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Non-Negative Spherical Deconvolution (NNSD)
for Fiber Orientation Distribution Function
Estimation

Jian Cheng, Rachid Deriche, Tianzi Jiang, Dinggang Shen, and Pew-Thian Yap

Abstract In diffusion Magnetic Resonance Imaging (dMRI), Spherical Deconvo-
lution (SD) is a commonly used approach for estimating the fiber Orientation Dis-
tribution Function (fODF). As a Probability Density Function (PDF) that character-
izes the distribution of fiber orientations, the fODF is expected to be non-negative
and to integrate to unity on the continuous unit sphere S2. However, many exist-
ing approaches, despite using continuous representation such as Spherical Harmon-
ics (SH), impose non-negativity only on discretized points of S2. Therefore, non-
negativity is not guaranteed on the whole S2. Existing approaches are also known to
exhibit false positive fODF peaks, especially in regions with low anisotropy, caus-
ing an over-estimation of the number of fascicles that traverse each voxel. This
paper proposes a novel approach, called Non-Negative SD (NNSD), to overcome
the above limitations. NNSD offers the following advantages. First, NNSD is the
first SH based method that guarantees non-negativity of the fODF throughout the
unit sphere. Second, unlike approaches such as Maximum Entropy SD (MESD),
Cartesian Tensor Fiber Orientation Distribution (CT-FOD), and discrete represen-
tation based SD (DR-SD) techniques, the SH representation allows closed form
of spherical integration, efficient computation in a low dimensional space resided
by the SH coefficients, and accurate peak detection on the continuous domain de-
fined by the unit sphere. Third, NNSD is significantly less susceptible to producing
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false positive peaks in regions with low anisotropy. Evaluations of NNSD in com-
parison with Constrained SD (CSD), MESD, and DR-SD (implemented using L1-
regularized least-squares with non-negative constraint), indicate that NNSD yields
improved performance for both synthetic and real data. The performance gain is
especially prominent for high resolution (1:25mm)3 data.

1 Introduction

Diffusion MRI (dMRI) non-invasively reveals the microstructure of white mat-
ter by capturing the diffusion patterns of water molecules. The most widely used
dMRI approach, Diffusion Tensor Imaging (DTI), is however incapable of describ-
ing complex diffusion processes due to its reliance on the assumption of Gaus-
sian diffusion [10]. Hence, many methods have been developed in recent years
to harness the power of High Angular Resolution Diffusion Imaging (HARDI)
to characterize the non-Gaussian diffusion by evaluating quantities such as the
Ensemble Average Propagator (EAP) [15, 5], the diffusion Orientation Distribu-
tion Function (dODF) [14, 7, 5], and the fiber Orientation Distribution Function
(fODF) [13, 12, 1, 9].

A popular method, called Spherical Deconvolution (SD), has been shown to be
effective for estimating the fODF by assuming that the measured diffusion-weighted
signal can be obtained via spherically convolving a latent fODF with a fiber response
function, which can be estimated from voxels known to be traversed by a single
fascicle [13, 12, 9]. The fODF can hence be recovered via an inverse problem by
deconvolving the signal with the fiber response function. SD methods can be classi-
fied into two categories, 1) continuous representation based SD (CR-SD), which is
normally based on representation using Spherical Harmonics (SH) [13, 12, 1], and
2) discrete representation based SD (DR-SD), which is based on a discrete mixture
of rotated versions of the fiber response function [9, 6, 11].

Existing SD methods in both categories have some common limitations. First,
they often result in false-positive fODF peaks [13, 12, 1, 10, 9, 11, 17], especially
in low anisotropic regions, such as the gray matter and cerebrospinal fluid (CSF)
regions. Second, they normally fall short in ensuring that the estimated fODF is a
proper probability density function, because non-negativity and unit integral over
the unit sphere are not always enforced. Most SD methods, including the popular
Constrained SD (CSD) [12], consider non-negativity only on discretized points of
the unit sphere, but not the whole S2 [9, 6, 11]. Thus, negative values are still a prob-
lem at points where non-negativity is not explicitly enforced. To our knowledge,
Maximum Entropy SD (MESD) [1] and Cartesian Tensor Fiber Orientation Distri-
bution (CT-FOD) [16, 17] are the only existing methods that ensure non-negativity
throughout S2. However, these methods are inefficient without the closed form of
spherical integration needed to compute the fODF and are susceptible to error as-
sociated with the numerical spherical integration. Ad-hoc normalization is also re-
quired in these methods to arrive at the fODF with unit integral. Third, for estimation
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of the fODF with reasonable accuracy, DR-SD methods require a significant num-
ber of rotated versions of the fiber response function in directions that are distributed
densely on the unit sphere, significantly increasing the dimensionality and time cost
of the optimization problem.

This paper proposes a novel CR-SD method, called Non-Negative Spherical De-
convolution (NNSD), for fODF estimation. Non-negativity is achieved by represent-
ing the square root of the fODF as a linear combination of SH basis functions. To our
knowledge, NNSD is the first SH based SD method to guarantee non-negativity on
the whole S2, not only on discretized points on the unit sphere, as in CSD [12]. Com-
pared with MESD and CT-FOD, NNSD ensures unit integral and is more efficient
due to the existence of a closed-form expression needed to arrive at the fODF. More-
over, NNSD significantly reduces the spurious peaks in regions with low anisotropy.

The rest of the paper is organized as follows. Section 2 provides an overview
of three SD methods, i.e. CSD [12], MESD [1], and DR-SD (L1-regularized non-
negative least squares with non-negative constraint) [9, 11]. Section 3 describes
NNSD and the associated Riemannian gradient descent algorithm. In Section 4,
NNSD is empirically evaluated in comparison with the three methods discussed in
Section 2.

2 Background on SD Methods

If the fODF is represented as Φ(u) = ∑
L
l=0 ∑

l
m=�l clmY m

l (u), and the axisymmetric
fiber response function along the z-axis as

H(uj(0;0;1)) =
L

∑
l=0

hlY 0
l (u); (1)

where Y m
l (u), u 2 S2, is the l order and m degree real Spherical Harmonic basis

function [10, 7], then the diffusion signal can be represented as the convolution of
the response function with the fODF [13]:

E(u) =
Z
S2

H(ujr)Φ(r)dr =
L

∑
l=0

l

∑
m=�l

r
4π

2l +1
clmhlY m

l (u): (2)

Note that convolution here in conveniently performed via multiplication of the SH
coefficients clm and hl . The SH coefficient vector c = (c00; : : : ;cLL)

T of the fODF
can be estimated by minimizing

kMc�Ek2; (3)

where M = [
p

4π=2l +1hlY m
l (ui)] is an N by (L+1)(L+2)=2 matrix, and E =

(E1; : : : ;EN)
T is a vector consisting of the signal measurements. The least squares

solution is (MT M)�1MT E. However, the least squares formulation does not take
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into account the non-negativity of the fODF. Constrained SD (CSD) [12] attempts
to address this issue by iteratively suppressing the negative values by a discrete
reconstruction on discrete points of the fODF, i.e., they solve

c(k+1) = argmin
c

kMc�Ek2 +λ
2
CSDkL(k)ck2; (4)

where L(k)
i; j = Pi; j if

�
Pc(k)

�
i
< τ , L(k)

i; j = 0 if
�

Pc(k)
�

i
> τ , and P is the SH matrix

for reconstructing the fODF at discretized points on S2. τ is a threshold normally
chosen as 0:1 [12]. Note that CSD imposes non-negativity only on a set of dis-
cretized points, not on the whole unit sphere. Although CSD significantly reduces
the negative values compared with the original version of the SD technique de-
scribed in [13], there is still a significant amount of negative values, even on points
where non-negativity is imposed.

In MESD [1], a CR-SD method, a representation of the fODF is derived based
on the maximum entropy principle:

Φ(rjfλig
K
i=0) = exp(λ0 +

K

∑
i=1

λiH(vijr)); (5)

which is an exponential function of mixture of fiber response functions determined
by a set of parameters fλig

K
i=0. These parameters can be determined by applying the

Levenberg-Marquardt method to solve the following nonlinear least-squares prob-
lem:

min
fλig

K
i=0

N

∑
j=1

�Z
S2

H(u jjr)Φ(rjfλig
K
i=0)dr�E j

�2

: (6)

The exponential representation naturally ensures non-negativity on S2. However,
unlike (2), the spherical integration in (6) needs to be approximated numerically.
An ad-hoc normalization of fODF is also needed to achieve unit integral after de-
termining fλig

K
i=0. Based on the method of Lagrange multipliers [1], the directions

fvig
K
i=1 should ideally be the N sampling points corresponding to the signal mea-

surements. However, to compromise between accuracy and speed, in practice K <N
evenly distributed points on S2 are used1.

In DR-SD, the fODF was represented using discretized points fwi = Φ(ui)g [9,
6, 11]. The SD problem in this case is normally formulated as

min
w
kAw�Ek2 +λL1jjwjj1; s.t. w � 0; (7)

where A is the matrix with each column containing a rotated version of the fiber
response function. For simplicity, we call this method the L1-regularized Non-
Negative Least Squares (L1NNLS). When λL1 = 0, Eq. (7) becomes the Non-
Negative Least Squares (NNLS) [9, 6]. Since the fODF is represented using dis-

1 Camino: http://cmic.cs.ucl.ac.uk/camino/

http://cmic.cs.ucl.ac.uk/camino//index.php?n=Tutorials.MultifibreReconstruction#toc5
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cretized points, its maxima are restricted to these points, not the continuous S2,
eventually limiting the angular resolution for peak detection.

3 Non-Negative Spherical Deconvolution (NNSD)

The square root representation has been proposed for dODFs [3] and EAPs [4] and
has been shown to be effective for non-negative estimation of these quantities [5]. In
this work, we propose to employ this representation for non-negative estimation of
the fODF. This is achieved by representing the square root of the fODF as a linear
combination of SH basis functions:

Φ(ujc) =

 
L

∑
l=0

l

∑
m=�l

clmY m
l (u)

!2

=
2L

∑
α=0

α

∑
β=�α

 
L

∑
l;m

L

∑
l0;m0

clmcl0m0Qmm0β

ll0α

!
Y β

α (u); (8)

where Qmm0β

ll0α =
R
S2 Y m

l (u)Y m0

l0 (u)Y β

α (u)du is a constant tensor computed by the in-

tegration of three sets of SH basis functions [5]. Qmm0β

ll0α can be calculated from the
Wigner 3-j symbol. Note that the sum over α is up to 2L, because if α > 2L, then
Qmm0β

ll0α = 0 based on the property of Wigner 3-j symbol. In contrast to CSD, we use
the SH basis function to represent the square root of the fODF, instead of the fODF
itself in CSD. Note that since

R
S2 Φ(u)du = 1 and due to the orthogonality of the SH

basis functions, we have
R
S2 Φ(u)du = kck2 = 1. Based on Eq. (2), the convolved

diffusion signal is

E(u) =
2L

∑
α=0

α

∑
β=�α

L

∑
l;m

L

∑
l0;m0

r
4π

2α +1
clmcl0m0Qmm0β

ll0α hαY β

α (u) = cT K(u)c; (9)

where for any fixed u, K(u) is a (L+1)�(L+2)=2 square matrix with the elements

Kmm0

ll0 (u) =
2L

∑
α=0

α

∑
β=�α

r
4π

2α +1
Qmm0β

ll0α hαY β

α (u): (10)

Based on Eq. (9), we propose to estimate c from the measured fEig
N
i=1 by minimiz-

ing

J(c) =
1
2

N

∑
i=1

�
cT K(u)c�Ei

�2
+

1
2

cT
Λc; s.t. kck= 1; (11)

where Λ is a diagonal matrix with elements Λlm = λNNSDl2(l+1)2 for the Laplace-
Beltrami regularization [7] . The Riemannian gradient ∇J(c) is the projection of
Euclidean gradient ∂J(c)

∂c onto the tangent space of c, i.e.
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∇J(c) =
∂J(c)

∂c
�

�
cT ∂J(c)

∂c

�
c;

∂J(c)
∂c

=
N

∑
i=1

2
�
cT K(ui)c�Ei

�
K(ui)c+Λc:

(12)
Then the Riemannian gradient descent of J(c) is

c(k+1) = Expc(k)

�
�dt

∇J(c)
k∇J(c)k

�
; Expc(v) = ccoskvk+

v
kvk

sinkvk; (13)

where c(k) is the estimated c in the k-th step, dt is the step size chosen from the
inexact line search in (0;dt0] , and Expc(v) is the exponential map on the sphere [3].
The whole process is summarized in Algorithm 1. We use the isotropic fODF with
c(0) = (1;0; : : : ;0)T for initialization, and experimentally choose dt0 = 0:1. We
found that NNSD is robust to noise and λNNSD = 0 works in most cases. To ob-
tain a local minimum of J(c), the standard stopping condition can be set as

J(c(k�1))� J(c(k))
J(c(k�1))

< δ : (14)

A small value for δ should be chosen such that NNSD converges to a local mini-
mum of Eq. (11). Experimentally δ = 10�2 works well in most cases. If δ is much
smaller than 10�2, we found that although the cost function J(c) becomes a little
lower and the fODFs in regions with high anisotropy become a little shaper, the
fODFs in regions with low anisotropy however become fuzzier with more spurious
peaks. Thus we propose an adaptive stopping condition such that if GFA(c(k))< T

and J(c(k�1))�J(c(k))
J(c(k�1))

< δ0, or if GFA(c(k)) � T and J(c(k�1))�J(c(k))
J(c(k�1))

< 0:01δ0, then

the gradient descent stops, where δ0 = 10�2, GFA(c) =
r

1� c2
00

kck2 =
q

1� c2
00

is the Generalized Fractional Anisotropy (GFA) [14], and T 2 [0;1] is a thresh-
old depending on the noise level. For simplicity, we call NNSD with this adap-
tive stopping condition NNSD-ASC. When T = 0, NNSD-ASC becomes NNSD
with δ = 0:01δ0 = 10�4, and when T = 1, NNSD-ASC becomes NNSD with
δ = δ0 = 10�2. Both NNSD and NNSD-ASC converge fast, normally in a dozen
of steps. Based on our C++ implementation, when L = 6, fODFs in 1000 voxels can
be estimated within 8 seconds using an ordinary laptop, which is much faster than
MESD in Camino [1].

Note that in each iteration step, the fODF Φ(ujc(k)) is naturally non-negative in
the whole S2 due to the square operator in Eq. (8), and it has unit integral since
kc(k)k= 1.

4 Experiments

We compared the proposed NNSD and NNSD-ASC with CSD, MESD, and
L1NNLS using synthetic and real data.
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Algorithm 1: Non-Negative Spherical Deconvolution (NNSD)
Input: Diffusion signal attenuation measurements fEig

N
i=1.

Output: SH coefficient c and the fODF Φ(ujc).
begin

initialization: c(0) = (1;0; :::;0)T , k = 0 ; // the isotropic fODF
repeat

calculate v = ∇J(c(k)) in Eq. (12) ;
if kvk< ε then break;
choose step size dt 2 (0;dt0] via line search;

c(k+1) = Expc(k)

�
�dt v

kvk

�
, k k+1;

until Under a certain stopping condition;
Φ(ujc) = Eq. (8)

end

Parameters: Note that in all the following experiments, MRtrix2 with default pa-
rameters was used for CSD [12], and 321 evenly distributed orientations were used
to generate P for CSD as suggested in [12, 9]. Accelerated MESD with K = 16 was
used as suggested in Camino. We experimentally set λL1 = 1 for L1NNLS. Note that
ideally the optimal λL1 in Eq. (7) should be different in each voxel depending on E.
We normalize the columns of A and E to have unit norm so that we can use the same
λL1 in all cases. For fair comparison, we intentionally set λNNSD = 0 to switch off
Laplace-Beltrami regularization, and set T = 0:5 in NNSD-ASC. For CSD, MESD,
and NNSD, NNSD-ASC, the local maxima of the estimated fODF larger than the
mean of the minimal and maximal values are detected by gradient ascent on the
continuous unit sphere S2 [13, 12]. For L1NNLS, the peaks are detected from the
321 orientations.

Generation of Synthetic Data: Synthetic signals were generated using a mix-
ture of tensor model E(u) = ∑

K
k=1 pk exp

�
�buT Dku

�
with b = 1500s=mm2 and 60

evenly distributed directions fuig. For simulating crossings, two tensors with equal
weights p1 = p2 = 0:5 and common eigenvalues (λ1;λ2;λ2) but different orienta-
tions were used. Rician noise with signal-to-noise ratio (SNR) 1=σ was added to
the signal, where σ is the standard deviation of the complex Gaussian noise.

Anisotropy and Non-Negativity: 1000 realizations of Rician noise corrupted
signal were generated with SNR = 15 and 30, respectively from a ground
truth isotropic signal profile with eigenvalues (0:7;0:7;0:7)� 10�3 mm2=s and an
anisotropic signal profile with eigenvalues (1:7;0:2;0:2)�10�3 mm2=s. The Gaus-
sian fiber response function with eigenvalues (1:7;0:2;0:2)�10�3 mm2=s was used
in all methods. From the estimated fODFs, we recorded the GFA values [14] and the
proportion of the negative fODF values. We ignored negative values close to zero
and only take into consideration negative values with absolute values larger than 1%
of the maximal fODF value. This evaluation was performed on 5121 points gener-
ated via tessellation of the unit sphere. The top left sub-figure in Fig. 1 shows that

2 MRtrix: http://www.brain.org.au/software/mrtrix/

http://www.brain.org.au/software/mrtrix/
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Fig. 1 The first row shows the proportion of negative values and the GFA values of the fODFs es-
timated from the isotropic signal profiles (denoted as ISO) and anisotropic signal profiles (denoted
as ANI). The error bars indicate the standard deviations. The second row shows the success ratios
and the MDA values of the different methods for crossings generated with various angles.

although CSD considers non-negativity, it still suffers from negative values. NNSD-
ASC and MESD guarantee non-negativity throughout S2. Note that the fODFs esti-
mated by L1NNLS are non-negative on the discrete 321 points where non-negativity
is imposed; however, since fODF value for other points are unknown, we cannot
compute the proportion of negative values for L1NNLS. The top right sub-figure
shows that CSD, MESD and L1NNLS obtain very high GFA even for isotropic dif-
fusion, indicating an over-estimation of the number of fascicles. Only NNSD-ASC
yields large contrast between isotropic and anisotropic signal profiles. Note that due
to the sparsity constraint used in L1NNLS, the GFA values of fODFs estimated by
L1NNLS for both isotropic and anisotropic signals are always close to 1.

Simulation of Crossing Fibers: Corrupted signals were generated from two ten-
sor model with SNR=10, eigenvalues [1:7;0:2;0:2]�10�3 mm2=s, and with differ-
ent crossing angles in [30�;90�]. For all methods, we estimated the fODFs with the
same Gaussian fiber response and detected the local peaks. We recorded the success
ratio, which is the proportion of trials with the correct number (i.e. two) of detected
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peaks, then calculated the Mean Difference of Angles (MDA) only in successful
trials [7]. The second row in Fig. 1 shows the success ratio and the MDA values for
different crossing angles. MESD and CSD with L = 10 yield higher success ratios
for small crossing angles, but lower success ratios for larger crossing angles. How-
ever, we are more concerned with large crossing angles, since this is more likely
to happen in real data. With L = 6, NNSD-ASC generally yields higher success
ratios than CSD and the lowest MDA values among all methods. L1NNLS gener-
ally yields lower success ratios, probably because one has to tune λL1 for different
fiber configurations to achieve optimal results, while we had just simply set λL1 = 1.
L1NNLS yields larger MDA values than others, probably due to the limited angular
resolution. The large MDA values given by MESD are probably due to a larger K
is needed for more accurate peak detection; this however requires a much longer
computation time.

Real Data: Evaluation was also performed using real human data with b =
2000s=mm2, 120 gradient directions, TR/TE=12400=116ms, 2mm isotropic voxel
dimensions. We set L = 6 for CSD and NNSD, NNSD-ASC. MRtrix was used for
CSD and for the estimation of the fiber response function from the voxels with
FA > 0:7 [13, 12]. The results are showed in Fig. 2. NNSD with δ = 10�4 and
NNSD-ASC with T = 0:5 yield similar results, which means the outcome is in-
sensitive to T for this data. We calculated the GFA maps [14] from the estimated
fODFs, and set them as the background color in every sub-figure. Consistent with
the results in Fig. 1, the results in Fig. 2 for CSD, MESD and L1NNLS show a
significant amount of false positive peaks, which is especially evident in the regions
with low anisotropy, as indicated by the low background GFA values. Because of
the sparsity consideration in L1NNLS, normally only less than 5 out of the 321 sam-
ples of fODFs have non-zero values, thus the fODFs by L1NNLS have very high
GFA values close to 1, based on the GFA definition. NNSD and NNSD-ASC dra-
matically reduced the spurious peaks of the estimated fODFs; see the yellow circles
in Fig. 2. Note that in isotropic regions, the fODFs estimated by NNSD and NNDS-
ASC are very close to being isotropic. Although all fODFs estimated by NNSD
have unit integral, the values of isotropic fODFs are around 1

4π
and the peaks of

anisotropic fODFs are normally larger than 1. Hence, when visualizing fODFs at
the same scale, the isotropic fODFs estimated by NNSD/NNSD-ASC look like dots
which have much small sizes compared with anisotropic fODFs. We would like to
point out that most existing papers on SD overlaid the estimated fODF glyphs on
a FA or GFA map calculated from other models like DTI, not from the estimated
fODF itself [13, 12, 9, 11, 17]. The proposed NNSD and NNSD-ASC obtain a very
clean fODF field with similar peaks as detected by CSD in highly anisotropic re-
gions and more isotropic fODFs in the isotropic regions.
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NNSD-ASC, T = 0:5, L = 6 NNSD-ASC, L = 6, T = 0:5 NNSD, L = 6, δ = 10�4

CSD, L = 6, by MRtrix MESD by Camino L1NNLS, λ = 1

Fig. 2 First row: the whole coronal view of the fODF field using NNSD-ASC with T = 0:5, and
close-up views of results generated using NNSD-ASC and NNSD. Second row: close-up views for
results generated using CSD, MESD, and L1NNLS. The colors of glyphs indicate directions. The
backgrounds are the GFA maps.

4.1 High-Resolution Data

We also evaluated the SD methods using high resolution (1:25mm)3 data obtained
from the Human Connectome Project (HCP)3. The data is challenging because the
SNR is low due to the small voxel dimensions. It has three shells, 90 directions
per shell, b = 1000=2000=3000;s=mm2. We performed NNSD (δ = 10�4), NNSD-
ASC (δ = 10�2), CSD, MESD, L1NNLS on a single shell with b = 2000s=mm2;
see Fig. 3. Although NNSD and NNSD-ASC yield results similar to the previous
data (see Fig. 2), NNSD-ASC demonstrated its robustness to the spurious peaks in
this high-resolution data. In the isotropic areas, only NNSD-ASC obtained isotropic
fODFs, while other methods obtained many false positive peaks. See the yellow cir-
cles. In the anisotropic areas, NNSD and NNSD-ASC obtained the sharpest fODFs.
fODFs by MESD are also very sharp in the anisotropic areas; however there are
some small spurious lopes, as shown in the glyphs, similarly to the results shown
in Fig. 2. fODFs estimated by CSD for this high-resolution data are not as sharp as
those estimated by NNSD/NNSD-ASC and MESD. This can be observed in the ar-
eas marked by the yellow squares. L1NNLS as before obtained the most anisotropic
GFA map, indicating spurious peaks in isotropic areas.

3 http://www.humanconnectome.org/data/

http://www.humanconnectome.org/data/
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NNSD-ASC, T = 0:5, L = 6 NNSD-ASC, L = 6, T = 0:5 NNSD, L = 6, δ = 10�4

CSD, L = 6, by MRtrix MESD by Camino L1NNLS, λ = 1

Fig. 3 First row: coronal view of the fODF field estimated using NNSD-ASC with T = 0:5, and
close-up views of results generated using NNSD-ASC and NNSD. Second row: close-up views
of results generated using CSD, MESD and L1NNLS. The RGB color of glyphs indicates the
directions. The backgrounds consist of the GFA maps.

5 Discussion and Conclusion

In all the above experiments, for fair comparisons between methods, we did not pre-
process the data via denoising to enhance the SNR. We also did not consider spatia
regularization for local smoothness. In practical applications, good denoising meth-
ods such as non-local means [8] and good spatial regularization can improve the
final results. Although in this paper, we have only considered diffusion signals sam-
pled from a single shell (e.g. one b value), the proposed NNSD can be used in mul-
tiple shell data by considering a signal response function defined in the 3D space.
The SH coefficients fhl(b)g for the different b-values can then be used in Eq. (1).

We participated ISBI 2013 HARDI reconstruction challenge4 using the pro-
posed NNSD with non-local mean spatial regularization [2]. This challenge consid-
ered 3 categories of sampling schemes (DTI, HARDI, and multiple shell DSI-like
schemes) and 3 SNRs (SNR=10,20,30), amounting to a total of 9 datasets. Com-
pared with other methods in this challenge, NNSD was ranked as the best technique
in terms of local fiber orientation accuracy in all 9 datasets5.

In this paper, we proposed a novel SD method, called Non-Negative SD (NNSD).
NNSD is based on the square root representation of the fODF and can be solved by a

4 http://hardi.epfl.ch/static/events/2013 ISBI/
5 http://hardi.epfl.ch/static/events/2013 ISBI/ static/talk Max.pdf

http://hardi.epfl.ch/static/events/2013_ISBI/
http://hardi.epfl.ch/static/events/2013_ISBI/_static/talk_Max.pdf
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Riemannian gradient descent algorithm with an adaptive stopping condition. Com-
parison with existing SD methods, including CSD, MESD, and L1NNLS, demon-
strated the advantages of NNSD: 1) NNSD ensures that the estimated fODF is non-
negative with unit integral throughout S2; 2) NNSD significantly reduces the false
positive peaks and yields high contrast between isotropic and anisotropic regions;
and 3) Due to the SH representation, NNSD is efficient and allows accurate peak
detection on the continuous unit sphere. The experiments showed that the proposed
NNSD-ASC works well in both isotropic and anisotropic areas, especially for the
high-resolution data. The clean fODF field obtained by NNSD will be helpful for
important applications such as fiber tractography.
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