatial averaged density as the electric potential

drop increases. However the density ratio value at equilibrium

will not give enough information for the analysis of the current/

voltage curve. The value of the anion density ratio at the

Fig. 4. Electrolyte: CaCl2. Species: Ca2þ . Difference of each chemical potential

contribution between the membrane centre and the left boundary vs. the salt

density for several values of the membrane charge density ratio Y/ro. (a) Density

and electric potential contribution and (b) electrostatic and hard sphere

contribution.

Fig. 5. Electrolyte: CaCl2. Species: Cl� . Difference of each chemical potential

contribution between the membrane centre and the left boundary vs. the salt

density for several values of the membrane charge density ratio Y/ro. (a) Density

and electric potential contribution and (b) electrostatic and hard sphere

contribution.
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minimum located in the membrane near the left membrane/bath

interface will be also used.

The NaCl curves are analysed first. In the case Y/ro¼�10 and

ro¼1, a great difference between the ideal curve and the non-

ideal one can be observed. Fig. B3a shows that, at the membrane

centre, rNaþ =ro ðDm
r
Naþ Þ are equal in the non-ideal case and in the

ideal one. On the contrary, Fig. B4a shows that, at the same

location, the density ratiorCl�=ro ðDm
r
Cl� Þ has a lower value in the

non-ideal case than in the ideal one. So the cationic flux should

not be sensitive on the ion size effects and the anionic flux should

be lower in the non-ideal case. The cationic flux is the main

contribution of IC because the counter-ion density is much greater

than the co-ion density. Therefore, in the non-ideal case, IC should

be a little smaller compared to the current density in the ideal

case. But, the numerical results have shown that the cationic flux

also is smaller in the non-ideal case over all the electric potential

drop range investigated and the flux difference increases with DF.

The explanation is the small value of rCl�=ro at the minimum

located near the left membrane/bath interface. When

wDF¼�5.2, this value is 7.5�10�3 and 1.6�10�2 in the non-

ideal case and in the ideal case respectively. These small values

are a limiting factor for the density fluxes and a decrease of

rCl�=ro at this minimum at a given value of DF induces a

decrease of the cationic flux and amplifies the decrease of IC.

Fig. 6a shows also that if Y/ro¼�10 and ro¼1 the ideal curve

is no more linear when IC40.5ILO. Therefore the value of IL/ILO is

close to unity. In order to make an estimation of IL, its expression

is determined by assuming that at IC¼ IL, the co-ion density (r2) is

much smaller at the left membrane/bath interface than at the left

boundary and that the electroneutrality condition occurs every-

where in the left bath. Using the expression of IC and of ILO,

Eqs. (C.3) and (C.4) at x¼0 with Y¼0, we obtain the following

expression:

IL ¼
ðz2J2=z1J1Þþ1

ðD2J2=D1J1Þþ1
ILO ð14Þ

The ideal hypothesis and the non-ideal one lead to a value of

1.8ILO and of 1.54ILO respectively. This estimation does not depend

on the value of DF because the flux ratio J2=J1ð ¼ JCl�=JNaþ Þ

remains constant over the electric potential drop range. These

two values of IL are coherent with the fact that the non-ideal

current/voltage curve is below the ideal one. But this is also

surprising because Eq. (14) is obtained with the ideal hypothesis

and the flux ratio is computed with the non-ideal one. This

coherence is also observed for smaller values of Y/ro.

As Y/ro decreases, at equilibrium rCl�=ro in the membrane

increases (see Fig. B4a). Therefore the value of IL and the DF range

over which the ohmic region takes place must increase as Y/ro

Fig. 6. Current/voltage curves for NaCl and CaCl2: (a) ro¼1, Y/ro¼�2, �5, �10; (b) ro¼0.01, 0.1, 1 and Y/ro¼�10. For NaCl the value of the current density is

multiplied by 2.5.
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decreases. For example, if Y/ro¼�2, the value of IL is equal to 5.4ILO
and 5.38ILO with the ideal and non-ideal hypothesis. These two

values are close because, as Y decreases at a given value of ro, the

electrolyte composition in the membrane approaches the bulk one.

The bulk electrolyte has a lower ion density and the non-ideal

contributions have less effects. So the difference between the ideal

current/potential curve and the non-ideal one decreases with Y.

For CaCl2, the simulations give very different results. The ideal

assumption and the non-ideal one lead to the same results. In the

case Y/ro¼�10, we should have a high discrepancy between the

two computations. Figs. 4a and 5a show that at equilibrium if

Y/ro¼�10 and ro¼1, in the non-ideal case rCl�=ro has a higher

value than in the ideal case and that the value of rCa2þ =ro is not

sensitive to the non-ideal assumptions. Therefore the current should

be higher in the non-ideal case than in the ideal one. The numerical

results show that the anionic flux is higher in the non-ideal case

than in the ideal one as it should be. But the cationic flux is a little

smaller in the non-ideal case. The lower value of cationic current

density balances the higher value of the anionic one because

the cationic one is the main contribution to IC. As Y/ro decreases,

the non-ideal density profiles must approach the ideal ones because

the densities decrease in the membrane. Therefore all the non-ideal

current/voltage curves must be close to the ideal ones.

We can deduce also that the IL value must be identical in the

two hypotheses. However the estimated value cannot be accurate

because the value of the flux ratio 9JCa2þ =JCl� 9 is close to unity

owing to the high value of rCl�=ro in the membrane at equili-

brium. If Y/ro¼�10 and ro¼1, in the ideal case IL¼3.9ILO and in

the non-ideal case IL¼5.4ILO. As Y/ro approaches 2, the flux ratio

approaches unity and IL approaches 10ILO and 12ILO in the ideal

and non-ideal case.

In Fig. 6b the current/voltage curves for the two electrolytes

with Y/ro¼�10 and with ro ranging from 0.01 to 1 are displayed.

For the two electrolytes at a given value of DF, the current

density increases with ro if ror0.1 and decreases as ro increases

from 0.1 to 1. This variation is correlated to the variation of anion

density ratio in the membrane at equilibrium (see Figs. B4a and

5a). In the case of NaCl, if ror0.1, rCl�=ro increases slightly with

ro, i.e. its value is a little greater than the value computed with

the ideal assumption, and rNaþ =ro remains constant. Therefore

the non-ideal curves are above but close to the ideal one. But if

ro40.1, rCl�=rodrops abruptly inducing a high decrease of the

ionic flux of the two species. In the case of CaCl2, the variation of

rCl�=ro with ro (Fig. 5a) is more important if ror0.1 and the

value of rCl�=ro is much higher than in the ideal case. At a given

value of DF, the variation of JCa2þ and of JCl� with ro follows the

variation of rCl�=ro and these fluxes are higher than the ideal

ones when ror0.1. However the computations carried out at

equilibrium with ro¼0.01 and ro¼1 lead to the same density

ratio for the two species inside the membrane. At a given value of

DF, the minimum values of rCl�=ro inside the membrane are

comparable for the two salt densities ro (e.g. when wDF¼�8.4,

rCl�=ro ¼ 0:39, 0.524, 0.33 if ro¼0.01, 0.1, 1 respectively). But at

this electric potential drop JCa2þ ðro ¼ 1Þ ¼ 0:92JCa2þ (ro¼0.01) and

JCl� ðro ¼ 1Þ ¼ 0:94JCl� ðro ¼ 0:01Þ. So the difference between the

two current/voltage curves when ro¼0.01 and ro¼1 cannot be

explained by the density profiles. The magnitude of non-ideal

effects is much smaller if ro¼0.01 than if ro¼1. May be that the

non-ideal contribution influences the density profiles and also the

current density directly by decreasing the ionic fluxes.

5. Conclusion

The density and the potential distribution have been studied

in a membrane system constituted of a negatively charged

membrane separating two baths. A wide range of salt density

and of membrane charge has been investigated in order to study

the non-ideal effects on the equilibrium and on the ionic trans-

port induced by an electric potential drop. Non-ideal contribution

has been taken into account by means of the DFT in order to

extend the Nernst–Planck equation. The symmetric electrolyte

NaCl and the unsymmetric one CaCl2 have been used in this

investigation.

At equilibrium, the numerical results have shown that the

whole charge discontinuity on both sides of the bath/membrane

interfaces decreases and the electric potential in the membrane

increases with the increasing salt density (ro). In the case of the

unsymmetric electrolyte and at high values of ro, ionic secondary

layers have been observed with a charge inversion on both sides

of the bath/membrane interfaces and with a positive value of the

membrane electric potential. As the salt density increases to 0.1,

the co-ion density ratio inside the membrane increases and then

decreases as ro increases from 0.1 to 1. But the counter-ion

density ratio is not sensitive to the salt density. In the membrane,

the analysis of the contribution of each individual chemical

potential component has been carried out. For the two electro-

lytes the counter-ion density ratio is controlled by the balance

between the increase of the es component and the decrease of the

electric potential one. For the co-ion, as long as roo0.1, the

density ratio is controlled by the electric potential component

which is less and less repulsive as ro increases. In the range

ro40.1, the magnitude of the es component increases with ro

and becomes comparable to the electric potential one. The es

contribution is less and less attractive and induces a decrease of

the density ratio as ro increases.

If a negative electric potential drop is imposed, the charge

distribution is modified outside the membrane. The thickness of

the EDL on the left side increases as observed in the case of the

ideal assumption. The position of the secondary layers is not

sensitive to the electric potential drop. However the amplitude of

these layers in the left bath decreases and it increases a little in

the right bath. Concerning the current/potential curves, the

difference between the ideal curves and the non-ideal ones are

correlated to the co-ion density ratio rCl�=ro in the membrane

computed at equilibrium in the non-ideal case. Therefore the non-

ideal curves position with respect to the ideal one depends on

the value of ro. For a given value of ro, the difference between the

ideal curves and the non-ideal ones decreases with Y because the

ion densities and the non-ideal contributions decrease with Y.

Nomenclature

C
es short range of the electrostatic pair correlation

Di diffusion coefficient of species i

e elementary charge

F Helmoltz free energy

I ionic strength

IC current density

IL limiting current density of the membrane

ILO limiting current density of a perfectly permselective

membrane

Ji flux density of species i

k Boltzmann constant

L membrane thickness

n(a) weighted function

Q local charge

Qout whole charge ratio in the outer electric double layer

Ri ionic radius of species i

Rf mean radius of the reference fluid

T absolute temperature
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Vext external potential

W, W(a) weight functions, a¼0,1,2,3,v1,v2

x longitudinal direction

Y fixed charge inside the membrane

zi electric charge of species i

Greek letters

d thickness of the right and left bath

e relative constant dielectric of the solvent

G MSA screening length

ld Debye length

li capacitance length of species i

Li de Broglie thermal wavelength of species i

mi chemical potential of species i

mei contribution of component e to chemical potential of

species i, e¼hs, es, F, r
ni valence of species i

F electric potential

Fd Donnan electric potential

F1/2 electric potential at the membrane centre

ro, roi density of electrolyte and of species i at x¼�d

ri, r
ref
i density of species i in the membrane system and in the

reference fluid

O grand thermodynamic potential

Appendix A

The DFT describes the thermodynamic equilibrium of inho-

mogeneous systems, of volume V and submitted to an external

potential Vextð r
!

Þ, in contact with a reservoir characterised by a

temperature T and a chemical potential m [21,22]. At equilibrium,

the temperature and the chemical potential of these systems

must be equal to those of the reservoir. In the case of ionic fluids,

the electrolyte is assumed to be a mixture of species i which are

hard sphere of radius Ri and of charge number zi. The species

are immersed in a solvent which is a dielectric continuum. The

equilibrium distribution of density is obtained by minimisation of

the grand canonical potential O with respect to the species

density rið r
!

Þ:

dO rið r
!

Þ
h i

drið r
!

Þ
¼

d

drið r
!

Þ
F rið r

!
Þ

h i

þ
X

ij

Z

d r
!0

rið r
!0

Þ Vextð r
!0

Þ�mi

h i

0

@

1

A¼ 0

ðA:1Þ

O is expressed as a functional of the local density rið r
!

Þ, rið r
!

Þ

is the density of the species i located at r
!

, F is the Helmholtz free

energy, Vextð r
!

Þ is a non-electrostatic external potential and mi is

the chemical potential of species i. d=drið r
!

Þ means the functional

derivative. The Helmholtz free energy F is decomposed into two

terms: the ideal one Fid and the excess one Fex. The excess term

comes from the interactions between ions. These interactions are

of two kinds: the short range hard sphere (hs) interaction and the

long range electrostatic (es) one. Fex is divided into the two

corresponding terms Fhs and Fes.

Using the complete expression of the grand canonical poten-

tial, the chemical potential has the following expression in the

one dimension formulation:

miðxÞ ¼
dFid rjðx

0Þ
h i

driðxÞ
þ
dFhs rjðx

0Þ
h i

driðxÞ
þ
dFes rjðx

0Þ
h i

driðxÞ

¼ mid
i ðxÞþmhs

i ðxÞþmes
i ðxÞ ðA:2Þ

The ideal chemical potential expression is

mid
i ðxÞ ¼ kT LnriðxÞL

3
i þzieFðxÞ ðA:3Þ

where F(x) is the local electric potential related to the ion density

by means of the Poisson equation:

e
@2

@x2
FðxÞ ¼�e

X

i

ziriðxÞ ðA:4Þ

e is the elementary charge and mid
i ðxÞ is in fact the classical

electrochemical potential. In the case of charged membrane, the

electric potential created by external charges, i.e. the fixed

charges of the membrane, is included in the electric potential F.

So in Eq. (A.4) the fixed charge density Y must be added. In the

following these charges do not contribute to the excess free

energy because they are assimilated to points.

To express the hard sphere component, the fundamental

measure theory is applied and mhs takes the form [43]:

mhs
i ðxÞ ¼ kT

X

a

Z xþRi

x�Ri

dx0
@

@na
f
hs
ð naðx

0Þ
� �

ÞW ðaÞ
i
ðx�x0Þ ðA:5Þ

With

f
hs
ð naðx0
� �

Þ ¼�n0Lnð1�n3Þþ
n1n2�nV1nV2

1�n3

þ
n3
2

24pð1�n3Þ
2

1�
nV2nV2

n2
2

!3

ðA:6Þ

naðxÞ ¼
X

i

Z xþRi

x�Ri

dx0riðxÞW
ðaÞ
i ðx�x0Þ ðA:7Þ

naðxÞ are the 6 non-local densities andW ðaÞ
i ðxÞ are the corresponding

weight functions given in [38,43]:

4pR2
i W

ð0Þ
i ðxÞ ¼ 4pRiW

ð1Þ
i ðxÞ ¼W ð2Þ

i ðxÞ ¼ 2pRi ðA:8aÞ

W ð3Þ
i
ðxÞ ¼ pðR2

i �x2Þ ðA:8bÞ

4pR2
i W

ðV1Þ
i

ðxÞ ¼W ðV2Þ
i

ðxÞ ¼ 2pxex ðA:8cÞ

The weight functions are characteristics of the particle geometry.

The scalar functions W ð2Þ
i ð r

!
Þ and W ð3Þ

i ð r
!

Þ are related to the surface

area and the volume of the spherical particle respectively. The

surface vector function W ðV2Þ
i

ð r
!

Þ characterises the variance across

the particle surface. In three dimension, the other weight

functions are proportional to the function W ð2Þ
i

and W ðV2Þ
i

. The

weight functions are chosen from the convolution decomposi-

tion of the pair exclusion between two spheres of radii Ri and

Rj: yðRi�Rj�9 r!� r
!0

9Þ which represents the Mayer function for a

mixture of hard spheres in the limit of small particle density.

Eq. (8) represents these weight functions integrated in two

directions.

The electrostatic component of the Helmholtz free energy is

expressed bymeans of a second order Taylor expansion with respect

to a homogeneous fluid named also reference fluid [43]. The

functional derivative with respect to the density gives the following

one-dimensional expression of the es chemical potential:

mes
i ðxÞ ¼ mes

i ½r
ref
i ��kT

X

j

Z xþRi

x�Ri

dx0Cesij ðx,x
0ÞDrjðx

0Þ ðA:9Þ

where C
es
ij ½x,x

0� is the short range electrostatic part of the two

particle direct correlation of the reference fluid [44],

DriðxÞ ¼ riðxÞ�r
ref
i

and rref
i

is the density of the species i in the

reference fluid. The long range part of the direct correlation is

included in electric potential F. The reference fluid must be

charge neutral and is in our case the electrolytic fluid far away

from the membrane. It is convenient to use the primitive
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version of the MSA theory because of the analytical expression

of Cesij , of m
es
i ½r

ref
i

� and of the screen parameter G [45].

C
es
ij ðx,x

0Þ ¼�
zizje

2

8pe

1

lilj

1

3
ðR3

ij�9x�x093Þ
�

�lijðR
2
ij�9x�x092Þþl

2
ijðRij�9x�x09Þ

�

if 9x�x09rRiþRj

Ces
ij ðx,x

0Þ ¼ 0 if 9x�x094RiþRj ðA:10Þ

Rij ¼ RiþRj, lij ¼ liþlj, and li ¼ Riþ
1

2GðxÞ
ðA:11Þ

G, which is the MSA version of the inverse of the screening

length, is given by the following expression:

4G2 ¼
e2

kTeeo

X

i

ri

zi�4ZR2
i

1þ2GRi

" #2

ðA:12Þ

With

Z¼
1

O

p

2D

X

j

2rjRjzj

1þ2GRj

ðA:13aÞ

O¼ 1þ
p

2D

X

j

8rjR
3
j

1þ2GRj

ðA:13bÞ

D¼ 1�
p

6

X

j

8rjR
3
j ðA:13cÞ

However, the perturbational approach with respect to the

reference fluid can be used only if the local density does not vary

in large amounts. In order to circumvent this problem, an

alternative was proposed [38,39]. It consists in determining a

local reference fluid which is electroneutral and which has the

same ionic strength as the local fluid. In order to avoid disconti-

nuity, rref
i

is a density averaged over a sphere of radius Rf. In one

dimension:

rref
i

ðxÞ ¼

Z

dx0riðx
0ÞWðx,x0Þ ðA:14Þ

where riðxÞ satisfies the electroneutrality and the ionic strength

conditions mentioned above. The expression of W(x,x0) and of Rf
are:

Wðx,x0Þ ¼
pðR2

f ðxÞ�9x�x092Þ

ð4p=3ÞR3
f ðxÞ

ðA:15Þ

Rf ðxÞ ¼

P

iriðxÞRi
P

iriðxÞ
þ

1

2GðxÞ
ðA:16Þ

Agreement with Monte Carlo results in the case of the computa-

tion of the electric double layer against a charged plane [40,46]

and the agreement with experimental data in the case of ion

transport through ion channel [47] have proved the accuracy of

the local reference fluid concept.

Appendix B

Figs. B1 and 2 display, on both sides of the left bath/membrane

interface, the profiles of the density ratios ri/ro, of the electric

potential and of the local charge density ratio Q/ro in the case of

the symmetric electrolyte NaCl. These profiles are computed with

Y/ro¼�10 and for ro varying from 10�4 to 1. Q is defined as

Q ¼ rNaþ �rCl� þY . Inside the cationic density boundary layer

rNaþ =ro decreases slightly in the bath side and increases in the

membrane side as ro increases. However the density at the centre

of the membrane remains invariant. The difference between the

ideal curve and the non-ideal ones is noticeable when ro40.1

inside the membrane. At the same time a local maximum of small

magnitude appears inside the membrane at x¼1.5. The profiles of

Cl� are much more sensitive to ro. In the bath, we can observe a

salt density threshold value of 0.1 over which the density ratio

rCl�=ro increases with ro. In the membrane the salt density

threshold value is 0.01. As ro increases to 0.1, rCl�=ro increases

to a value of 0.139 at the membrane centre and rCl�=ro decreases

to 0.065 when ro increases from 0.1 to 1. Concerning the electric

potential (Fig. B2a), outside the membrane, the value of the salt

density threshold is close to 0.01. Inside the membrane, the

threshold value is 10�3. As ro increases from 10�4 to 1 the

electric potential at the membrane centre increases from �1 to

�0.48. At the same time the potential boundary layer thickness

decreases from 2 to 1. As for CaCl2, outside the membrane the

whole charge ratio in the EDL decreases if the value of ro is

greater than the threshold value of around 0.01 (Fig. B2b).

When ro¼1, a maximum with a positive value appears at

x¼1.5, corresponding to the maximum observed in the cation

profiles.

Figs. B3 and 4 show the variation of Dmei with ro as Figs. 4 and 5.

Strong similarities can be observed between these two sets of

figures. Fig. B3 shows that the density ratio rNaþ =ro depends on

two contributions: the electric potential component (Dmj
Naþ ) and

the electrostatic one (Dmes
Naþ ) over all the salt density range. The

density ratio is independent of ro. This means that the increase of

Fig. B1. : Electrolyte: NaCl. Ion density ratio profiles on both sides of the left bath/

membrane interface at equilibrium for several salt density values. Y/ro¼�10.
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Dmj
Naþ balances the decrease of Dmes

Naþ . The rate of variation is

noticeable when ro40.01. As observed for CaCl2, Dmes
i depends on

the screening ability of each species at these two locations

separately x¼�d and x¼L/2. This explains the variation of

Dmes
Naþ without any noticeable variation of Dmr

Naþ . For the co-ion

(Fig. B4b), Dmes
Cl� and Dmhs

Cl� must be taken into account if

ro40.1whatever the value of Y/ro. So, when roo0.1, the increase

of rCl�=ro with ro is mostly controlled by the electric potential

contribution which is less and less repulsive. If ro40.1, the

decrease of the density ratio corresponds to the increase of Dmes
Cl�

and of Dmhs
Cl� which are repulsive in this range of ro. This means

that rCl�=ro has a maximum located around ro¼0.1 as observed in

Fig. B1b.

Appendix C

Here are described the profiles of density, of potential and of

local charge of an unsymmetric electrolyte under an electric

potential drop. In Fig. C1 are shown the profiles of the electric

potential, of the density ratios rCa2þ =ro and rCl�=ro and of the

charge density ratio Q=ro with the following set of parameter

values: ro¼1, Y¼�10 and DF¼F(dþL)¼0, �5 and �10 (IC¼0,

1.73ILO and 2.9ILO respectively).

In Fig. C1a, the electric potential profiles computed with

ideal and non-ideal approximation are compared. At the mem-

brane centre the electric potential difference between the two

kinds of computation is independent of DF. As the electric

potential drop increases, the electric potential decreases less

and less linearly in the two baths, revealing that the current

density tends to the limiting one IL. However, it was observed

that even at moderate potential drop (DF¼�1.5, IC¼0.55ILO)

the decrease is not linear in the left bath if the non-ideal

hypothesis is used. This was not observed with the ideal

approximation.

If the electrolyte is NaCl, in the three regions where the

electroneutrality condition occurs, the linear variation of rCl�=ro

and of rNaþ =ro was observed over all the potential drop range

investigated with the ideal hypothesis and the non-ideal one.

Dividing the N.P. equation in the ideal form by Di and summing

over the species, we find:

�
X

i

Ji
Di

¼
X

i

@

@x
riþziriw

@

@x
F ðC:1Þ

Using the electroneutrality condition
P

iziriþY ¼ 0, we obtain

the following relation:

X

i

@

@x
ri ¼�

X

i

Ji
Di

þwY
@

@x
F ðC:2Þ

Integrating over a region [xo,x] where Y and ð@=@xÞF are

constant, the density of each species follows the linear relation:

r1ðxÞ ¼ r1ðxoÞþ
z2

z2�z1
wY

@

@x
F�

X

i

Ji
Di

!

ðx�xoÞ ðC:3Þ

Fig. B3. Electrolyte: NaCl. Species: Naþ . Difference of each chemical potential

contribution between the membrane centre and the left boundary vs. the salt

density for several values of the membrane charge density ratio Y/ro. (a) Density

and electric potential contribution and (b) electrostatic and hard sphere

contribution.

Fig. B2. : Electrolyte: NaCl. Electric potential and charge density ratio profiles on

both sides of the left bath/membrane interface at equilibrium for several salt

density values. Y/ro¼�10.
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r2ðxÞ ¼ r2ðxoÞþ
z1

z1�z2
wY

@

@x
F�

X

i

Ji
Di

!

ðx�xoÞ ðC:4Þ

If the electrolyte is symmetric, the DFT simulations give a

slope equal to 1/2 for the two species (z2=z2�z1 ¼ z1=z1�z2 ¼ 1=2)

even in the membrane where the electroneutrality condition is

verified. So the non-ideality effects on the linear variation are not

observed in the present work.

This is not the case of CaCl2 in Fig. C1b. In this figure, the

density ratio profiles show that the longitudinal position of the

extrema remains at the same place. Even if ICb ILO, the co-ion

density ratio near the left bath/membrane interface is not close to

zero because the value of rCl�=roin the membrane at equilibrium

is close to nCl� . In the regions where the electroneutrality

condition occurs the densities do not vary linearly. This non-

linearity increases with DF. However in these regions if the

profiles are approximated to straight lines, the slope of rCa2þ =ro

curve is twice the slope of rCl�=ro curve as predicted by Eqs. (C.3)

and (C.4).

Fig. C1c shows that the structure of the EDL is independent of

DF. Inside the membrane, the position and the magnitude of the

extrema does not change significantly. In the left bath, the

magnitude of the minimum decreases and its local position

moves away from the interface. The thickness of the negative

charge secondary layer increases as IC tends to IL. The whole

charge ratio of the outer EDL in the left bath is less and less

negative contrary to the whole one in the right bath. However the

computational domain remains electroneutral.
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