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Abstract

We consider the problem of hypothesis testing in the situation

when the first hypothesis is simple and the second one is local one-

sided composite. We describe the choice of thresholds and the power

functions of Score-function test, General Likelihood Ratio test, Bayesian

tests and Wald test in the situation when the intensity function of in-

homogeneous Poisson process is smooth with respect to the parameter.

It is shown that almost all these tests are asymptotically uniformly

most powerful. The results of numerical simulations are presented.
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1 Introduction

The hypotheses testing theory is well developed branch of the mathematical
statistics [12]. The asymptotic approach allows to find satisfactory solutions
in many different statements. The simplest problems like the testing of two
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simple hypotheses have well known solution. Recall that if we fix the first
type error and seek the test which maximizes the power, then we obtain im-
mediately (by Neyman-Pearson Lemma) the most powerful test based on the
likelihood ratio statistic. The case of composite alternative is more difficult
to treat and here the asymptotic solution is available in the regular case. It
is possible, using, for example, the score-function test (SFT) to construct the
asymptotically (locally) most powerful test. Moreover, the General Likeli-
hood Ratio Test (GLRT) and the Wald test (WT), based on the maximum
likelihood estimator, are asymptotically most powerful in the same sense.
In the non regular cases the situation became much more complicate. First
of all there are different non regular (singular) situations and in all these
situations the choice of the asymptotically the best test is always an open
question.

This work is an attempt to study all these situations on the model of
inhomogeneous Poisson processes of intensity function λ (t) , 0 ≤ t ≤ τ . This
model is sufficiently simple to allow us to realize first the well known tests
in the regular case and to verify that for this model too the construction of
the asymptotically most powerful tests (SFT, GLRT, WT) is possible. In
the next paper we study the behavior of these tests in the case of singular
statistical models. The “evolution of singularity” of the intensity function is
the following: regular (finite Fisher information, this paper), continuous but
not differentiable (cusp-type singularity), discontinuous intensity function
[4]. In all three cases we describe analytically the tests. This means that
we describe the test statistics, the choice of thresholds and the form of the
power functions for local alternatives.

Note that the notion of local alternative is different following the type of
regularity-singularity. In the regular case and the simple hypothesis ϑ = ϑ1
against one-sided alternative ϑ > ϑ1 , the local alternative can be ϑ =
ϑ1 +

u√
n
, u > 0. In the cusp-type singularity, the local alternative is ϑ =

ϑ1 +
u

n
1

2κ+1

, u > 0 and in the case of discontinuous intensity function we put

ϑ = ϑ1+
u
n
, u > 0. In all these problems the most interesting for us question is

the comparison of the power functions of different tests. In singular situations
these comparison is done with the help of numerical simulations. The main
results concern the limit likelihood ratios in non-regular situations and the
same limits have likelihood ratios in the many other models of observations
(i.i.d., time series, diffusion processes etc.) see, e.g., [6], [2]. Therefore the
presented here results are of more universal nature and are valid for any other
model (non Poissonian) with the same limit likelihood ratios.

We recall that X = (Xt, t ≥ 0) ; X0 = 0 is an inhomogeneous Poisson
process with intensity function λ (t), if X0 = 0, the increments of X on
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disjoint intervals are independent and distributed according to the Poisson
law

P {Xt −Xs = k} =

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.

All statistical problems considered in this work concerned the intensity func-
tions depending on some one-dimensional parameter, i.e., λ (t) = λ (ϑ, t).
The basic hypothesis is always the same : ϑ = ϑ1 and the alternative ϑ > ϑ1.
The diversity of the statements corresponds to the different types of regu-
larity of the function λ (ϑ, t). The case of unknown period ϑ needs a special
study.

The hypotheses testing problems (or closely related properties of the like-
lihood ratio) for inhomogeneous Poisson processes were studied by many au-
thors, see, for example, Brown [1], Kutoyants [7], Léger and Wolfson [11],
Liese and Lorz [14], Sung et al. [16], Fazli and Kutoyants [5], Dachian and
Kutoyants [3] and the references therein. Note that the results of this study
will appear later in the work [9].

2 Auxiliary results

For simplicity of exposition we consider the model of n independent ob-
servations of inhomogeneous Poisson processes Xn = (X1, . . . , Xn), where
Xj = {Xj (t) , 0 ≤ t ≤ τ}. We have

EϑXj (t) = Λ (ϑ, t) =

∫ t

0

λ (ϑ, s) ds.

Here ϑ is one-dimensional parameter and Eϑ is the mathematical expectation,
when the true value is ϑ ∈ Θ = [ϑ1, b], b < ∞. Note that this model is
equivalent to another one of observation of inhomogeneous Poisson processes
XT = [Xt, 0 ≤ t ≤ T ] with periodic intensity λ(ϑ, t + jτ) = λ(ϑ, t), j =
1, 2, . . . , n and T = nτ (the period τ is supposed to be known). Indeed, if we
put Xj (s) = Xs+τ(j−1)−Xτ(j−1), s ∈ [0, τ ] , j = 1, . . . , n, then the observation
of one trajectory XT is equivalent to n independent observations X1, . . . , Xn.

Therefore, we suppose that we observe n copies of inhomogeneous Poisson
process Xn = (X1, . . . , Xn) with the intensity function λ (ϑ, t) , 0 ≤ t ≤ τ .
The intensity function is supposed to be separated from zero on [0, τ ], the
measures corresponding to Poisson processes with the different values of ϑ
are equivalent. The likelihood function is defined by the equality (see Liese
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[13])

L(ϑ,Xn) = exp

{
n∑

j=1

∫ τ

0

lnλ (ϑ, t) dXj (t)− n

∫ τ

0

[λ (ϑ, t)− 1] dt

}

and the likelihood ratio fnction is

L (ϑ, ϑ1, X
n) = L (ϑ,Xn) /L (ϑ1, X

n) .

We have to test the following two hypotheses

H1 : ϑ = ϑ1,

H2 : ϑ > ϑ1.

We define a test ψ̄n = ψ̄n (X
n) as the probability to accept the hypothesis

H2. The power function is β
(
ψ̄n, ϑ

)
= Eϑψ̄n(X

n), ϑ > ϑ1.
Denote by Kε the class of test functions ψ̄n of asymptotic size ε ∈ [0, 1]

Kε =
{
ψ̄n : lim

n→∞
Eϑ1ψ̄n (X

n) = ε
}
.

Our goal is to construct the tests which belong to this class and have some
proprieties of asymptotic optimality. The comparison of tests can be done
by comparison of their power functions. It is known that for any reasonable
test and for any fixed alternative the power function tends to 1. To avoid
this difficulty as usual we consider close or contigual alternatives. Let us
put ϑ = ϑ1 + ϕnu, where u ∈ U+

n = [0, ϕ−1
n (b− ϑ1)], ϕn = ϕn (ϑ1) > 0

and ϕn → 0. The rate of convergence ϕn → 0 is such that the normalized
likelihood ratio

Zn (u) =
L (ϑ1 + ϕnu,X

n)

L (ϑ1, Xn)
, u ≥ 0

has non degenerate limit. In the regular case this rate is usually ϕn = n−1/2.
Then the initial problem of hypotheses testing can be rewritten as

H1 : u = 0,

H2 : u > 0.

The corresponding power function of the test ψ̄n is denoted as

βn
(
ψ̄n, u

)
= Eϑ1+ϕnu ψ̄n, u > 0.

We introduce the asymptotic optimality of tests with the help of the
following definition (see [15]).
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Definition 1. We call a test ψ⋆n (X
n) ∈ Kε locally asymptotically uniformly

most powerful (LAUMP) in the class Kε if its power function βn (ψ
⋆
n, u) sat-

isfies the relation: for any test ψ̄n (X
n) ∈ Kε and any K > 0 we have

lim
n→∞

inf
0<u≤K

[
βn (ψ

⋆
n, u)− βn

(
ψ̄n, u

)]
≥ 0. (1)

Below we show that in the regular case many tests can be LAUMP. In
the next paper [4], where we consider some singular situations the defini-
tion of the reasonable asymptotic optimality of tests is an open question.
That is why to compare the same tests we turn to the methods of numerical
simulations.

We assume that the following Regularity conditions are satisfied.

Smoothness. The intensity function λ (ϑ, t) , 0 ≤ t ≤ τ of the observed
Poisson process Xn is two times continuously differentiable w.r.t. ϑ, sepa-
rated from zero uniformly on ϑ ≥ ϑ1 and the Fisher information is positive:

I (ϑ) =

∫ τ

0

λ̇ (ϑ, t)2

λ (ϑ, t)
dt, inf

ϑ∈Θ
I (ϑ) > 0.

Distinguishability. For any ν > 0

inf
ϑ∗∈Θ

inf
|ϑ−ϑ∗|>ν

∥∥∥
√
λ (ϑ, ·)−

√
λ (ϑ1, ·)

∥∥∥
L2
> 0.

Here point means derivative w.r.t. ϑ and

‖h (·)‖2L2 =

∫ τ

0

h (t)2 dt.

In this case the natural normalization function is ϕn = n−1/2 and the change
of variables is ϑ = ϑ1 +

u√
n
. The key propriety of the statistical problems in

regular case is the local asymptotic normality (LAN) of the family of measures
of corresponding inhomogeneous Poisson processes at the point ϑ1.

This means that the normalized likelihood-ratio

Z̃n (u) = L

(
ϑ1 +

u√
n
, ϑ1, X

n

)

admits the representation

Z̃n (u) = exp

{
u∆̃n (ϑ1, X

n)− u2

2
I (ϑ1) + rn

}
,
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where by the central limit theorem, we have

∆̃n (ϑ1, X
n) =

1√
n

n∑

j=1

∫ τ

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[dXj (t)− λ (ϑ1, t) dt] =⇒ ∆̃

with ∆̃ ∼ N (0, I (ϑ1)) and rn = rn (ϑ1, u,X
n)

p−→ 0. Moreover, the conver-
gence is uniform on 0 ≤ u < K for any K > 0.

Let us recall how this representation was obtained [7]. Denoting λ0 =

λ (ϑ1, t) and λu = λ
(
ϑ1 +

u√
n
, t
)
, with the help of the Taylor series expansion

we can write

lnZn (u) =
n∑

j=1

∫ τ

0

ln
λu
λ0

[dXj (t)− λ0dt]− n

∫ τ

0

[
λu − λ0 − λ0 ln

λu
λ0

]
dt

=
u√
n

n∑

j=1

∫ τ

0

λ̇0
λ0

[dXj (t)− λ0dt]−
u2

2

∫ τ

0

λ̇20
λ0

dt+ rn

= u∆̃n (ϑ1, X
n)− u2

2
I (ϑ1) + rn =⇒ ∆̃− u2

2
I (ϑ1) .

Here and in the sequel we choose the reparametrization which leads to
universal in some sense limits. For example, in regular case we can put

ϕn = ϕn (ϑ1) =
1√

nI (ϑ1)
, u ∈ U

+
n =

[
0, ϕ−1

n (b− ϑ1)
]
.

With such change of variables the

∆n (ϑ1, X
n) =

1√
I (ϑ1)

∆̃n =⇒ ∆ ∼ N (0, 1) .

and also

Zn (u) = L (ϑ1 + uϕn, ϑ1, X
n) = exp

{
u∆n (ϑ1, X

n)− u2

2
+ rn

}
.

The LAN families have many remarcable properties and some of them we
will use below.

Let us remind here one general result which is valid for the wider class of
distributions. We suppose only that the normalized likelihood-ratio Zn (u)
converges to some limit Z (u) in distribution. Such situations we have in
all our regular and singular problems. This property allow us to calculate
the distribution under local alternative if we know the distribution under the
null hypothesis. Moreover, it gives an efficient algorithm for the calculation
of the power functions in the numerical simulations.
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Lemma 1. (Le Cam’s Third Lemma) Suppose that (Zn (u) , Yn) converges

in distribution under measure P
(n)
ϑ1

:

(Zn (u) , Yn) =⇒ (Z (u) , Y ) .

Then for any bounded continuous function g (·)

Eϑ1+ϕnu [g (Yn)] −→ E [Z (u) g (Y )] .

For the proof see [10].
In the regular case the limit of Zn (u) is the random function

Z (u) = exp

{
u∆− u2

2

}
, u ≥ 0,

i.e., we have (for any fixed u > 0) the convergence

Zn (u) =⇒ Z (u) .

According to this lemma we can write for characteristic function of ∆n =
∆n (ϑ1, X

n) the following relations

Eϑ1+ϕnue
iµ∆n → EZ (u) eiµu∆ = e−

u2

2 Eeu∆+iµ∆ = eiµu−
µ2

2 = Eeiµ(u+∆),

which yields the distribution of the statistics ∆n under alternative

∆n (ϑ1, X
n) =⇒ u+∆ ∼ N (u, 1) .

3 Weak convergence

All tests which we study are functionals of the normalized likelihood-ratio
Zn (·). For each test we have to evaluate two quantities. The first one is
the threshold which provides asymptotically the guaranteed type one error
and the second is the power function, which has to be calculated under alter-
native. Our study is based on the weak convergence of the likelihood ratio
Zn (·) under hypothesis (to calculate the threshold) and under alternative (to
calculate the limit power function). Note that the test statistics of all tests
are continuous functionals of Zn (·), that is why we verify the weak conver-
gence of Zn (·) under hypothesis and under alternative and these allow us to
obtain the limit distributions of the statistics.

The observed inhomogeneous Poisson processes Xn has the distribution
P

(n)
ϑ induced on the measurable space of its realizations. The measures of the

7



family
{
P

(n)
ϑ , ϑ ≥ ϑ1

}
are equivalent. Introduce the normalized likelihood

ratio

lnZn (u) =

n∑

j=1

∫ τ

0

ln
λ (ϑ+ ϕn (ϑ) u, t)

λ (ϑ, y)
dXj (t)

− n

∫ τ

0

[λ (ϑ+ ϕn (ϑ) u, t)− λ (ϑ, t)] dt,

where u ∈ Un = [ϕ−1
n (ϑ1 − ϑ) , ϕ−1

n (b− ϑ)]. We define Zn (u) lineary de-
creasing to zero on the intervals [ϕ−1

n (b− ϑ) , ϕ−1
n (b− ϑ) + 1] and similary

on the interval [ϕ−1
n (ϑ1 − ϑ)− 1, ϕ−1

n (ϑ1 − ϑ)]. Outside we put Zn (u) ≡ 0.
Now the random function Zn (u) is defined on R and belongs to the space
C0 (R) of continuous on R functions such that z (u) → 0 as |u| → ∞. In-
troduce the uniform metric in this space and denote by B the corresponding
borelian sigma-algebra. The next theorem decribes the weak convergence
in the measurable space (C0 (R) ,B) of the random processes Zn (v) , v ∈ R
under alternative ϑ = ϑ1 + ϕnu∗ with fixed u∗ > 0 to the random process

Z (v, u∗) = exp
{
v∆+ vu∗ − u2

2

}
, v ∈ R. Note that in [8] this theorem was

proved for a “fixed true value ϑ”. In the hypotheses testing problems consid-
ered here we need this convergence the first time (under hypothesis H0) for
fixed ϑ = ϑ1 (u∗ = 0) and the second time for the alternative with “moving
true value” ϑu∗ = ϑ1 + ϕnu∗.

Theorem 1. Let us suppose that the Regularity conditions are fulfilled. Then
we have the weak convergence of the random process Zn = (Zn (v) , v ≥ 0) to
Z = (Z (v, u∗) , v ≥ 0).

According to [6, Theorem 1.10.1] to prove this theorem we have to verify
the following properties of the process Zn (·).

1. The finite-dimensional distributions of Zn (·) converge to the finite-
dimensional distributions of Z (·, u∗).

2. The inequality

Eϑu∗

∣∣∣Z
1
2
n (v2)− Z

1
2
n (v1)

∣∣∣
2

≤ C |v2 − v1|2

holds for every v1, v2 ∈ U
+
n and some constant C > 0.

3. There exists d > 0, such that for some n0 > 0 and all n ≥ n0 we have
the estimate

Pϑu∗

{
Zn(v) > e−d|v−u∗|

2
}
≤ e−d|v−u∗|

2

.
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Lemma 2. The finite-dimensional distributions of Zn (·) converge to the
finite-dimensional distributions of Z (·, u∗).

Let us write the random function Zn (v) under alternative ϑ = ϑ1 + u∗ϕn
as follows:

Zn (v) = L (ϑ1 + vϕn, ϑ1, X
n)

= L (ϑ1 + u∗ϕn, ϑ1, X
n) L (ϑ1 + vϕn, ϑ1 + u∗ϕn, X

n).

For the first term we have

L (ϑ1 + u∗ϕn, ϑ1, X
n) =⇒ exp

{
u∗∆+

u2∗
2

}
.

Therefore we only need to check the conditions 1-3 for the term

Zn (v, u∗) = L (ϑ1 + vϕn, ϑ1 + u∗ϕn, X
n) .

The limit process for Zn (v, u∗) is

Z (v, u∗) = exp

{
(v − u∗)∆− (v − u∗)

2

2

}
, v ∈ R.

Hence

Zn (v) =⇒ Z (v, u∗) = exp

{
v∆+ vu∗ −

v2

2

}
.

For the details see, e.g., [8] in the similar situation.

Lemma 3. Let the Regularity conditions be fulfilled. Then there exists a
constant C > 0, such that

Eϑ1+u∗ϕn

∣∣Z1/2
n (v1, u∗)− Z1/2

n (v2, u∗)
∣∣2 ≤ C |v1 − v2|2

for all v1, v2 ∈ U
+
n and sufficiently large values of n.

Proof. According to [8, Lemma 1.1.5], we have, for v1 > v2 > 0 (the other
cases can be treated in the similar way),

Eϑ1+ϕnu∗

∣∣Z1/2
n (v1, u∗)− Z1/2

n (v2, u∗)
∣∣2

≤ n

∫ τ

0

(
λ1/2(ϑ1 + v1ϕn, t)

λ1/2(ϑ1 + u∗ϕn, t)
− λ1/2(ϑ1 + v2ϕn, t)

λ1/2(ϑ1 + u∗ϕn, t)

)2

λ(ϑ1 + u∗ϕn, t) dt

= n

∫ τ

0

(
λ1/2(ϑ1 + v1ϕn, t)− λ1/2(ϑ1 + v2ϕn, t)

)2
dt

=
n

4
ϕ2
n (v2 − v1)

2

∫ τ

0

λ̇
(
ϑ̃v, t

)2

λ (ϑ1, t)
dt ≤ C (v2 − v1)

2 .
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Lemma 4. Let the Regularity conditions be fulfilled. Then there exists a
constant d > 0, such that

Pϑ1+u∗ϕn

{
Zn(v) > e−d|v−u∗|

2
}
≤ e−d|v−u∗|

2

(2)

for all u∗, v ∈ U
+
n and sufficiently large value of n.

Proof. Using the Markov inequality, we get

Pϑ1+u∗ϕn

{
Zn(v) > e−d|v−u∗|

2
}
≤ e

1
2
d|v−u∗|2Eϑ1+u∗ϕn

Z1/2
n (v).

According to [8, Lemma 1.1.5], we have,

Eϑ1+u∗ϕn
Z1/2
n (v, u∗)

= exp
{
−1

2

∫ nτ

0

( λ1/2(ϑ1 + vϕn, t)

λ1/2(ϑ1 + u∗ϕn, t)
− 1

)2
λ(ϑ1 + u∗ϕn, t) dt

}

= exp

{
−1

2
n

∫ τ

0

(
λ1/2

(
ϑ1 + vϕn, t

)
− λ1/2(ϑ1 + u∗ϕn, t)

)2

dt

}
,

Using the Taylor’s expansion we get

λ1/2
(
ϑ1 + vϕn, t

)
= λ1/2

(
ϑ1 + u∗ϕn, t

)
+
ϕn(v − u∗)

2

λ̇
(
ϑ̃, t

)

λ1/2
(
ϑ̃, t

) .

Hence, for sufficiently large n providing |v − u∗|ϕn ≤ γ we have

I
(
ϑ̃
)
≥ 1

2
I (ϑ1), and we obtain

Eϑ1+u∗ϕn
Z1/2
n (v, u∗) ≤ exp

{
− 1

8I (ϑ1)
|v − u∗|2 I

(
ϑ̃
)}

≤ exp

{
−|v − u∗|2

16

}
.

(3)
By Distinguishability condition, we can write

g(γ) = inf
ϕn|v−u|>γ

∫ τ

0

(
λ1/2

(
ϑ1 + vϕn, t

)
− λ1/2(ϑ1 + u∗ϕn, t)

)2

dt > 0

and hence
∫ τ

0

(
λ1/2

(
ϑ1 + vϕn, t

)
− λ1/2(ϑ1 + u∗ϕn, t)

)2

dt ≥ g(γ) ≥ g(γ)
ϕ2
n(u∗ − v)2

(b− ϑ1)
2
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and

Eϑ1+u∗ϕn
Z1/2
n (v) ≤ exp

{
− g(γ) |v − u∗|2

2I (ϑ1) (b− ϑ1)
2

}
. (4)

Let us put

d =
2

3
min

(
1

16
,

g(γ)

2I (ϑ1) (b− ϑ1)
2

)
.

Then the estimate (2) follows from (3) and (4).

The weak convergence of Zn (·, u∗) now follows from [6, Theorem 1.10.1].

4 Hypothesis testing

We consider the construction of score function test, general likelihood ratio
test, Wald test and two bayesian tests. For all tests we describe the choice of
the thresholds and evaluate the limit power functions for local alternatives.

4.1 Score function test

Let us introduce score function test (SFT)

ψ̂n (X
n) = 1I{∆n(ϑ1,Xn)>zε},

where zε is the (1− ε)-quantile of the standard normal distribution N (0, 1)
and the statistic ∆n (ϑ1, X

n) is

∆n (ϑ1, X
n) =

1√
nI (ϑ1)

n∑

j=1

∫ τ

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[dXj (t)− λ (ϑ1, t) dt] .

The SFT has the following properties.

Proposition 1. The test ψ̂n (X
n) ∈ Kε and is LAUMP. Its power function

βn

(
ψ̂n, u

)
−→ β⋆ (u∗) = P (∆ > zε − u∗) , ∆ ∼ N (0, 1) . (5)

Proof. The property ψ̂n (X
n) ∈ Kε follows immediately from the asymptotic

normality
∆n (ϑ1, X

n) =⇒ ∆.

Further, we have (under alternative ϑu = ϑ1 + u∗ϕn) the convergence

βn

(
ψ̂n, u∗

)
−→ P (∆ + u∗ > zε) = β⋆ (u∗) .
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This follows from the Third Le Cam’s Lemma and can be shown directly
as follows. Suppose the the intensity of the observed Poisson process is
λ (ϑ1 + u∗ϕn, t), then we can write

∆n (ϑ1, X
n) =

1√
nI (ϑ1)

n∑

j=1

∫ τ

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[dXj (t)− λ (ϑ1 + u∗ϕn, t) dt]

+
1√

nI (ϑ1)

n∑

j=1

∫ τ

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[λ (ϑ1 + u∗ϕn, t)− λ (ϑ1, t)] dt

= ∆∗
n (ϑ1, X

n) +
u∗

nI (ϑ1)

n∑

j=1

∫ τ

0

λ̇ (ϑ1, t)
2

λ (ϑ1, t)
dt+ o (1)

= ∆∗
n (ϑ1, X

n) + u∗ + o (1) =⇒ ∆+ u∗.

To show that the SFT is LAUMP we verify that the limit of its power
function coincides with the limit of the power of likelihood ratio (Neyman-
Person) test (LRT) ψ⋆n (X

n). Remind that the LRT is the most powerful
for each fixed (simple) alternative. Of course, the LRT is not indeed a test
because for its construction we use the knowledge of the value of parameter
u∗ under alternative.

The LRT is defined by

ψ⋆n (X
n) = 1I{Zn(u∗)>dε} + qε1I{Zn(u∗)=dε},

where the threshold dε and probability qε are chosen from the condition
ψ⋆n (X

n) ∈ Kε, i.e.,

Pϑ1 {Zn (u∗) > dε}+ qεPϑ1 {Zn (u∗) = dε} = ε.

Of course, we can put qε = 0 because the limit random variable Z (u∗) has
continuous distribution function.

The threshold dε can be found as follows. The LAN of the family of
measures at the point ϑ1 allows us to write

Pϑ1 (Zn (u∗) > dε) = Pϑ1

(
u∗∆n (ϑ1, X

n)− u2∗
2

+ rn > ln dε

)

−→ P

(
u∗∆− u2∗

2
> ln dε

)
= P

(
∆ >

ln dε
u∗

+
u∗
2

)
= ε.

Hence we have

ln dε
u∗

+
u∗
2

= zε and dε = exp

{
u∗zε −

u2∗
2

}
.
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Therefore the test

ψ⋆n (X
n) = 1I{

Zn(u∗)>exp

{

u∗zε−u2
∗

2

}}

belongs to Kε.
For the power function of this test we have (below ϑu∗ = ϑ1 + u∗ϕn)

βn (ψ
⋆
n, u∗) = Pϑu (Zn (u∗) > dε) = Pϑu (u∗∆n (ϑ1, X

n) + rn > u∗zε)

= Pϑu∗

(
∆n (ϑ1, X

n) +
rn
u∗

> zε

)
−→ P (∆ + u∗ > zε) = β⋆ (u∗) .

Therefore the limits of these two tests coincide and the score-function test is
asymptotically as good as the Neyman-Pearson optimal one. Note that the
limits are valid for any sequence of 0 ≤ u∗ ≤ K and for any K > 0 and we
can choose a sequence ûn ∈ [0, K] such that

sup
0≤u∗≤K

∣∣∣βn (ψ⋆n, u∗)− βn

(
ψ̂n, u∗

)∣∣∣ =
∣∣∣βn (ψ⋆n, ûn)− βn

(
ψ̂n, ûn

)∣∣∣ → 0

in obvious notations, which represents the asymptotic coincidence of two
tests.

4.2 GLRT and Wald test

Let us remind the definition of the MLE ϑ̂n:

L
(
ϑ̂n, ϑ1, X

n
)
= sup

ϑ∈[ϑ1,b]
L (ϑ, ϑ1, X

n) ,

where the likelihood-ratio function is

L (ϑ, ϑ1, X
n) = exp

{
n∑

j=1

∫ τ

0

ln
λ (ϑ, t)

λ (ϑ1, t)
dXj (t)

−n
∫ τ

0

[λ (ϑ, t)− λ (ϑ1, t)] dt

}
, ϑ ∈ [ϑ1, b] .

The GLRT is

ψ̄n (X
n) = 1I{Q(Xn)>hε}, hε = exp{z2ε/2},

where
Q (Xn) = sup

ϑ∈[ϑ1,b]
L (ϑ, ϑ1, X

n) = L
(
ϑ̂n, ϑ1, X

n
)
.

13



The Wald’s test is based on the maximum likelihood estimator ϑ̂n and is
defined as follows

ψon (X
n) = 1I{ϕ−1

n (ϑ̂n−ϑ1)>zε}.

The properties of these tests are given in the following Proposition.

Proposition 2. The tests ψ̄n (X
n) , ψon (X

n) ∈ Kε, their power functions
β(ψ̄n, u) and β (ψ

o
n, u) converge to β

⋆ (u) and therefore the tests are LAUMP.

Proof. Let us put ϑ = ϑ1 + vϕn and denote v̂n = ϕ−1
n

(
ϑ̂n − ϑ1

)
. We have

Pϑ1

{
sup

ϑ∈[ϑ1,b]
L (ϑ, ϑ1, X

n) > hε

}
= Pϑ1

{
sup
v∈U+

n

L (ϑ1 + vϕn, ϑ1, X
n) > hε

}

= Pϑ1

{
sup
v∈U+

n

Zn (v) > hε

}
.

The weak convergence of the random function Zn (v) , v ∈ U
+
n follows from

the Theorem 1, where we have to put u∗ = 0.
Therefore, we have the weak convergence of the measures of the random

processes
{
Z

1/2
n (v) , v ≥ 0

}
to the measure of the process

{
Z1/2 (v) , v ≥ 0

}

at the point ϑ1. This provides us the convergence of the distributions of all
continuous in uniform metric functionals. Hence

Q (Xn) = sup
v>0

Zn (v) =⇒ sup
v>0

Z (v)

= sup
v>0

exp

{
v∆− v2

2

}
= exp

{
∆2

2
1I{∆≥0}

}
.

This provides the convergence (we suppose that ε ≤ 1
2
)

Eϑ1ψ̂n (X
n) −→ P {∆ > zε} = ε.

Remind that for ε < 1
2

P
{
∆1I{∆≥0} > zε

}
= P {∆ > zε} = ε.

Using the same weak convergence we obtain the asymptotic normality of
the MLE (see [6] or [8])

v̂n =
ϑ̂n − ϑ1
ϕn

=⇒ v̂ = ∆1I{∆≥0}.
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The limit behavior of the power functions we study under alternative
ϑu∗ = ϑ1 + u∗ϕn. Let us fix u∗ > 0.

We have the weak convergence of the likelihood ratio process under al-
ternative too and therefore we can write

sup
v>0

Zn (v) = sup
v>0

L (ϑ1 + vϕn, X
n)

L (ϑ1, Xn)
=
L (ϑu∗ , X

n)

L (ϑ1, Xn)
sup
v>0

L (ϑ1 + vϕn, X
n)

L (ϑu∗ , X
n)

=
L (ϑu∗ , X

n)

L (ϑ1, Xn)
sup
v>0

L (ϑu∗ + (v − u∗)ϕn, X
n)

L (ϑu∗X
n)

,

where we followed the same lines as in the proof of the Lemma 2. Note that
(
L (ϑu∗ , X

n)

L (ϑ1, Xn)

)−1

=
L (ϑu∗ − u∗ϕn, X

n)

L (ϑu∗ , X
n)

⇒ Z(−u∗) = exp

{
−u∗∆− u∗

2

2

}

and

L (ϑu∗ + (v − u∗)ϕn, X
n)

L (ϑu∗ , X
n)

⇒ exp

{
(v − u∗)∆− (v − u∗)

2

2

}
.

Hence we obtain

sup
v>0

Z (v) → sup
v>0

Z (v, u∗) = sup
v>0

exp

{
v∆− (v2 − 2vu∗)

2

}
.

Therefore,

β (ψon, u∗) → P
{
(∆ + u∗) 1I{∆+u∗≥0} > zε

}
= P {max [∆ + u∗, 0] > zε}

= P {max [∆, −u∗] > zε − u∗} 1I{zε≥u∗}
+ 1I{zε<u∗}

[
P {∆ < −u∗} 1I{zε−u∗<−u∗} +P {∆ > zε − u∗, ∆ > −u∗}

]

= P {∆ > zε − u∗} = β⋆ (u∗) .

Similarly we have

P
(n)
ϑu∗

{Q (Xn) > hε} −→ Pϑ1

{
(∆ + u∗)

2 1I{∆+u∗≥0} > z2ε
}

= P {∆ > zε − u∗} = β⋆ (u∗) .

Therefore the tests are LAUMP.

This asymptotic equivalence and optimality of these tests is a well known
property of the tests in regular statistical experiences (see, e.g. [12], [9]).
We present these properties of the tests because we have to compare the
asymmptotics of these tests in regular and singular statistical models (see
[4]). At particularly, we will see that the asymptotic properties of these tests
in non regular situations will be quite different.
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4.3 Bayesian tests

Suppose now that the unknown parameter ϑ is a random variable with a
priori density p (θ), θ ∈ [ϑ1, b]. Here p (·) is a known continuous function
satisfying condition p (ϑ1) > 0. We consider two approach. The first one is
based on the bayesian estimator and the second on the averaged likelihood
ratio function.

Let us consider the Wald type test but based on bayesian estimator ϑ̃n

ψ̃n (X
n) = 1I{ϕ−1

n (ϑ̃n−ϑ1)>gε}.

Remind that the BE for quadratic loss function is

ϑ̃n =

∫ b

ϑ1

θ p (θ|Xn) dθ =

∫ b
ϑ1
θ p (θ)L (θ, ϑ1, X

n) dθ
∫ b
ϑ1
p (θ)L (θ, ϑ1, Xn) dθ

.

Let us change the variables in this integrals θ = ϑ1 + vϕn, then we obtain
the relation

ϑ̃n − ϑ1
ϕn

=

∫
U
+
n
vp (ϑ1 + vϕn)Zn (v) dv∫

U
+
n
p (ϑ1 + vϕn)Zn (v) dv

.

The properties of Zn (·) verified in the proof of the Theorem 1 allow to prove
the following convergence in distribution (see [6] or [8])

ϑ̃n − ϑ1
ϕn

=⇒ũ =

∫∞
0
vZ (v) dv∫∞

0
Z (v) dv

=
e∆

2/2
∫∞
0

(v −∆) exp
{
− (v−∆)2

2

}
dv

e∆2/2
∫∞
0

exp
{
− (v−∆)2

2

}
dv

+∆

=
− exp

{
− (v−∆)2

2

} ∣∣∣
+∞

v=0√
2π 1√

2π

∫∞
0

exp
{
− (v−∆)2

2

}
dv

+∆

=
exp

{
−∆2

2

}

√
2π (1− F (−∆))

+ ∆ =
f (∆)

F (∆)
+ ∆,

where f (·) and F (·) are the density and distribution function of the standard
normal distribution. The similar calculation under alternatives allows us to
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write the limit power function of ψ̃n as follows.

β
(
ψ̃n, u

)
= Pϑ1+uϕn

{
ϕ−1
n

(
ϑ̃n − ϑu

)
+ u > gε

}

−→ Pu

{∫∞
−u vZ (v) dv∫∞
−u Z (v) dv

+ u > gε

}

= Pu





exp

{
− (∆+u)2

2

}

√
2πF (∆ + u)

+ ∆ + u > gε






= Pu

{
f (∆ + u)

F (∆ + u)
+ ∆ + u > gε

}
.

Another possibility in bayesian approach is to define the test as the test
with the minimal mean error. Denote α

(
ψ̄n, θ

)
= 1− β

(
ψ̄n, θ

)
the type two

error under alternative and introduce the mean error

α
(
ψ̄n

)
=

∫ b

ϑ1

α
(
ψ̄n, θ

)
p (θ) dθ.

The bayesian test ψ̃n (X
n) is defined as the test which minimizes the mean

error
α
(
ψ̃n

)
= inf

ψ̄n∈Kε

α
(
ψ̄n

)
.

The integral we can write as follows

∫ b

ϑ1

(
1− Eθψ̄n (X

n)
)
p (θ) dθ =

∫ b

ϑ1

∫ (
1− ψ̄n (x

n)
)
dPθ p (θ) dθ

=

∫ (
1− ψ̄n (x

n)
)
dP̃ = Ẽ

(
1− ψ̄n (X

n)
)
,

where we denoted Pθ the distribution of the sample Xn and

P̃ (Xn ∈ A) =

∫ b

ϑ1

Pθ (X
n ∈ A) p (θ) dθ.

The average power β
(
ψ̃n

)
= Ẽ(n) ψ̄n (X

n) is the same as if we have two sim-

ple hypotheses. Under H1 we observe a Poisson process of intensity function
λ (ϑ1, ·), and under alternative H2 the observed point process has random
intensity and its measure is P̃. This process is a mixture

(
according to the

density p(θ)
)
of inhomogeneous Poisson processes with intensities λ (θ, ·),

17



θ ∈ [ϑ1, b]. This means that we have two simple hypotheses and the most
powerful test by Neyman-Pearson lemma is of the form

ψ̃n = 1I{L̃(Xn)>k̃ε}, Eϑ1ψ̃n (X
n) = ε,

where the likelihood ratio

L̃ (Xn) =
dP̃

dPϑ1

(Xn) =

∫ b

ϑ1

dPθ

dPϑ1

(Xn) p (θ) dθ.

To study this test under hypothesis we change the variables

L̃ (Xn) =

∫ b

ϑ1

L (θ, ϑ1, X
n) p (θ) dθ = ϕn

∫ ϕ−1
n (b−ϑ1)

0

Zn (v) p (ϑ1 + vϕn) dv.

The limit of the last integral was already described above and this allow us
to write

Rn (X
n) =

L̃ (Xn)

p (ϑ1)ϕn
=

1

p (ϑ1)

∫ ϕ−1
n (b−ϑ1)

0

ev∆n− v2

2
+rn p (ϑ1 + vϕn) dv

=⇒
∫ ∞

0

ev∆− v2

2 dv = e
∆2

2

∫ ∞

−∆

e−
y2

2 dy =
√
2π e

∆2

2 (1− F (−∆)) =
F (∆)

f (∆)
,

where F (·) and f (·) are the distribution function and density of the standard
gaussian random variable ∆. Hence if we take kε as solution of the equation

P

{
F (∆)

f (∆)
> kε

}
= ε, (6)

then the test ψ̃n (X
n) = 1I{Rn>kε} belongs to Kε. The similar calculation

provides us the limit power function

Pϑu∗ {Rn > kε} −→ P

{
F (∆ + u∗)

f (∆ + u∗)
> kε

}
.

5 Simulations

Below we present the results of numerical simulations of the power functions
of the tests. We observe n independent realizations Xj = {Xj(t), t ∈ [0, 3]};
j = 1, ..., n of inhomogeneous Poisson process of intensity function

λ (ϑ, t) = 3 cos2(ϑt) + 1, 0 ≤ t ≤ 3, ϑ ∈ [3, 7) .
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where ϑ1 = 3. The Fisher information at the point ϑ1 is I (ϑ1) ≈ 19.82. Recall
that all tests (except bayesian tests) in regular case are LAUMP. Therefore
they have the same limit power function. Our goal is to study the power
functions of different tests for finite n.

For the normalized likelihood ratio Zn(u) we have the expression :

Zn(u) = exp

{
ϕn

n∑

j=1

∫ 3

0

ln
3 cos2 ((3 + uϕn) t) + 1

3 cos2 (3t) + 1
dXj (t)

− 3n

4 (3 + uϕn)
sin (6 (3 + uϕn)) +

n

4
sin(18)

}
,

where ϕn = (19.82n)−1/2.
The simulation of the observations allows us to obtain the power functions

presented on the following pictures.
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Figure 1: Power functions of GLRT and Wald’s test

The calculation of the numerical values of the power function of the SFT
was done as follows. We define a increasing sequence of u beginning at u = 0.
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Then for every u, we simulate N i.i.d observations of inhomogeneous Poisson
processes Yi = Xn,i, i = 1, ..., N with the intensity function λ (3 + uϕn, t) and
calculate the corresponding statistics ∆n,i(3, Yi), i = 1, ..., N . The empirical
frequency of acceptation of the alternative gives us the estimate of the power
function

βn(u) ≈
1

N

N∑

i=1

1I{∆n,i(3,Yi)>zε}.

We repeat this procedure for different values of u up to the valus of β∗(u)
close to 1.

In the calculation of the power function of the Bayesian test(BT1), we
take as the density a priori the uniform distribution p (ϑ) ∼ U([3, 7]). The
thresholds of the BT1 are obtained by simulating M = 105 r.v.’s. ∆i ∼
N (0, 1), i = 1, . . . ,M , calculating for each of them the quantity

f (∆i)

F (∆i)
+ ∆i, i = 1, . . . , 105

and taking (1− ε) 105-th greatest between them.

ε 0.01 0.05 0.10 0.2 0.4 0.5
gε 2.325 1.751 1.478 1.193 0.895 0.794

Table 1: The thresholds of the BT1.

Note that for the small values of n, under alternative, one can see that
the power function of SFT starts to decrease. This interesting fact can be
explain by the strongly non linear dependence of the likelihood ratio of the
parameter. The test statistics ∆n = ∆n (3, X

n) under alternative can be
written as follows

∆n = ϕn

n∑

j=1

∫ T

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[dXj(t)− λ (ϑ1 + uϕn, t) dt]

+

√
n

I (ϑ1)

∫ T

0

λ̇ (ϑ1, t)

λ (ϑ1, t)
[λ (ϑ1 + uϕn, t)− λ (ϑ1, t)] dt

= −3ϕn

n∑

j=1

∫ 3

0

t sin(6t)

3 cos2(3 t) + 1

[
dXj (t)−

(
3 cos2((3 + uϕn) t)+ 1

)
dt
]

+ 9

√
n

I (ϑ1)

∫ 3

0

t sin(6t)

3 cos2(3 t) + 1
×

[
cos2(3 t)− cos2 ((3 + uϕn ) t)

]
dt.
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Figure 2: Power functions of SFT and BT1 in regular case

The last integral in the r.h.s. of this equation for some values of u becomes
negative, and this leads to decreasing of the power function of SFT for the
value n = 10.
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