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ABSTRACT

Ontologies are formal descriptions of a domain. With the growth
of the semantic web, an increasing number of related ontologies
with overlapping domain coverage are available. Their integration
requires ontology alignment, a determination of which concepts in
a source ontology are like concepts in a target ontology. This paper
presents a novel approach to this problem by applying analogical
reasoning, an area of cognitive science that has seen much recent
work, to the ontology alignment problem. We investigate the per-
formance of the LISA cognitive analogy algorithm and present re-
sults that show its performance relative to other algorithms.

General Terms
Algorithms

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems—human
information processing, software psychology; 1.2.0 [Artificial In-
telligence]: General—cognitive simulation; 1.2.4 [Artificial Intel-
ligence]: Knowledge representation formalisms and methods

Keywords
Ontology, Alignment, Analogy, LISA, Cognition

1. INTRODUCTION

Ontologies are explicit specifications of a conceptualization, de-
scribe knowledge about a domain [13], and are a key technology
of the semantic web vision. They are typically described using
the OWL Web Ontology Language and are intended to facilitate
semantic interoperability between parties [14]. However, the dis-
tributed nature of the semantic web makes it possible and even
likely that multiple parties independently develop ontologies with
partially overlapping sets of concepts. While these ontologies may
be comparable in their goals, they can vary greatly in the way they
define and represent concepts. This variation is due to a variety of
factors, ranging from the culture and linguistic particularities to the
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chosen level of abstraction, the expressiveness of the representation
language, and the purpose of the ontology.

In the context of the semantic web, ontology alignment plays a
crucial role to integrate different but overlapping ontologies. Ontol-
ogy alignment attempts to establish correspondences between con-
cepts of different ontologies that are similar in meaning but have
different names or structure. We argue that a successful ontology
alignment system should derive the same correspondences that a
human user would derive'. While we explicitly state this argu-
ment here, its general acceptance is implicit in the fact that ontol-
ogy alignment systems are evaluated against reference alignments
that are created by humans [4].

Existing research in the area of ontology alignment has focused
on estimating lexical similarity between concepts (syntactic or se-
mantic similarity), mapping structural correspondences between on-
tologies (tree-based or graph-based representations), and the role of
human users (for assigning matchers’ weights, fine-tuning parame-
ters, confirming or rejecting alignment results, etc.) [1, 15, 22, 18].
While these approaches are based on well justified logical, linguis-
tic, and statistical matchers, they do not explicitly take into account
how humans derive correspondences between concepts.

Therefore, this work is an initial, exploratory study on how to
develop ontology alignment systems that are explicitly based on
human alignment processes. More specifically, we explore whether
the cognitive process of analogy making or analogical reasoning
can serve as the basis for ontology alignment systems.

The motivation of this work was drawn from the observation
that two research domains, the semantic web and cognitive sci-
ence, have many common elements: in particular the field of entity
and/or concept mapping. Previously, this has been studied sepa-
rately in the two research domains without efforts to bridge the two
and transfer findings from cognitive science (analogical reasoning)
to semantic web challenges (ontology alignment). Thus, the aim of
this work is also to highlight this relationship and bring the work in
the cognitive sciences to the attention of semantic web researchers.

Cognitive principles have also recently been applied to database
schema matching, a problem similar to ontology alignment. Work
in that area has empirically investigated how humans make schema
matching decisions [3, 5] and initial studies show that cognitive
principles of similarity can in principle be applied [20, 6], but do
not yet provide any evaluation of their effectiveness.

While there is a great amount of research on analogical reason-
ing and numerous computational models have been proposed, this
initial exploratory study uses the LISA model [16], which has been
shown to produce similar results to human subjects in many exper-

The issue of different humans arriving at different correspon-
dences for the same problem [5, 21] is discussed in detail in Sec-
tion 6.



imental studies.

The remainder of the paper is structured as follows. Section 2
introduces the cognitive research on analogical reasoning systems.
Section 3 presents LISA, the analogical reasoning systems adopted
in this research. Section 4 details the framework for implementing
the ontology alignment approach using LISA. Section 5 describes
our experimental method and results, including a comparison with
existing ontology alignment approaches. Section 6 discusses the
implications of our results, limitations of the study, and suggests
several directions for future research.

2. ANALOGICAL REASONING

Analogical reasoning is a cognitive process that maps concepts
from one domain (the base) to concepts of another domain (the
target) and is based on three main principles [9, 11]: one-to-one
mapping, parallel connectivity, and systematicity:

e First, humans are shown to construct and to strongly prefer
ontologies that place each concept of the base domain in cor-
respondence with at most one object of the target domain.

e Second, analogies become more useful when placing objects
of the base domain in correspondence with objects in the
target domain by virtue of the objects’ structure rather than
superficial similarities. This systematicity principle reflects
people’s perception on interconnected systems of relations.
It drives analogies to prefer sets of relations that include com-
mon higher-order relations and to map knowledge such that
a system of relations that holds among the base objects also
holds among the target objects. For example, in the anal-
ogy “an electric battery is like a reservoir” there is no resem-
blance between the objects’ surface attributes (e.g., shape,
size, color). However, the analogy builds on the fact that
both objects store potential energy, i.e. structural similarity.

e Finally, the principle of parallel connectivity states that if
two relations are mapped to each other, their objects must
also be placed in correspondence. For example, if the pred-
icate stores (reservoir, energy) matches the predicate stores’
(electric battery, energy’) then reservoir must match electric
battery and energy must match energy’.

Reasoning by analogy has received significant attention in cogni-
tive systems research [8, 17] and a number of computational mod-
els of analogy-making systems have been proposed, implemented,
and experimentally evaluated [11]. We present three approaches
that have undergone experimental evaluations and that show they
are reasonable approximations for human analogical reasoning, al-
beit on simple, artificial problems.

SME [7] is a computational model of the structure-mapping the-
ory of analogy [9]. The domain knowledge in SME is represented
using a graph structure where all entities of the domain, as well as
their relations, are represented as nodes of the graph. The align-
ment process is driven by common relations and functions, while
attributes are neglected. SME uses a local-to-global alignment pro-
cess to reflect the cognitive processes during analogy making and
begins by matching identical predicates and their associated ele-
ments. The resulting local matches are then integrated into struc-
turally consistent clusters. Finally, a global mapping is established
by maintaining consistent clusters and merging them into a small
number of sets that are maximal in size. SME has been experimen-
tally shown to generate analogies that are good matches to analo-
gies made by human subjects [19].

#owl:Class(#Article, rdf:#Type)

class(Article,Type)

Article-class1 ! Type-class2

Figure 1: Example to illustrate the LISA architecture.

LISA [16] is a hybrid connectionist and symbolic architecture.
The LISA architecture separates the long-term memory (LTM) and
the working memory (WM) component, closely reflecting actual
cognitive constraints. LISA represents domain knowledge in a hier-
archy of propositions, sub-propositions, predicates and objects, and
semantic units; the latter are shared between the two analogs. Mir-
roring synchronous and asynchronous activation in human mem-
ory, the driver analog resides in the active memory and controls the
sequence of activating (“firing”) the propositions. The activation
propagates to the semantic units and, because these are shared, to
the recipient analog. The resulting patterns of activation determine
the correspondence of elements between the two analogs.

SIAM [12] is a computational model of human similarity judg-
ment. SIAM models the elements of two domains as a network of
interconnected nodes that represents all possible feature-to-feature,
object-to-object, and role-to-role correspondences. SIAM first com-
putes similarities between the feature nodes. Then, SIAM identifies
objects pairs that are consistent with the feature correspondences.
Based on the object-object similarities, STAM calculates the role-
role similarities while maintaining consistency. This process is re-
peated until the resulting similarity measures have converged.

In this work, we investigate the question whether existing com-
putational models of cognition, specifically those of analogical rea-
soning, can be used as the basis for ontology alignment. We are
particularly interested in exploring the utility of applying analog-
ical reasoning models to the problem of ontology alignment and
any of the above computational models could be adapted and used.
While SME and LISA have had the greatest success in account-
ing for the range of phenomena in analogical thinking and learning
[10], in this first paper we focus on LISA.

3. LEARNING AND INFERENCE WITH
SCHEMAS AND ANALOGIES (LISA)

In this paper, we only present a brief overview of the architecture
and principles of LISA. More details are provided in the appendix
and full documentation is found in [16].

LISA represents knowledge using propositions (P), sub-propo-
sitions (SP), predicates and objects, and semantic units. In Fig-
ure 1, propositions are shown as ovals (e.g., class(Article, Type)),
sub-propositions as rectangles (e.g., article-classl), predicates as
triangles (e.g., classl), objects as large circles (e.g., Article), and
semantic units as small circles (e.g., magazine). While we realize
that the publication domain in this example may be overused and
not very interesting, we use it because the OAEI test cases (Section
5) are based on this domain.

The semantic units are shared by the base and target analogs
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Figure 2: Connections between a driver and a recipient analog via shared semantic units.

while the remaining elements are local to each analog. Propositions
are connected to their sub-propositions, which serve to bind roles
(represented by predicates) to their fillers (represented by objects).
Objects and predicates are functionally equivalent within LISA’s
computational models, but are separated for conceptual clarity. The
semantic units in turn are connected to objects and predicates. Not
shown in this simple example is the fact that propositions can be
used in place of objects to fill roles of sub-propositions, leading
to a deeper hierarchical structure. One analog plays the role of
driver, the other that of receiver. Figure 2 shows an example of the
analogy-making process of LISA between a driver and a recipient
analog. The two propositions are #owl:Class (#Article, rdf:#Type)
in the driver and #owl:Class (#JournalPaper, rdf:#Type) in the re-
cipient; note the shared semantic units.

Propositions in the driver are activated (firing”’) and this activa-
tion propagates through the two analogs connected by the shared
semantic units. When a proposition is fired, it enters the active
memory and activates its corresponding role-filler bindings (SPs)
and its sub-units in turn. In the example, when the driver acti-
vates the proposition #owl:Class (#Article, rdf:#Type), its sub-pro-
positions SP1 (Article and classl) and SP2 (Type and class2) are
fired in sequence (i.e. asynchronously). When SP1 is fired, the
semantic units connected to its object #Article (magazine, arti-
cle, instance, not labelled in Figure 2) and predicate class! (classli,
OWLI, not labelled in Figure 2) become active at the same time,
i.e. synchronously. Similarly, the semantic units connected to SP2
(Type and class2) are activated upon activation of SP2. Details of
this activation propagation algorithm are shown in the appendix.

At the end of the process, a specific activation pattern of semantic
units is associated with each fired SP. The analogy result is deter-
mined by identifying those recipient units whose connections to the
shared semantic units best fits the activation pattern of the driver’s
units. In Figure 2, the activation pattern of semantic unit results in
establishing a mapping between #owl:Class (#Article, rdf:#Type)
and #owl:Class (#JournalPaper, rdf-#Type). In LISA, mappings
are always between units of the same type (objects to objects, pred-
icates to predicates). Hence, the mapping in the example is estab-
lished between the objects #Article and #JournalPaper, #Iype and
#Type, and between the predicates #owl:Class and #owl:Class.

4. APPLYING LISA TO ONTOLOGY
ALIGNMENT

Our framework for using LISA for ontology alignment consists
of three components: 1) RDF parser, 2) LISA encoder, and 3) On-
tology matcher. Our system accepts as input a source and a target
ontology expressed in OWL. To apply LISA, the ontologies must
be represented (“‘encoded”) in the form of LISA proposition, sub-
propositions, objects, predicates, and semantic units as described
in Section 3. This encoding admits many design decisions. In this
section, we describe the choices we have made and refer the reader
to our discussion of future work where we describe plans for ex-
ploring this design decision space.

4.1 RDF Parser

To represent an OWL ontology as a set of simple propositions,
in a form similar to LISA propositions, we first represent the OWL
ontology in RDF triples format®. Next, the extracted RDF data is
represented in the form of N-triples®, a particular surface grammar
for representing RDF triples, to be more easily parsed and trans-
formed to LISA input format. Table 1 shows an example of two
OWL statements that are transformed to the N-Triple format.

4.2 LISA Encoder

The LISA encoder transforms the N-Triple representations into
LISA input files. An RDF statement is a ternary relation between
a subject, a predicate, and an object that is similar to a proposi-
tion in LISA (although LISA propositions can be of higher arity
than three). This suggests an intuitive encoding of RDF subjects as
LISA objects, RDF predicates as LISA predicates, and RDF objects
as LISA objects. Sub-propositions, while important in the analogy-
making process, are not explicitly represented in LISA input.

In our encoding, RDF subjects and RDF objects are represented
as LISA objects if the RDF triple has a rdf#type predicate and an
owl#class object. In other words, we represent OWL classes as
LISA objects. We also encode RDF subjects and objects as LISA
objects if the RDF triple has a rdf#type predicate and an object
of type owl#ObjectProperty or owl#DatatypeProperty. In other

http://www.w3.org/TR/owl2-mapping-to-rdf/
*http://www.w3.0rg/2001/sw/RDFCore/ntriples/



Table 1: Example showing the transformation from OWL to N-Triples to LISA format.

Ontology - Class Example Ontology - ObjectProperty Example
<owl:Class rdf:ID="Article"> <owl:ObjectProperty rdf:ID="event">
<rdfs:label xml:lang="en">Article</rdfs:label> <rdfs:domain rdf:resource="#Proceedings"/>
E <rdfs:comment xml:lang="en">An article from a <rdfs:range rdf:resource="#Conference" />
© | journal or magazine.</rdfs:comment> <rdfs:label xml:lang="en">event</rdfs:label>
<rdfs:comment xml:lang="en">The event concerned with
the proceedings.</rdfs:comment>
<owl#ObjectProperty>
<onto.rdf#Article> <rdf#type> <owl#Class> . <onto.rdf#fevent> <rdf#type> <owl#ObjectProperty> .
$ | <onto.rdf#Article> <rdf-schema#label> "Article" . | <onto.rdf#fevent> <rdf-schema#domain> <#Proceedings> .
B | <onto.rdf#Article> <rdf-schemaf#fcomment> "An <onto.rdf#fevent> <rdf-schema#range> <#Conference> .
@ article from a journal or magazine" . <onto.rdf#fevent> <rdf-schema#label> "event" .
Z <onto.rdf#fevent> <rdf-schema#comment> "The event
concerned with the proceedings." .
AnalogExample - Class and ObjectProperty
Defpreds // Definition of the predicates and their semantic units (in square brackets).
class [ class1 OWLI1 ][ class2 OWL2 classes ] ;
objProperty [ objProperty1 rdfproperty1 ] [ objProperty2 rdfproperty2 ] ;
end ;
% Defobjs // Definition of the objects and their semantic units (following each object).
= Article magazine article instance ;
Type instance subject ;
Prop_#event event concerned proceedings #proceedings #conference ;
end ;
DefProps // Definition of the propositions, P1 and P2 in the following.
P1 class(Article, Type) ;
P2 objProperty ( Prop_#event Type ) ;
end ;

words, we also represent OWL properties as LISA objects. Intu-
itively, when OWL classes and OWL properties are represented as
LISA objects, we can then make statements in LISA about these
objects, i.e. LISA propositions, which represent the statements
in the OWL ontology about the classes and properties. Table 1
presents two examples, a class and an object property, that are
transformed to LISA’s input format. The “Defpreds” section of
the LISA input defines the predicates and their semantic units, cor-
responding to the triangles and the small circles in Figure 1. The
“Defobjs” section of the LISA input defines the objects and their
semantic units, corresponding to the large and small circles shown
in Figure 1. Finally, the “Defprops” section of the LISA input de-
fines the propositions of an analog, corresponding to the ellipses in
Figure 1. Further details about the LISA input format can be found
in [16].

If the RDF triples are not of the above forms, i.e. the triples
do not represent an OWL class or OWL property, their subjects
and objects are encoded as LISA semantic units. More specifically,
the semantic units are generated from RDF triple statements with
the following predicates: rdf-schema#label, rdf-schema#comment,
rdf-schema#subClassOf. In these cases, we parse the RDF subject
and RDF object, i.e. the label or comment, and each parsed ele-
ment is represented as a LISA semantic unit. Further, the anony-
mous classes in RDF triple statements may contain descriptions,
constraints, and other semantic elements related to the owl#class
objects (which are represented as LISA objects). Table 1 shows
some cases of different predicates such as rdf-schema#label, rdf-
schema#comment rdf-schema#range, and rdf-schema#domain that
their objects are parsed and encoded as semantic units.

4.3 Ontology Matcher

The encoded base and target analogs are then sent to the LISA
algorithm presented in Section 3. We use the public version of
LISA*. The generated alignments are influenced by the order and
grouping with which the propositions are fired by the driver analog.
To represent human cognitive constraints, only a small number of
propositions can be activated together by the driver analog (approx-
imately two to three propositions). In this first exploratory study,
we fire propositions individually and in the order in which they are
defined in the ontology (and thus appear in the LISA input specifi-
cation). The exploration of different configurations of LISA is left
to future work (Section 6).

In adhering to the main cognitive principles of analogical rea-
soning, LISA typically emits one-to-one mappings between objects
and predicates of the two analogs, and each mapping has a con-
fidence score. In the rare case when LISA emits a many-to-one
mapping, we have used only mapping with the highest confidence
score. No further post-processing of LISA results is performed.

S. EXPERIMENTAL EVALUATION

We conducted various experiments to test and evaluate LISA’s
performance on ontology alignment tasks. We begin by describing
our experimental benchmark ontology alignment test set and the
evaluation metrics. This is followed by our results and a compari-
son with existing approaches.

5.1 The OAEI 2010 Benchmark Dataset

To evaluate LISA’s performance, we used the benchmark tests

‘http://internal .psychology.illinois.edu/
~Jjehummel /models.php



available from the Ontology Alignment Evaluation Initiative’
(OAEI). OAEI is a consensus reference test set for evaluating on-
tology alignment systems. Since 2004, many ontology alignment
systems participated in the annual evaluation contests and their per-
formance has been published. We conducted our experiments using
the OAEI benchmark series of tests in its 2010 version [2]. Detailed
descriptions of all tests are found on the OAEI web page.

The reference (and source/base) ontology for the alignment tests
has 33 named classes, 24 object properties, 40 data properties, 56
named individuals and 20 anonymous individuals in the academic
publications domain. The 1xx set of tests is a simple test where a
reference ontology is compared with itself or with its restriction to
OWL-Lite. The 2xx set of tests are systematic tests where a ref-
erence ontology is compared with various modified versions of it-
self. The variations are obtained by 1) replacing entities by random
strings, synonyms, names with different conventions or names in
another language, 2) discarding or modifying comments, instances,
properties, 3) suppressing, expanding, or flattening subsumption hi-
erarchies, 4) expanding, replacing, or flattening classes. These two
sets of tests are artificial in the sense that the reference alignments
are not “created” by humans in the sense that human cognitive anal-
ogy processes were at work, but are the result of the specific trans-
formations of the source ontology.

In contrast, the 3xx set of tests includes four real target ontolo-
gies, which have been manually aligned with the reference ontol-
ogy. Thus, the reference alignments for these tests represent the
result of human cognitive processes. The target ontologies in the
3xx set of tests comprise four real ontologies: 1) BibTeX/MIT (15
named classes, 40 data properties), 2) BibTeX/UMBC (16 named
classes, 6 object properties, 25 data properties), 3) Karlsruhe (56
named classes, 72 object properties), and 4) INRIA (41 named clas-
ses, 40 object properties, 11 data properties). One reason for using
the 2010 version of the tests is that published results are available
for these non-synthetic tests with real ontologies, which have been
omitted in later OAEI test suites.

To evaluate the performance of LISA, the alignments for OWL
properties and classes are compared to the set of reference align-
ments using the precision and recall. For space reasons, we report
only the composite F-score metric.

5.2 Results

Table 2 provides the F-scores and shows that LISA performs well
on the 1xx and 2xx sets of tests. The F-scores show that LISA’s
performance was better than most systems that participated in the
OAEI 2010 contest’.

The 3xx set of tests is the most relevant to measure the effec-
tiveness of the alignment approaches, as it is the most realistic and,
more importantly, the reference alignments are created by humans.
The varying F-scores indicate that the slight decrease in recall is
compensated by high precision. Over all the 3xx set of tests, LISA
performed reasonably well and ranked 6th out of the 12 competing
approaches, as illustrated in Figure 3.

A closer look at the tests shows that LISA’s performance varies
greatly between tests. First, elements such as labels, comments, in-
stances in the ontologies are of considerable importance for LISA
to perform well (e.g., test 101, 221, 228). This is not surprising
as these elements are parsed to form the semantic units that con-
nect the driver and recipient analog in LISA. Second, LISA did not
perform well when the hierarchy of an ontology is flattened (e.g.,

5http ://oaei.ontologymatching.org/

SOAEI results obtained from http://oaei.
ontologymatching.org/2010/results/
benchmarks/index.html
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Figure 3: F-scores for the OAEI 3xx tests, comparing LISA
with systems that participated in the 2010 OAEI contest.

test 222, 237, 239, 246). In contrast, when the hierarchy is ex-
panded (test 223), LISA scored well. This suggests that the struc-
tural information represented by a class hierarchy is important, as
would be expected from the description of LISA earlier. Third,
LISA achieved better results when the alignment did not include
the alignment of properties, i.e. properties were suppressed (e.g.,
test 228, 233, 236). Finally, as we expected from our ontology
encoding and importance of labels, the performance of LISA in Ta-
ble 3 on “scrambled” tests (201-202 and 248-266), where concept
names or labels are replaced by random strings, was relatively poor.

Figure 4 shows the results of each of the test sets for LISA and
for all the systems that participated in the 2010 OAEI contest [2].
When we compute the average F-scores across all tests for each of
the systems, LISA is again ranked 6th out of the 12 systems, as
illustrated in Figure 4.

6. DISCUSSION AND CONCLUSION

This paper has presented an application of LISA, a computa-
tional cognitive model of analogical reasoning, to the task of on-
tology alignment. To our knowledge, this is the first work to use
human cognitive analogy-making in the ontology alignment con-
text. This initial, exploratory application was intended to answer
the question whether ontology alignments are like analogies. Our
results are frequently better than the existing state-of-the-art. How-
ever, our approach does not yet dominate other approaches on all
tests, especially those with real ontologies for which human refer-
ence alignments are available (the OAEI 3xx tests).

In light of this, one could answer our research question in differ-
ent ways. Pessimistically, the performance of LISA might suggest
that ontology alignment is not like making analogies. If it was,
LISA should perform better, especially on the OAEI 3xx set of
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Figure 4: Mean F-scores across all tests, comparing for LISA
with systems that participated in the 2010 OAEI contest.

tests. However, given that other cognitive models of analogy re-
main to be explored, we are not yet ready to come to this general
conclusion. Perhaps LISA is not the correct model for analogi-
cal reasoning; after all, it has only been experimentally tested on
small problems. It may be the case that the size of the ontolo-
gies in the alignment problems is such that humans use a different
strategy than they would on small analogy problems. Hence, the
reference alignments generated by humans may be generated by
a different process than analogical reasoning. Thus, while LISA
may accurately represent analogical reasoning, the task of ontol-
ogy alignment is not based on analogies and thus the mismatch and
relatively low performance on our evaluation. Finally, given the
fact that LISA (and our ontology encoding) is highly configurable,
perhaps our initial, naive application is inappropriate for the ontol-
ogy alignment problem. This would suggest that significant further
improvements can be achieved with this approach in the future.

Our future work will focus on three different avenues for im-
provement. First, LISA is configurable, for example in terms of
the firing order of propositions, the grouping of propositions, etc.
Moreover, LISA offers the ability to fire one or more propositions
at the same time, as well as to reverse the driver and recipient
analogs. Thus, systematic experimental comparisons are required
to determine the optimal configuration of LISA for different align-
ment problems.

Second, the encoding of ontologies in LISA admits many design
decisions. For example, we have chosen the intuitive route via an
RDF representation of OWL ontologies and a more or less direct
mapping to LISA representation elements. Other encodings are
possible. For example, many of the OWL constructs that are now
encoded as semantic units may be represented as LISA objects in
their own right. This would strengthen the structure of the problem
representation, yet at the same time reduce the number of semantic
units by which activation progresses from driver to recipient. The
effect that such a change in encoding might have remains to be
explored in systematic experiments.

Third, while LISA has been demonstrably successful in explain-
ing human analogies in the psychology lab, other computational
models, such as SME, exist and remain to be explored, each with



Table 3: Scrambled tests’ F-scores, comparing LISA with systems that participated in the OAEI 2010 contest.
& > Q > *?& o KN KN R
ol T el e S | &S

N R vy [P ¢ | & N R N R
201 95 91 94 100 12 76 97 94 42 100 95 50
202 22 88 0 88 0 7 0 38 5 80 63 1
248 20 71 0 86 0 1 0 36 5 63 48 1
249 13 87 1 88 1 7 0 34 5 78 63 1
250 60 56 0 62 0 11 0 5 3 73 20 0
251 15 78 0 86 0 7 0 43 5 68 46 1
252 20 77 0 86 0 7 0 36 2 68 50 1
253 10 71 1 87 1 1 0 41 6 61 46 1
254 53 56 0 42 0 0 0 5 3 56 0 0
257 27 56 0 49 0 11 0 5 6 70 25 0
258 6 78 1 86 1 7 0 27 6 65 46 1
259 5 77 1 86 1 7 0 28 4 63 50 1
260 50 60 0 56 0 12 0 0 11 66 5 0
261 45 53 0 56 0 11 0 5 3 54 9 0
262 6 56 0 42 0 0 0 5 3 52 0 0
265 6 60 0 46 0 12 0 0 3 63 55 0
266 0 53 0 44 0 11 0 5 6 51 4 0

their own configuration space and encoding decisions.

Besides improving the performance of cognitive methods for on-
tology alignment using these approaches, work is also required to
investigate the effect of reasoning support. As OWL ontologies ad-
mit inferences over the subsumption hierarchy, it is possible to also
use inferred subsumption relationships in the ontology alignment
algorithm, in addition to those explicitly axiomatized in the ontol-
ogy. Furthermore, we intend to examine the scalability of LISA
to larger ontologies than the OAEI benchmark test cases. A for-
mal complexity analysis is complicated by the fact that LISA is
a connectionist architecture with a convergence-based iterative al-
gorithm, so that upper bounds to convergence must be developed,
instead of time-complexity results.

In conclusion, our research has not only opened up possibilities
for future work in the area, but has also contributed to a theoretical
foundation of ontology alignment in the psychology of analogical
reasoning. This can provide some guidance for the field of ontology
alignment in that results from the ongoing work in cognition may
be transferred to improve ontology alignment performance.
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APPENDIX

The LISA algorithm is described in Table 4. Knowledge is repre-
sented using propositions (P units”), sub-propositions (’SP units”),
predicate and object units, and semantic units as described in Sec-
tion 3. Each unit in a driver analog can have a mapping relationship
and mapping weight with units of the same type in the receiver ana-
log. These mapping relationships are dynamically created. Each
unit has an activation value and can receive and transmit “’input” to
update its activation and that of connected units. The follow para-
graphs describe central steps in the algorithm. For formal details,
the reader is referred to Appendix A in [16].

Step 2a: Propositions (P units) operate in either parent, child or
neutral mode. In parent mode, P units pass activation input to their
sub-propositions (SP units). In child mode, P pass activation input
to the SP they are part of. In neutral mode, P units pass activa-
tion input both upwards and downwards. Initially, P units in the
driver analog are in neutral mode, except those actively selected
into working memory (step 1), which are in parent mode. P units in
the receiver analog update their modes on the basis of their inputs
from SP units above and below and inputs from P units in the driver
(either in parent or child mode) via mapping connections.

Parent ifSPT — §pt 4 prarent _ pehild - ¢
m; = { Child  ifSPT — §pt 4 prarent _ pchild g
Neutral otherwise

Step 2b: Each SP unit consists of an excitor and an inhibitor
unit. Each inhibitor causes the corresponding excitor’s activation to
oscillate over time. In combination with strong SP-to-SP inhibition,
the inhibitors cause separate SPs to fire at different times.

In the driver analog, SP excitors receive excitatory input from
P units above (p), inhibitory input from other driver analog SPs
o ; €5) with a sensitivity s that decays from a maximum value
immediate after an SP fires, and inhibitory input from their own
inhibitors (). The net input is

8., € B
1+ NSP

where NSP is the number of SPs in the driver with activation > 0.2.
An SP inhibitor receives input only from the corresponding excitor.

P units in parent mode receive input from the excitors of the SP
units below with net input n = Zj ej, where e; is the activation
of the excitors of SP unit j. P units in child mode, predicate or ob-
ject units receive input from the excitor and the inhibitor of the SP
above with netinput n =} (e; — I;), where I; is the activation
of the inhibitor of SP unit j.

Step 2c: The global inhibitor becomes active whenever all SP
excitors in the driver analog have an activation below a certain
threshold. When active, it inhibits all units in the recipient analog
to inactivity.

n=14+p—

Table 4: LISA Algorithm from [16] (P = Proposition, SP = Sub-
proposition)
Repeat until convergence of mapping weights:

1. Select a set of P units of the driver analog ("phase set Ps”)

2. Repeatedly update the state of the network in discrete time
units £ = 1...220 x |SP|. For each step do:
(a) Update modes of all P units in recipient and driver

(b) Update inputs of all units in Ps (P, SP, predicate and ob-
ject units)

(c) Update global inhibitor

(d) Update inputs to all semantic units
(e) Update input to units in recipient
(f) Update activation of all units

(g) Create mapping connections

3. Update mapping weights

Step 2d: Semantic units receive weighted input from predicate
and object units in both the driver and receiver analog with the net
input computed as » ; ajwij where a; serves to normalize activa-
tion to between 0 and 1. Input from the receiver analog occurs only
after each SP in the driver has fired at least once.

Step 2e: Units in the recipient analog receive four inputs: within-
proposition excitatory input P, within-class inhibitory input C' (i.e.
SP-to-SP, object-to-object, etc.), out-of-proposition inhibitory in-
put O (i.e. P units inhibit SP units of other P units, and SP units
inhibit predicate and object units of other SP units), and both exci-
tatory and inhibitory input via the cross-analog mapping relation-
ships M. The net input is computed as

n=P+M—-C—n0 —nxl

Specific formulas for each of the these components for different
kinds of units are given in [16].

Step 2f: At the end of each iteration and after computation of
all excitatory and inhibitory input, all units update their activation
according to Aa = yn(1 — a) — da where +y is a growth rate and &
is a decay rate; n is the net input (excitatory minus inhibitory).

Step 2g: When the activation of a unit in the recipient analog
first exceeds 0.5, mapping connections are created between it and
units of the same type in the driver analog. These are important for
step 7 in the subsequent iteration.

Step 3: Each mapping weight w;; is updated, taking into ac-
count competing mapping hypotheses and ensuring a 1:1 mapping
constraint.



