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Abstract

The issue of designing a procedure to assign objects (candidates, projects, decisions, options, etc.)
characterized by multiple attributes or criteria to predefined classes characterized by fuzzyly defined mul-
tiple features, conditions or constraints, is considered in this paper. Such assignment problems are known
in the literature as nominal or non ordered classification problems as opposed to ordinal classification in
which case classes are ordered according to some desires of decision maker(s). Because of the importance
of these problems in many domains such as social, economics, medical, engineering, mangement etc., there
is a need to design sound and appropriate evaluation algorithms and methods to deal with them. In this
paper we will consider an approach based on an evaluation strategy that consists in aggregating separately
elements that act in the same sens (either contributing to the exlusion of a class from assignment or its
consideration for inclusion given an object) that we refer to as bipolar analysis. Then, relying on the
fact that elements to aggregate have synergetic relationships (they are complementary), we propose to
use Choquet integral as the appropriate aggregation operator with a proposed fuzzy measure or capacity
known as weighted cardinal fuzzy measure (WCFM) which tractability permits to overcome difficulties
that dissuade the use of Choquet integral in practices. Furthermore, bipolar property results in evalau-
tion by two degrees: classifiability measure that measures to what extent an object can be considered for
inclusion in a class and rejectability measure, a degree that measures the extent to which one must avoid
including an object to a class rendering final choice flexible as many classes may be qualified for inclusion
of an object. Application of this approach to a real world problem in the domain of banking has shown a
real potentiality.

Keywords: nominal classification, multi-attributes, multi-features, bipolar aggregation, Choquet integral,
WCFM, classifiability, rejectability

1 Introduction

Many decision problems rising in different domains such as social, economics or engineering, among others,
concern the assignment or classification of objects according to their scores for a certain number of criteria
or attributes to classes that are characterized by some features. These problems constitute, therefore, multi-
criteria or multiattributes (attributes of the object to classify) and multi-objectives (multi-features classes to
choose) decision making problems, a unified framework that is being developed (see [21, 22, 23]) to overcome
the fact that the two paradigms (multicriteria and multi-objectives) have been almost always considered sep-
arately in the literature, see for instance [2, 3, 9, 12, 13, 14, 15, 16, 18, 24]. The majority of contributions
to classification problems encountered in the literature concern mainly the ordered classification case, classes
must be ordered, let say, from most/least desired class to least/most desired one, see for instance [4]. The
purpose of classification methods or algorithms is then to establish a procedure that linearly rank classes and
assign objects to them; one may notice that this is a relative decision making process as objects are finally
compared with each other. But the case of non ordered classification where classes are just defined by some
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features, conditions or constraints over the attributes or criteria is of great importance in many domains. In
finance and banking for instance, decision maker(s) face the problem of classifying customers for a credit or
service into classes defined by entrance thresholds with regard to their performance in some attributes for
instance, see [13]; in international finance or commerce, countries are often classified in different categories
in terms of risk to which potential investors will be exposed in these countries (country risk classification) by
using a certain number of attributes such as GDP per unit of energy use, telephone mainlines per 1000 people,
human development index (HDI), percentage of military expenditure of the central government expenditure
and others, see [25]; in medical domain, a medical practitioner classifies a patient as suffering a fever if its
temperature is beyond a threshold and/or if it presents some other symptoms; in engineering a design must
satisfy some objectives and constraints; in academic, a student will get his/her diploma or degree if his/her
marks in some different disciplines are beyond some thresholds, etc..

Formally the nominal classification problems considered in this paper are defined by the following materials.

• An object u to be classified is characterized by a set of m attributes or criteria and the value (numeric
or rendered numeric by a certain procedure) of attribute l is given by xl so that this object can be
designated by its attributes vector x ∈ R

m (where R
m represents the set of vectors of dimension m

with real entries). For instance in the case of financial portfolio management, an object u is a portfolio
constituted by m assets and xl is the amount of budget allocated to asset l.

• The former defined object must be assigned to one of the n classes of the set C =
{

c1, c2, ..., cn
}

; each
class or category cj is defined by nj fuzzy features, conditions or constraints through scalar functions

f
j
l (x) , l = 1, 2, ..., nj , of the attributes vector x ∈ R

m.

The aim of this paper is to derive a classification algorithm using the materials defined above. A number
of multicriteria decision aid (MCDA) methods have been developed for nominal classification. They include
multicriteria filtering [11], a method based on concordance and non-discordance principles; PROAFTN, see [1],
a multicriteria fuzzy classification method; a method based on fuzzy integrals, see for instance [8]; TRINOMFC
method [10] that computes local concordance; or the stochastic multicriteria acceptability analysis (SMAA)
method that supports incomplete or inaccurate preference, see [26]. If these methods have been successfully
applied in practice, many of them do have usability limitation (with regard to final users) such as complexity
of how parameters must be specified by the users. The intention of this paper is to add a method to the
panorama of existing methods that we hope will be easier (because of its flexibility) to use by the final users
who in general are non specialists. In this paper we consider a method of nominal classification that is based,
for a given object and a given class, on two measures corresponding respectively to what extent the object
can be included in the class and to what extent it should be excluded, similar to satisficing games theory
approach [19].

One of the contribution of this paper consists in a procedure that defines, for each feature f
j
l (x) , two

zones namely classification zone (that we refer to as C zone), rejectability zone (referred to as R zone)

and an overlapping zone that we call doubtful zone with their respective membership functions mj,l
C

(

f
j
k(x)

)

and mj,l
R

(

f
j
k(x)

)

. These memberships functions are then aggregated separately for each pair constituted by a

class cj and an object u using Choquet integral; with another contribution being the definition of a tractable
fuzzy measure named weighted cardinal fuzzy measure (WCFM) based on the synergetic nature of attributes
to aggregate to obtain classifiability and rejectability measures, ψj

C(u) and ψ
j
R(u) respectively. Main indices

associated with a fuzzy measure namely interaction index Iij between two elements i and j and Shapley index
φi of element i are completely characterized for this WCFM. Then for each object u, the set Cq(u) is defined
as the set of classes in which the object u can be included at the caution index q because the classifiability
measure exceeds the rejectability measure multiplied by q. The final class in which it will be included can be
chosen to optimize a certain ultimate criterion (maximization of the difference between the classifiability and
the rejectability or maximization of caution index for instance). In terms of usability, one can notice that
this approach can be totally transparent to the final user who may be concerned only in fuzzy parameters
specification of classes and relative importance of feature within a class.

The novelty brought by this paper to the field of nominal classification can be highlighted trough the
following points:

• fuzzy characterization of classes: this characterization has a practical perspective as most of the time
decision makers and/or experts may have difficulties characterizing classes by crisp features;



• possible indecision of decision makers between classes: indeed, because of the use of two measures in
the classification process, it may happen that decision makers are not able to clearly decide the suitable
class for inclusion of a given object so that this approach is more closed to how humans proceed in
practice;

• homogeneuous aggregation: by clustering constraints to obtain homogenuous behavior of features (work-
ing toward classification or against), Choquet integral with a synergetic fuzzy measure named weighted
cardinal fuzzy measure (wcfm) leads to a straightforward aggregation formula overcoming the traditional
difficulty to use Choquet integral as an aggregation operator.

The remainder of this paper is organized as follows: in the second section, main contribution of this
paper is presented going through fuzzyfication of features with regards to classes and the obtainment of the
corresponding membership functions on a bipolar basis; definition of a tractable fuzzy measure in terms of
WCFM based on synergetic behavior of features and determination of interaction index and Shapley index
associated to this measure; derivation of a formula for related Choquet integral as the appropriate aggregation
operator; definition of classifiability and rejectability measures; and finally presentation of a classification
procedure; third section considers a real world application to show potential applicability of the approach
developed so far and finally a conclusion is presented in the fourth section.

2 Bipolar Fuzzy Nominal Classification

Bipolarity is pervasive in human decision activities; indeed, cognitive psychologists observed for long time that
humans usually evaluate alternatives by comparing their positive aspects and their negative aspects. Bipolarity
has been already considered in multicriteria decision and classification problems; for instance concordance and
discordance indices in ELECTRE approach (see [24] and references therein) falls in this framework though in
this paper the final classification scheme differs from that of ELECTRE. In this section we will formulate a non
ordered classification problem as defined in the introductory section using bipolar analysis. This approach,
(see for instance [20, 21, 22, 23]), building on satisficing game theory [19], is showing promising application
in various domains.

Formulating nominal classification problem considered in this paper in the framework of bipolar analysis
return to establishing a procedure to compute classifiability measure ψj

C(u) and rejectability measure ψj
R(u)

given an object u and a class cj ; in the following subsection, we will show how to obtain these parameters from
problem specifications. Advantages of this approach are as the following: there is no need to normalize data,
only the specification of parameters to define the doubtful zone for each class by experts counts; it is possible
to classify using partial information, for instance if there is a total ignorance about a feature or condition of
a class, one can disregard it in the classification process; information may arrive sequentially so that decision
maker can revise its classification results at each information arrival.

2.1 Classifiability and Rejectability Measures Derivation Procedure

Bipolar reasoning is pervasive in decision analysis and constitutes a sort of divide to better apprehend
paradigm. The stepping stones in bipolar analysis approach, for nominal classification, are the classifia-
bility and rejectability measures ψj

C(u) and ψ
j
R(u) given a class cj and an object u; so their derivation is an

important step towards a sound classification algorithm. These measures must be established considering the
performance of the considered object with regard to the considered class. As mentioned above, each feature
k characterizing a class cj is fuzzily described; as the characterization functions of features are scalar (or
rendered scalar), this fuzzy description consists generally in four types. Thus, to consider that the object u
characterized by vector x belongs to the class cj if one were to decide only based on feature k, we consider
the range of f jk(x) to be partitioned into two labels or zones: rejection zone (R zone), that is if f jk(x) belongs
to this zone one should categorically exclude including object u in the corresponding class and classification
zone (C zone) where if f jk(x) lays in, one should consider including the object u in this class; finally there
is an overlapping zone where decision of including or excluding is not obvious that we refer to as doubtful

zone. Let use define by mj,k
R

(

f
j
k(x)

)

and mj,k
C

(

f
j
k(x)

)

the membership degrees of these zones respectively,

then description given above is illustrated by Figure 1.



Figure 1: Characterization of R zone, C zone and doubtful zone of cj with regrads to feature k

Remark 1: The partition of the range of f jk(x) in two zones is not necessary a fuzzy discretization, that is,

it is not required to have in the doubtful zone the equality mj,k
R

(

f
j
k(x)

)

+mj,k
C

(

f
j
k(x)

)

= 1.

The membership function mj,k
×

(

f
j
k(x)

)

where × stands for R or C is a degree that measure the extent

to which one should reject or consider classifying object u in the class cj ; given an object u and its attribute
vector x, these membership functions depends on the value of f jk(x); four main typologies characterize the

behavior of f jk(x) that conditions the classification of object u in the class cj .

• Above a threshold, that is to consider including the object u in the class cj using only the feature k,

f
j
k(x) must be greater than a given threshold. To determine mj,k

R

(

f
j
k(x)

)

and mj,k
C

(

f
j
k(x)

)

in this case,

one must specify a value f
j
k,minl

(l stands for lower) below which class cj is definitely rejected (R zone)

and the value f
j
k,minu

(u stands for upper) above which one must definitely include the object u in the

class cj (C zone).

• Below a threshold, that is to consider including the object u in the class cj using only the feature k,

f
j
k(x) must be less than a given threshold. Determination of mj,k

R

(

f
j
k(x)

)

and mj,k
C

(

f
j
k(x)

)

necessitates

specifying a value f jk,maxl
below which class cj is definitely considered for inclusion of object u (C zone)

and the value f jk,maxu
above which one must exclude the class cj from the inclusion of object u (R zone).

• In a range, to consider including the object u in the class cj using only the feature k, f jk(x) must belongs

to an interval; here four values must be specified to determine mj,k
R

(

f
j
k(x)

)

and mj,k
C

(

f
j
k(x)

)

, f jk,minl

the value below which and f
j
k,maxu

the value above which one must exclude the class cj for the inclusion

(R zone) of object u and f
j
k,minu

and f
j
k,maxl

the values between which one must classify the considered

object in the class cj (C zone).

• Targeted or single value, to consider including the object u in the class cj using only the feature k, f jk(x)

must be equal to a given value; three parameters are necessary in order to determine mj,k
R

(

f
j
k(x)

)

and

mj,k
C

(

f
j
k(x)

)

, f jk,min the value below which and f
j
k,max the value above which one excludes the the class

cj (R zone) and the value f
j
k,min for which one definitely classifies the object in the class cj (C zone).

Description of the four typologies determining (R zone) and (C zone) memberships functions is illustrated
on Figure 2.

Given an object u and a class cj , the overall classifiability degree Ψj
C(u) and the overall rejectability degree

Ψj
R(u) of the class c

j are obtained by aggregating the memberships degrees mj,k
C (.) and mj,k

R (.) for all features
k = 1, 2, ..., nj as given by equations (1)-(2)

Ψj
C(u) = GC

(

mj,1
C (.),mj,2

C (.), ...,m
j,nj

C (.)
)

, (1)

Ψj
R(u) = GR

(

mj,1
R (.),mj,2

R (.), ...,m
j,nj

R (.)
)

, (2)



Figure 2: Characterization of the main typologies of a class feature

where GC and GR are some aggregation operators. Aggregation problem is an important subject in many
domains where for a final decision purpose one has to aggregate many values. Many aggregations approach
do exist and depend on the behavior of entities to aggregate and the perception of decision maker. In the
following paragraph we will review some aggregation operators highlighting the Choquet integral that permits
to take into account interactions between entities being aggregated.

2.1.1 Aggregation Operators

Let us consider a set of n numeric values θi, i = 1, 2, ..., n, to be aggregated and G an aggregation operator;
many aggregation operators exist in the literature [5], the very basic one being the arithmetic mean; main
aggregation operators used in decision analysis literature are recalled below.

• Arithmetic mean: the aggregated value is obtained by equation (3) below

G(θ1, θ2, ..., θn) =

∑n
i=1 θi
n

. (3)

• Quasi arithmetic means (geometric, harmonic, etc.): in this case, the aggregated value is given by
equation (4)

G(θ1, θ2, ..., θn) = f−1

(

1

n

n
∑

i=1

f(θi)

)

, (4)

where f is any continuous strictly monotonic function; one can introduce relative importance weights
with regards to elements to aggregate to obtain an aggregated value as given by equation (5) below

G(θ1, θ2, ..., θn) = f−1

(

n
∑

i=1

ωif(θi)

)

(5)

with ωi ≥ 0 ∀ i and
∑n

i=1 ωi = 1.



• Median: this is an ordinal operator where the aggregated value is given by the following equation (6)

G(θ1, θ2, ..., θn) =

{

θσ(n+1

2
) if n is odd

1
2

(

θσ(n
2
) + θσ(n

2
+1)

)

if n is even,
(6)

where σ is a permutation over the n values such that θσ(1) ≤ θσ(2) ≤ · · · ≤ θσ(n).

• Weighted minimum and weighted maximum: in this case θi are normalized so that they must belong to
[

0, 1
]

and the aggregated values are given by equations (7)-(8)

Gmin(θ1, θ2, ..., θn) = min
i

(max (1− ωi, θi)) , (7)

Gmax(θ1, θ2, ..., θn) = max
i

(min (ωi, θi)) , (8)

where the weights ωi are normalized such that maxi(ωi) = 1.

• Ordered weighted averaging operators (OWA): this operator permits the possibility to aggregate with
respect to vague statement such as ”at least some criteria must be met” because the relative weights
depend on the rank of the corresponding element and the aggregated value is obtained by equation (9)

G(θ1, θ2, ..., θn) =
n
∑

i=1

ωiθσ(i) (9)

where σ is a permutation over the n values such that θσ(1) ≤ θσ(2) ≤ · · · ≤ θσ(n) and ωi ≥ 0 ∀ i,
∑n

i=1 ωi = 1;

These operators do have some drawbacks mainly when considering classification problems; they do not
cope with interactions between criteria whereas this is common in practice. The aggregation operator known
to cope with such interaction is the Choquet integral, see [7]. For this reason we will introduce it in the
subsequent paragraphs.

2.1.2 Choquet Integral

When a set N = {1, 2, ..., n} of attributes with numerical measures vector θ =
[

θ1 θ2 ... θn
]

must be
aggregated using Choquet integral, the first and primary thing to do is to define a fuzzy measure or a capacity
over the set N ; definition of such fuzzy measure or capacity is given below.

Definition 1. [7] Let N = {1, 2, ..., n} be a set of n elements. A capacity or fuzzy measure over N is a set
function µ : 2N → [0, 1] verifying µ(∅) = 0, µ(N) = 1, and µ(A) ≤ µ(B) whenever A ⊆ B.

From a capacity µ over N one can determine the interaction index Iij between two elements i and j as
given by equation (10)

Iij =
∑

A⊆N−{i,j}

{

(|N | − |A| − 2)! |A|!

(|N | − 1)!
[µ (A ∪ {i, j})− µ (A ∪ {i})− µ (A ∪ {j}) + µ (A)]

}

, (10)

where |Ω| is the cardinality of the discrete set Ω. This interaction index does have the following meanings.

• Iij > 0 means that attributes i and j considered individually are not important whereas when considered
together they become important; thus there is synergy or complementarity between them.

• Iij < 0 means that attributes i and j are individually important but taken together the importance
does not increase much more that is these attributes are substitutable, there is redundancy.

• Iij = 0 means that attributes i and j are independent.



Another interesting index associated with a fuzzy measure and that measures the importance of a given
element i is the so called Shapley index φi and is defined by equation (11), see [17],

φi =
∑

A⊆N−{i}

{

(|N | − |A| − 1)! |A|!

|N |!
[µ (A ∪ {i})− µ (A)]

}

. (11)

Given a capacity over N , the Choquet integral of numerically evaluated vector of attributes θ (that is the
global score of the corresponding object) is given as the following definition.

Definition 2. [7] Let µ be a capacity or fuzzy measure over N and θ the numerical values vector of elements
of N . The Choquet integral of θ with regard to µ is given by equation (12)

Cµ(θ) =
n
∑

i=1

(

θσ(i) − θσ(i−1)

)

µ(Ai), (12)

where σ is a permutation over N such that the order of equation (13) is respected

θσ(1) ≤ θσ(2) ≤ · · · ≤ θσ(n) and θσ(0) = 0, (13)

and the subset Ai is given by equation (14)

Ai = {σ(i), σ(i+ 1), ..., σ(n)}. (14)

One can see immediately that difficulty of using Choquet integral as an aggregation operator in practice
comes from the necessity to define a fuzzy measure that necessitates specifying 2|N |−2 coefficients representing
the measure of subsets of N other than ∅ and N . Thus, if the interaction nature (synergy, redundancy or
independence) between elements to aggregate and their importance in terms of Shapley index, for instance,
are known, this can guide fuzzy measure definition. Rightly, elements to aggregate in nominal classification
are synergetic elements; indeed selection or rejection of a class by two features of an object is better than
by a single feature; this observation will be considered in the following paragraph to define a tractable fuzzy
measure named weighted cardinal fuzzy measure or WCFM in short.

2.1.3 Weighted Cardinal Fuzzy Measure

As stated in previous paragraph, the difficulty of computing Choquet integral is to define a fuzzy measure
over the set N that necessitates obtaining 2|N | − 2 coefficients that represent the measure of subsets of N
other than ∅ and N . This can be done by experts if the set N is not too large, otherwise by some practical
considerations, such as k-additive fuzzy measure, one can obtain this integral with less computational effort
through interaction indices, see [6]. Given the observation made in the previous paragraph concerning the
nature of interaction between elements for classification in or rejection of a class, the fuzzy measure of a subset
of features should be proportional to the length or cardinality of that subset. A capacity or fuzzy measure µ
over N is said to be cardinal if and only if the following conditions of equation (15) are verified

µ(A) = µ(B) if |A| = |B| , ∀ A, B ⊆ N ; (15)

by so doing only the cardinality of a subset matters and not its content; in addition, this measure is additive.
To overcome this inconvenient and the difficulty to obtain a general fuzzy measure for a large set N , we
introduce the notion of weighted cardinal measure where the cardinality of the subset is modulated by the
relative importance of its elements; indeed some elements may be more or less important for the classification
or rejection action. Let us suppose that a relative importance weight ωi (with the condition

∑

i∈N ωi = 1)
with regards to classification goal is obtained for each element i of N using approaches such as analytic
hierarchy process (AHP), see [15]; then we propose to define a fuzzy measure that we refer to as weighted
cardinal fuzzy measure (WCFM) by the following equation (16),

µ(A) =
|A|

|N |

(

∑

i∈A

ωi

)

, ∀ A ⊆ N. (16)

This measure has characteristics of the following theorem that are proved below.



Theorem 1. The measure defined by equation (16) has the following properties.

i) It is a non additive fuzzy measure.

ii) It is a synergetic fuzzy measure where the interaction index Iij between two elements i and j associated
to it is proportional to the sum ωi+ωj of their relative importance weights and is given by equation (17)

Iij =
ωi + ωj

|N |
. (17)

iii) The Shapley index of element i associated with measure (16) is linear in the relative importance degree
ωi of that element and is given by equation (18)

φi =
|N |ωi + 1

2 |N |
=
ωi

2
+

1

2 |N |
. (18)

Proof. i) It is obvious that relations of equation (19) are verified by measure µ defined in equation (16)

µ(∅) = 0 and µ(N) = 1; (19)

now let us suppose that A ⊂ B ⊆ N , then it means that there exists a non empty subset C ⊂ N such
that B = A ∪ C and A ∩ C = ∅. So we have result of equation (21) for µ(B)

µ(B) =
|A|+ |C|

|N |

(

∑

i∈A

ωi +
∑

i∈C

ωi

)

(20)

= µ(A) + µ(C) +
|C|

|N |

(

∑

i∈A

ωi

)

+
|A|

|N |

(

∑

i∈C

ωi

)

, (21)

meaning that conditions of equation (22) are valid

µ(B) > µ(A) + µ(C), (22)

because as C 6= ∅, we have condition of (23)

|C|

|N |

(

∑

i∈A

ωi

)

+
|A|

|N |

(

∑

i∈C

ωi

)

> 0. (23)

Conditions of equations (19) and (22) imply that µ really defines a non additive fuzzy measure.

ii) One can easily verify result of equation (24)

µ (A ∪ {i, j})− µ (A ∪ {i})− µ (A ∪ {j}) + µ (A) =
ωi + ωj

|N |
, (24)

so that the interaction index Iij as defined by equation (10) is given by equation (26)

Iij =
∑

A⊆N−{i,j}

{

(|N | − |A| − 2)! |A|!

(|N | − 1)!

[

ωi + ωj

|N |

]}

(25)

=

(

ωi + ωj

|N |

)





∑

A⊆N−{i,j}

{

(|N | − |A| − 2)! |A|!

(|N | − 1)!

}



 . (26)

But there are (|N | − 2)!/(|N | − |A| − 2)! |A|! subsets of N −{i, j} containing |A| elements, thus we have
following results of equations (27)-(28)

∑

A⊆N−{i,j}

{

(|N | − |A| − 2)! |A|!

(|N | − 1)!

}

=

|N |−2
∑

|A|=0

{(

(|N | − 2)!

(|N | − |A| − 2)! |A|!

)(

(|N | − |A| − 2)! |A|!

(|N | − 1)!

)}

(27)

=

|N |−2
∑

|A|=0

{(

(|N | − 2)!

(|N | − 1)!

)}

=
1

(|N | − 1)

|N |−2
∑

|A|=0

{1} = 1, (28)

which proves point ii) of the theorem.



iii) One can verify easily equation (29)

µ (A ∪ {i})− µ (A) =
ωi

|N |
+
|A|

|N |
ωi +

∑

k∈A (ωk)

|N |
, (29)

so that the Shapley index as given by equation (11) is reduced to (37)

φi =
∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(

ωi

|N |
+
|A|

|N |
ωi +

∑

k∈A (ωk)

|N |

)}

(30)

=
ωi

|N |

∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)}

+
ωi

|N |

∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)

|A|

}

+
∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(
∑

k∈A (ωk)

|N |

)}

(31)

=
ωi

|N |

|N |−1
∑

|A|=0

{(

(|N | − |A| − 1)! |A|!

|N |!

)(

(|N | − 1)!

|A|! (|N | − 1− |A|)!

)}

+
ωi

|N |

|N |−1
∑

|A|=0

{(

(|N | − |A| − 1)! |A|!

|N |!

)(

(|N | − 1)!

|A|! (|N | − 1− |A|)!

)

|A|

}

+
∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(
∑

k∈A (ωk)

|N |

)}

(32)

=
ωi

|N |
+

ωi

|N |

|N |−1
∑

|A|=0

{

|A|

|N |

}

+
∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(
∑

k∈A (ωk)

|N |

)}

(33)

=
ωi

|N |
+

ωi

|N |

(

|N | (|N | − 1)

2 |N |

)

+
∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(
∑

k∈A (ωk)

|N |

)}

(34)

=
ωi (|N |+ 1)

2 |N |
+

∑

A⊆N−{i}

{(

(|N | − |A| − 1)! |A|!

|N |!

)(
∑

k∈A (ωk)

|N |

)}

. (35)

By rearranging the second term of equation (35) considering the fact that each weight ωk will appear
(

|A|
|N |

)(

(|N |−1)!
|A|!(|N |−1−|A|)!

)

times in subsets of dimension |A| we obtain the following equations (36)-(37)

φi =
ωi (|N |+ 1)

2 |N |
+

|N |−1
∑

|A|=0

{

(

(|N | − |A| − 1)! |A|!

|N |!

)(

|A|

|N | − 1

)(

(|N | − 1)!

|A|! (|N | − 1− |A|)!

)

(
∑

k∈N−{i} (ωk)

|N |

)}

(36)

=
ωi (|N |+ 1)

2 |N |
+

|N |−1
∑

|A|=0

{

(

|A|

|N | (|N | − 1)

)

(
∑

k∈N−{i} (ωk)

|N |

)}

. (37)

But we have
∑

k∈N−{i} (ωk) = 1− ωi so that φi is given by equation (41) which concludes the proof of

point iii).



φi =
ωi (|N |+ 1)

2 |N |
+

1− ωi

|N |

|N |−1
∑

|A|=0

{(

|A|

|N | (|N | − 1)

)}

(38)

=
ωi (|N |+ 1)

2 |N |
+

1− ωi

|N |

{(

1

|N | (|N | − 1)

)(

|N | (|N | − 1)

2

)}

(39)

=
ωi (|N |+ 1)

2 |N |
+

1− ωi

2 |N |
(40)

φi =
ωi |N |+ 1

2 |N |
=
ωi

2
+

1

2 |N |
(41)

It is straightforward that this index fulfills one of the important point of Shapley index axioms that is
we have result of equation (42)

|N |
∑

i=1

φi =

|N |
∑

i=1

(

ωi |N |+ 1

2 |N |

)

=
|N |+ |N |

2 |N |
= 1. (42)

Furthermore, we see that the Shapley index (a sort of absolute importance) is not null even for an
element with a null relative importance, this is due to synergetic property.

Calculating the Choquet integral with a weighted cardinal fuzzy measure is straightforward and depend
only on the relative weight vector ω and the numerical n dimension vector θ of values to aggregate; denoting
this integral by Cwcfm

ω (θ), it is therefore given by equation (43)

Cwcfm
ω (θ) =

n
∑

k=1













(

n− (k − 1)

n

)





∑

j∈Ak

ωj











(

θσ(k) − θσ(k−1)

)







, (43)

where σ is a permutation over N such that the order of equation (13) is realized and Ak is defined by in
equation (14).

2.1.4 Classifiability and Rejectability Measures

Based on results of equation (43), given an object u characterized by its attributes vector and a class cj
with its features vector f

j
k(x) for k = 1 : nj and their relative importance vector ωj one first determines

classifiability and rejectability membership functions vectors mj
C(.) and mj

R(.) as defined previously and

compute the aggregated classifiability index Ψj
C(u) and the aggregated rejectability index Ψj

R(u) as Choquet

integral of mj
C(.) and mj

R(.) based on a WCFM represented by relative weight vector ωj as given by the
following equations (44)-(45):

Ψj
C(u) = C

wcfm

ωj (mj
C(.)) =

nj
∑

k=1

{{

(

nj − (k − 1)

nj

)

(

∑

l∈Ak

ωl

)}

(

m
j,σ(k)
C (.)−m

j,σ(k−1)
C (.)

)

}

, (44)

Ψj
R(u) = C

wcfm

ωj (mj
R(.)) =

nj
∑

k=1

{{

(

nj − (k − 1)

nj

)

(

∑

l∈Ak

ωl

)}

(

m
j,σ(k)
R (.)−m

j,σ(k−1)
R (.)

)

}

. (45)

But the classifiability or rejectability is a relative operation so that one must ultimately establish a sort

of inter classes adequacy measures. To this end the ultimate classifiability measure ψj
C(u) and rejectability

measure ψj
R(u) of an object u with regard to the class cj are given by equation (46)

ψj
C(u) =

Ψj
C(u)

∑n
k=1

{

Ψj
C(u)

} and ψj
R(u) =

Ψj
R(u)

∑n
k=1

{

Ψj
R(u)

} . (46)



In the following subsection, we will sketch some classification procedures, based on measures ψj
C(u) and

ψj
R(u), that may be used for final assignment purpose.

2.2 Classification Procedure

Given an object u, possible classes where it can be included are those for which the classifiability measure
exceeds the rejectability measure to some extents. To ensure some security when including an object, one
may introduce a caution index q so that one can consider including an object u in a class cj if and only if
the classifiability measure ψj

C(u) exceeds the rejectability measure ψj
R(u) multiplied by the index of caution

q; thus the possible inclusion set Cq(u) for the object u at the caution index q is given by equation (47)

Cq(u) =
{

cj ∈ C : ψj
C(u) ≥ qψj

R(u)
}

. (47)

Remark 2: In fact the index q may be an increasing function of rejectability measure ψj
R(u) in order to

take into account misclassification aversion of decision maker who may want to penalize large rejectability
measure.

For final class selection, one may consider optimizing some performance index. For instance if decision
makers are able to specify the caution index q, then the final optimal class c∗(u) for a given object u can be
considered to be the maximum discriminant one that is given by equation (48)

c∗(u) = arg

{

max
cj∈Cq(u)

{

ψj
C(u)− qψ

j
R(u)

}

}

. (48)

On the contrary, when there is no information about the desired caution index, the assigned class c∗(u) can
naturally be chosen to maximize this index (maximum index of caution) that in return minimize risk of
misclassification; in this case the optimal inclusion class c∗(u) for a given object u is given by the following
equation (49)

c∗(u) = arg

{

max
cj∈U

{

ψj
C(u)

ψj
R(u)

}}

. (49)

In the next section we will consider an application in the domain of banking to show potential applicability
of the approach developed in this paper.

3 Application

This application is extracted from [13] and concerns the problem of assigning retailers that use EFTPoS
(Electronic Fund Transfer at Point of Sale) service of a bank to some classes in order for the bank manager
to consider their appropriate strategic treatment. Any retailer is characterized by 13 attributes or criteria,
see [13] for their significance and there are four classes which are characterized by conditions in the form of
above a threshold on each attribute in terms of parameter bj . Raw data of this application is shown on the
following Table 1.

To fit our model we consider the doubtful zone of each attribute to range from δ% of the threshold to the
threshold so that the the parameter δ can be used to do a sensitivity analysis. Let denote by X the 20× 13
matrix representing the characterization of units to classify as shown on the previous table. From this table
classifiability and rejectability membership functions data XC and XR are obtained by equation (50)























mj,k
C (u) = 0 and mj,k

R (u) = 1 if X(u, j) ≤ δ
100b

k(j)

mj,k
C (u) = 1 and mj,k

R (u) = 0 if X(u, j) ≥ bk(j)

mj,k
C (u) =

(

1
bk(j)− δ

100
bk(j)

)

(

X(u, j)− δ
100b

k(j)
)

if δ
100b

k(j) < X(u, j) < bk(j)

mj,k
R (u) = −

(

1
bk(j)− δ

100
bk(j)

)

(

X(u, j)− bk(j)
)

if δ
100b

k(j) < X(u, j) < bk(j).

(50)



Classifiability and rejectability indices are then given by equation (51)

ψj
C(u) =

Cwcfm
ω

(

mj
C(u)

)

∑

l

{

Cwcfm
ω

(

ml
C(u)

)

} and ψj
R(u) =

Cwcfm
ω

(

mj
R(u)

)

∑

l

{

Cwcfm
ω

(

ml
R(u)

)

} , (51)

where the weighted cardinal fuzzy measure µ is related to weighting vector ω obtained by normalization of
original weighting vector as given by equation (52)

ω(j) =
ω(j)

∑13
j=1 ω(j)

. (52)

Table 1: Raw data

a01 a02 a03 a04 a05 a06 a07 a08 a09 a10 a11 a12 a13

u01 29 22 28 25 69 25 61 52 25 39 58 61 68
u02 80 78 88 69 59 30 50 45 48 42 22 15 27
u03 77 90 88 61 63 28 35 33 51 33 22 28 33
u04 16 39 26 25 55 25 50 51 43 65 37 38 73
u05 28 56 51 21 34 8 37 61 30 37 55 66 98
u06 79 75 80 65 60 25 30 34 22 19 22 18 21
u07 50 6 54 25 38 21 47 41 40 57 65 65 88
u08 44 19 31 55 49 29 80 70 73 55 48 29 45
u09 49 43 28 29 61 22 67 42 25 39 51 62 55
u10 30 25 30 51 55 44 82 84 90 74 32 15 32
u11 30 29 32 87 86 80 77 46 28 49 25 29 33
u12 49 17 54 25 37 21 47 39 42 54 65 55 98
u13 42 14 27 51 43 22 74 67 69 53 40 25 92
u14 25 19 26 90 81 79 70 44 32 45 28 24 30
u15 42 14 27 51 56 46 81 78 82 53 40 25 33
u16 80 77 79 69 65 22 31 37 28 22 19 21 29
u17 21 15 22 86 79 83 68 40 30 41 20 19 25
u18 18 12 25 82 81 79 64 38 29 39 19 15 27
u19 22 18 26 49 51 41 80 80 86 69 24 11 26
u20 41 35 44 29 34 21 47 61 50 57 62 61 98

ω 10 12 4 13 13 8 10 4 4 8 4 8 2

b1 75 70 75 60 55 20 25 35 20 15 15 10 20
b2 15 10 20 75 70 75 60 30 25 35 15 10 20
b3 15 10 20 45 45 40 75 70 75 60 15 10 20
b4 55 10 20 15 10 20 35 30 40 70 75 60 55

The two classification approaches in terms of equation (48) with a caution index q = 1 and equation (49)
lead to the same results given on the following Table 2; on this table are also reported results obtained by the
classification approach developed in [13] and named NeXClass as well as original heuristic used by managers
before approach developed in [13].

When comparing to the heuristic originally used by mangers as a benchmark, we see that our approach
performs better than the NexClass algorithm developed by [13] with in general less than 3 misclassification
whereas results of [13] present 3 misclassifications. Though, the main goal of this paper is not to propose
a numerically superior algorithm for nominal classification, (it rather proposes a structured framework to
capture practical aspects of near human ways to classify), this application nevertheless shows that the proposed
approach performs well numerically.



Table 2: Results of application

Our procedure results Results from [13]

δ = 0 δ = 10 δ = 50 δ = 90 δ = 100 NeXClass Orig. heur.

u01 c2 c2 c2 c2 c4 c4 c3
u02 c1 c1 c1 c1 c1 c1 c1
u03 c1 c1 c1 c1 c1 c1 c1
u04 c4 c4 c4 c4 c4 c3 c4
u05 c4 c4 c4 c4 c4 c4 c4
u06 c1 c1 c1 c1 c1 c1 c1
u07 c4 c4 c4 c4 c4 c4 c4
u08 c3 c3 c3 c3 c3 c3 c3
u09 c4 c4 c4 c2 c4 c4 c4
u10 c3 c3 c3 c3 c3 c3 c3
u11 c2 c2 c2 c2 c2 c2 c2
u12 c4 c4 c4 c4 c4 c4 c4
u13 c3 c3 c3 c2 c2 c4 c3
u14 c2 c2 c2 c2 c2 c2 c2
u15 c3 c3 c3 c3 c3 c3 c3
u16 c1 c1 c1 c1 c1 c1 c1
u17 c2 c2 c2 c2 c2 c2 c2
u18 c2 c2 c2 c2 c2 c2 c2
u19 c3 c3 c3 c3 c3 c3 c3
u20 c4 c4 c4 c4 c4 c4 c4

4 Conclusion

The problem of fuzzy nominal classification, that consists in an assignment of objects characterized by many
attributes to predefined classes characterized by fuzzy features or conditions, has been considered in this paper.
The method considered to formulate the classification model highlights the bipolarity that exist between the
realization of a feature and the inclusion of the considered object in a class. As humans proceed in practice by
balancing “pros” and “cons” during a decision process, this approach proposes, for a pair constituted by an
object to be classified and a class, derivation of two measures: the classifiability that is a degree measuring to
what extent this object can be included in that class and the rejectability that measures the degree to which
one should avoid including the considered object into the specified class. As these measures are obtained
using Choquet integral as an aggregation operator and based on the fact that elements to aggregate behave
in synergetic way, an easy to compute fuzzy measure known as weighted cardinal fuzzy measure (WCFM)
has been proposed; interaction index and Shapley index associated to this measure have been completely
characterized. The application of this approach to a real world problem has shown real potentiality.
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