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Abstract

A model of Poissonian observation having a jump (change-point) in the intensity
function is considered. Two cases are studied. The first one corresponds to the
situation when the jump size converges to a non-zero limit, while in the second one
the limit is zero. The limiting likelihood ratios in these two cases are quite different.
In the first case, like in the case of a fixed jump size, the normalized likelihood ratio
converges to a log Poisson process. In the second case, the normalized likelihood
ratio converges to a log Wiener process, and so, the statistical problems of parameter
estimation and hypotheses testing are asymptotically equivalent in this case to the
well known problems of change-point estimation and testing for the model of a signal
in white Gaussian noise. The properties of the maximum likelihood and Bayesian
estimators, as well as those of the general likelihood ratio, Wald’s and Bayesian tests
are deduced form the convergence of normalized likelihood ratios. The convergence
of the moments of the estimators is also established. The obtained theoretical results
are illustrated by numerical simulations.
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1 Introduction

In regular statistical experiments, the limit of the normalized likelihood ratio is always
the same, because the families are LAN

(
see, for example, [11]

)
. In the case of non-

regular statistical models for Poisson processes, there exists a large diversity of limiting
likelihood ratio processes: change-point type models lead to a log Poisson process, “cusp”
type singularities provide a log fBm process, while in the models with 0-type or ∞-type
singularities the limit processes are more sophisticated

(
see, respectively, [13, 2, 4]

)
. Note

that in change-point type models for diffusion processes, and particularly in the model of
a discontinuous signal in white Gaussian noise (WGN), the limiting likelihood ratio is a
log Wiener process

(
see, for example, [11, 14]

)
. It is interesting to investigate the relations

between the different limit processes. This study was initiated in the recent works [3, 7].
The present work is a part of this investigation, since we study a change-point model with
variable jump size for Poissonian observations, and we obtain two different limits depending
on the way the jump size is varying.

More precisely, we consider two cases. The first one corresponds to the situation when
the jump size converges to a non-zero limit, while in the second one the limit is zero. The
limiting likelihood ratios in these two cases are quite different. In the first case, as one
could expect, the normalized likelihood ratio converges to a log Poisson process, just like
the case of a fixed jump size. In the second case, the normalized likelihood ratio converges
to a log Wiener process, that is, the statistical problems of parameter estimation and
hypotheses testing are asymptotically equivalent to the well known problems of change-
point estimation and testing for signal in WGN model. Let us note, that even if the
latter result may seem unexpected, it is quite natural in the light of the recent work [3] of
one of the authors, where a relation between the log Poisson and the log Wiener limiting
likelihood ratios was discovered.

Let us also mention that this situation is somewhat similar to what happens in the case
of multi-phase regression models, where the limiting likelihood ratio is a log compound
Poisson process in the case of a fixed jump size, while it is a log Wiener process in the case
of a variable jump size converging to zero

(
see, for example, [8] and the references therein

)
.

Note also, that the recent work [7] shades the light on the latter case, just as [3] do in our
case of Poissonian observations.

Note finally, that we show not only the convergence of normalized likelihood ratios, but
also the convergence of the moments of the estimators. This last convergence allows one,
for example, to approximate the limiting mean square errors of the maximum likelihood
and Bayesian estimators in the case of Poisson observations by the well known limiting
mean square errors of these estimators calculated for signal in WGN model.

The paper is organized as follows. In Section 2 we describe the model of observations.
In Section 3 we study the asymptotic behavior of the likelihood ratio. In Section 4, using
the convergence of normalized likelihood ratio obtained in Section 3, we study the problem
of parameter estimation. Similarly, in Section 5 we study the problem of hypothesis testing
and illustrate the results by numerical simulations. Finally, Section 6 contains the proofs
of all the lemmas.
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2 Change-point model with variable jump size

Suppose we observe n independent realizations X
(n)
j =

{
X

(n)
j (t), t ∈ [0, τ ]

}
, j = 1, . . . , n,

of an inhomogeneous Poisson process on the interval [0, τ ] (the constant τ > 0 is supposed
to be known) of intensity measure

Λ
(n)
ϑ

(
A
)
=

∫

A

λ
(n)
ϑ (t) dt, A ∈ B

(
[0, τ ]

)
,

with intensity function λ
(n)
ϑ , where ϑ ∈ Θ = (α, β), 0 ≤ α < β ≤ τ , is some unknown pa-

rameter. The observation will be denoted X(n) =
{
X

(n)
1 , . . . , X

(n)
n

}
and the corresponding

probability distribution will be denoted P
(n)
ϑ .

Let us note that this model of observation is equivalent to observing a single realization
on the interval [0, nτ ] of an inhomogeneous Poisson process with the τ -periodic intensity

function coinciding with λ
(n)
ϑ on [0, τ ].

The parameter ϑ corresponds to the location of a jump in the (elsewhere continuous)

intensity function λ
(n)
ϑ . The size of the jump (depending on n) will be denoted rn and will

be supposed converging to some r ∈ R. As we will see below, the behavior of our model
depends on either one has r 6= 0 or r = 0 and is quite different in these two cases.

More precisely, we assume that the following conditions are satisfied.

(C1) The intensity function λ
(n)
ϑ (t) can be written as λ

(n)
ϑ (t) = ψn(t)+ rn1{t>ϑ}, where the

function ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist the lim
n→+∞

ψn(t) = ψ(t) > 0 and, moreover, this conver-

gence is uniform with respect to t.

(C3) As n → +∞, the jump size rn converges to some r ∈ R, that is, rn → r. In the
case r = 0, we also suppose that this convergence (rn → 0) is slower than n−1/2, that is,
n r2n → +∞.

(C4) The family of functions
{
λ
(n)
ϑ

}
n∈N ,ϑ∈Θ is uniformly strictly positive and uniformly

bounded, that is, there exist some constants ℓ, L > 0 such that

ℓ ≤ λ
(n)
ϑ (t) ≤ L

for all n ∈ N , ϑ ∈ Θ and t ∈ [0, τ ].

Note that the conditions C1 – C3, together with the natural condition

r > − min
t∈[0,τ ]

ψ(t), (1)

easily imply that the condition C4 holds for the family
{
λ
(n)
ϑ

}
n≥n0,ϑ∈Θ with some n0 ∈ N .

So, in the asymptotic setting (n → +∞), the condition C4 can be replaced by (1), and
we assume C4 instead of the latter only for convenience (as well as in order for our model
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to be well defined for all n ∈ N). Note also that in the case r = 0, the condition (1) is
automatically satisfied.

An important particular case of this model is when only the jump size
(
and not the

regular part of λ
(n)
ϑ

)
depend on n. More precisely, the conditions C1 – C2 will be clearly

met if we assume that the following condition is satisfied.

(C0) The intensity function λ
(n)
ϑ (t) can be written as λ

(n)
ϑ (t) = ψ(t) + rn1{t>ϑ}, where the

function ψ is strictly positive and continuous on [0, τ ].

3 Asymptotic behavior of the likelihood ratio

The likelihood of our model is given by
(
see, for example, [12]

)

Ln
(
ϑ,X(n)

)
= exp

{ n∑

j=1

∫

[0,τ ]

lnλ
(n)
ϑ (t) X

(n)
j (dt)− n

∫ τ

0

[
λ
(n)
ϑ (t)− 1

]
dt

}

= exp

{ n∑

j=1

∑

i∈I(n)
j

lnλ
(n)
ϑ (tj,i)− n

∫ τ

0

[
λ
(n)
ϑ (t)− 1

]
dt

}
,

(2)

where tj,i, i ∈ I
(n)
j , are the jump times of the process X

(n)
j . Note that as function of ϑ, each

λ
(n)
ϑ (tj,i) is discontinuous (has a jump and is right continuous) at ϑ = tj,i. So, Ln

(
· , X(n)

)

is a random process with càdlàg (continuous from the right and having finite limits from
the left) trajectories.

We put ϕn = 1
n
in the case r 6= 0 and ϕn = 1

n r2n
in the case r = 0, and we introduce the

normalized likelihood ratio

Zn,ϑ(u) =
Ln
(
ϑ+ uϕn, X

(n)
)

Ln
(
ϑ,X(n)

)

= exp

{ n∑

j=1

∫

[0,τ ]

ln
λ
(n)
ϑ+uϕn

(t)

λ
(n)
ϑ (t)

X
(n)
j (dt)− n

∫ τ

0

(
λ
(n)
ϑ+uϕn

(t)− λ
(n)
ϑ (t)

)
dt

}

= exp

{ n∑

j=1

∑

i∈I(n)
j

ln
λ
(n)
ϑ+uϕn

(tj,i)

λ
(n)
ϑ (tj,i)

− n

∫ τ

0

(
λ
(n)
ϑ+uϕn

(t)− λ
(n)
ϑ (t)

)
dt

}
,

where u ∈ Un =
(
ϕ−1
n (α− ϑ), ϕ−1

n (β − ϑ)
)
.

Note that in both cases we have (by the condition C3 in the case r = 0) ϕn → 0.
Note also that if u > 0, we can rewrite Zn,ϑ(u) as

Zn,ϑ(u) = exp

{ n∑

j=1

∫

(ϑ,ϑ+uϕn]

ln
ψn(t)

ψn(t) + rn
X

(n)
j (dt) + n

∫ ϑ+uϕn

ϑ

rn dt

}

= exp

{ n∑

j=1

∑

i

ln
ψn(tj,i)

ψn(tj,i) + rn
+
u

rn

}
,

(3)
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where the last sum is taken over the set
{
i ∈ I

(n)
j : ϑ < tj,i ≤ ϑ+ uϕn

}
.

Similarly, if u < 0, we have

Zn,ϑ(u) = exp

{ n∑

j=1

∫

(ϑ+uϕn,ϑ]

ln
ψn(t) + rn
ψn(t)

X
(n)
j (dt)− n

∫ ϑ

ϑ+uϕn

rn dt

}

= exp

{ n∑

j=1

∑

i

ln
ψn(tj,i) + rn
ψn(tj,i)

+
u

rn

}
,

where the last sum is taken over the set
{
i ∈ I

(n)
j : ϑ+ uϕn < tj,i ≤ ϑ

}
.

Note equally, that the process lnZn,ϑ has independent increments. Indeed, its incre-
ments on disjoint intervals involve stochastic integrals on disjoint intervals, and hence are
independent.

Note finally, that the trajectories of the process Zn,ϑ are càdlàg functions. Moreover,
correctly extending these trajectories to the whole real line, one can consider that they
belong to the Skorohod space D0(R). This space is defined as the space of functions f
on R which do not have discontinuities of the second kind and which are vanishing at
infinity, that is, such that lim

u→±∞
f(u) = 0. We assume that all the functions f ∈ D0(R) are

continuous from the right (are càdlàg).
Let us recall that the Skorohod metric on the space D0(R) is introduced by

d(f, g) = inf
λ

[
sup
u∈R

∣∣f(u)− g
(
λ(u)

)∣∣+ sup
u∈R

|u− λ(u)|
]
,

where the inf is taken over all strictly increasing continuous one-to-one mappings λ : R → R.
Let us also recall a criterion of weak convergence in D0(R). We put

∆h(f) = sup
u∈R

sup
u′,u′′

[
min

{
|f(u′)− f(u)| , |f(u′′)− f(u)|

}]
+ sup

|u|>1/h

|f(u)|,

where the inner sup is over all u′, u′′ such that u − h ≤ u′ < u ≤ u′′ < u + h. A criterion
of weak convergence in D0(R) is given in the following lemma

(
see [9] for more details

)
.

Lemma 1. Let zn,ϑ, n ∈ N , and zϑ be random processes with realizations belonging to
D0(R) with probability 1. If, as n → +∞, the finite dimensional distributions of zn,ϑ
converge uniformly in ϑ ∈ K to the finite dimensional distributions of zϑ, and if for any
δ > 0

lim
h→0

sup
n∈N ,ϑ∈K

P
{
∆h(zn,ϑ) > δ

}
= 0, (4)

then, uniformly in ϑ ∈ K, the process zn,ϑ converges weakly in the space D0(R) to the
process zϑ.

Note that here and in the sequel K denotes an arbitrary compact in Θ.
The main objective of this section is the study of the asymptotic behavior

(
in the sense

of the weak convergence in the space D0(R) as n→ ∞
)
of the above introduced normalized

likelihood ratio Zn,ϑ. This behavior depends on either one has r 6= 0 or r = 0 and is quite
different in these two cases, so the limit process must be introduced in a different manner
in these two cases.
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Case r 6= 0 limit process. In the case r 6= 0, the limit process is a log Poisson type
process and is introduced by

Zϑ(u) =





exp
{
ln ψ(ϑ)

ψ(ϑ)+r
X+(u) + ru

}
, if u ≥ 0,

exp
{
ln ψ(ϑ)+r

ψ(ϑ)
X−((−u)−

)
+ ru

}
, if u < 0,

where X+ and X− are independent Poisson processes on R+ of constant intensities ψ(ϑ)+r
and ψ(ϑ) respectively.

Let us note that Zϑ(u)
d
= Z∗

ρ(−ru) with the constant ρ =
∣∣ln ψ(ϑ)

ψ(ϑ)+r

∣∣ and the process
Z∗
ρ defined by

Z∗
ρ(v) =

{
exp
{
ρY +(v)− v

}
, if v ≥ 0,

exp
{
−ρY −((−v)−

)
− v
}
, if v < 0,

where Y + and Y − are independent Poisson processes on R+ of constant intensities 1
eρ−1

and 1
1−e−ρ respectively.

Note also that the process Z∗
ρ was recently studied in [3] and that its trajectories (as

well as those of the process Zϑ) almost surely belong to the space D0(R).
(
More rigorously,

in order to keep all the trajectories in the space D0(R), above we should rather have written

Zϑ(u)
d
= Z∗

ρ

(
(−ru)−

)
in the case r > 0

)
.

Case r = 0 limit process. In the case r = 0, the limit process is a log Wiener type
process and is introduced by

Zϑ(u) = exp

{
ψ−1/2(ϑ)W (u)− |u|

2ψ(ϑ)

}
, u ∈ R,

where W (u), u ∈ R, is a double-sided Brownian motion (Wiener process).

Let us note that Zϑ(u)
d
= Z∗(u/ψ(ϑ)

)
with the process Z∗ defined by

Z∗(u) = exp

{
W (u)− |u|

2

}
, u ∈ R. (5)

Note also that the trajectories of the processes Z∗ and Zϑ almost surely belong to the
space C0(R) of continuous functions on R vanishing at infinity, and that C0(R) ⊂ D0(R).

Now we can state the following theorem about the asymptotic behavior of the normalized
likelihood ratio.

Theorem 1. Let the conditions C1 – C4 be fulfilled. Then, uniformly in ϑ ∈ K, the
process Zn,ϑ converges weakly in the space D0(R) to the process Zϑ.
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Let us also remark, that sometimes it may be more convenient to use a slightly different
rate for introducing the normalized likelihood ratio. More precisely, one can use the rate
ϕ∗
n = 1

|r|n (rather than ϕn = 1
n
) in the case r 6= 0, and the rate ϕ∗

n = ψ(ϑ)
n r2n

(rather than

ϕn = 1
n r2n

) in the case r = 0. That is, one can consider (instead of Zn,ϑ) the normalized
likelihood ratio Z∗

n,ϑ defined by

Z∗
n,ϑ(v) =

Ln
(
ϑ+ v ϕ∗

n, X
(n)
)

Ln
(
ϑ,X(n)

) = Zn,ϑ
(
c v
)

with c = 1/ |r| in the case r 6= 0, and c = ψ(θ) in the case r = 0. Then, Theorem 1 will be
clearly transformed to the following (equivalent) statement.

Theorem 2. Let the conditions C1 – C4 be fulfilled. Then, uniformly in ϑ ∈ K, the
process Z∗

n,ϑ converges weakly in the space D0(R) to

• the process Z∗
ρ , in the case r < 0,

• the process Z⋆
ρ defined by Z⋆

ρ(v) = Z∗
ρ

(
(−v)−

)
, in the case r > 0,

• the process Z∗, in the case r = 0.

The proof of Theorem 1 consist in checking the criterion of week convergence given in
Lemma 1. For this, we follow the methods and ideas used in [11, Chapters 5.3 and 5.4]
and establish several lemmas (the proofs of the lemmas are in Section 6).

Lemma 2. Let the conditions C1 – C4 be fulfilled. Then the finite-dimensional distri-
butions of the process Zn,ϑ converge to those of the process Zϑ, and this convergence is
uniform with respect to ϑ ∈ K.

Lemma 3. Let the conditions C1 – C4 be fulfilled. Then there exists a constant C > 0
such that

E
(n)
ϑ

∣∣Z1/2
n,ϑ (u1)− Z

1/2
n,ϑ (u2)

∣∣2 ≤ C |u1 − u2|
for all n ∈ N , u1, u2 ∈ Un and ϑ ∈ K.

Lemma 4. Let the conditions C1 – C4 be fulfilled. Then there exists a constant k∗ > 0
such that

E
(n)
ϑ Z

1/2
n,ϑ (u) ≤ exp

{
−k∗ |u|

}

for all u ∈ Un, ϑ ∈ K and sufficiently large values of n (all n ∈ N in the case r = 0).

Final argument of the proof of Theorem 1 in the case r 6= 0. In this case, defining
Z

1/2
n,ϑ;a.c. to be the absolutely continuous component of the function Z

1/2
n,ϑ and, for p = 1, 2,

denoting Ap = Ap(u, u + h) the event that Zn,ϑ has at least p jumps on the interval
(u, u+ h), we also have the following lemma.
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Lemma 5. Let the conditions C1 – C4 be fulfilled with r 6= 0. Then the inequalities

E
(n)
ϑ

∣∣Z1/2
n,ϑ;a.c.(u+ h)− Z

1/2
n,ϑ;a.c.(u)

∣∣2 ≤ Ch2,

P
(n)
ϑ (A1) ≤ D1h (6)

and

P
(n)
ϑ (A2) ≤ D2h

2 (7)

hold with certain constants C,D1, D2 > 0 (independent of n, ϑ, u and h).

Now, with the help of the above lemmas, we can finish the proof of Theorem 1 in
the case r 6= 0 following the standard argument of [11, Chapters 5.3 and 5.4]. More
precisely, the weak convergence in D0(R) of the processes Zn,ϑ to the process Zϑ follows
from Theorem 5.4.2 of [12], which is, in fact, contained in [11] (without being formulated
there). Note, that the conditions of this theorem are nothing but Lemmas 2, 4 and 5, and
that its proof consist in verifying the condition (4).

Final argument of the proof of Theorem 1 in the case r = 0. In this case, it is
not possible to establish a lemma similar to Lemma 5. In particular, the inequalities (6)
and (7) do not hold, since in this case (in contrary to the case r = 0) the jumps are not
becoming seldom. More precisely, as n → +∞, instead of having (on any finite interval)
few “non-vanishing” jumps, one has more and more jumps which at the same time become
smaller and smaller (which explains that the trajectories of the limiting likelihood ratio
process in this case are continuous but nowhere differentiable functions). So, in order to
finish the proof of Theorem 1 we use a different technique.

Since the increments of the process lnZn,ϑ are independent, the convergence of its
restrictions (and hence of those of Zn,ϑ) on finite intervals [A,B] ⊂ R

(
that is, convergence

in the Skorohod space D
(
[A,B]

)
of functions on [A,B] without discontinuities of the second

kind
)
follows from Gihman and Skorohod [10, Theorem 6.5.5], Lemma 2 and the following

lemma.

Lemma 6. Let the conditions C1 – C4 be fulfilled with r = 0. Then for any ε > 0 we
have

lim
h→0

lim
n→+∞

sup
|u1−u2|<h

P
(n)
ϑ

(
|lnZn,ϑ(u1)− lnZn,ϑ(u2)| > ε

)
= 0.

for all u1, u2 ∈ Un and ϑ ∈ K.

Let us note, that taking a closer look on the proof of this lemma, one can see that we
have even a stronger result: for any ε > 0 we have

lim
h→0

lim
n→+∞

sup
ϑ∈K

sup
|u1−u2|<h

P
(n)
ϑ

(
|lnZn,ϑ(u1)− lnZn,ϑ(u2)| > ε

)
= 0
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for all u1, u2 ∈ Un, which allow us to conclude that the convergence of the restrictions of
Zn,ϑ on finite intervals [A,B] ⊂ R to those of the process Zϑ is uniform with respect to
ϑ ∈ K.

In order to conclude the proof of Theorem 1 applying the criterion of week convergence
in D0(R) given in Lemma 1, we need to check the condition (4). Since we have already
established the convergence of the restrictions on finite intervals [A,B] ⊂ R, it remains
to control the second term of the modulus of continuity ∆h(Zn,ϑ)

(
see, for example, [11,

Chapters 5.3 and 5.4]
)
. So, the last ingredient of the proof of Theorem 1 is the following

estimate on the tails of the process Zn,ϑ.

Lemma 7. Let the conditions C1 – C4 be fulfilled with r = 0. Then there exist some
constants b, C > 0 such that

P
(n)
ϑ

(
sup
|u|>D

Zn,ϑ(u) > e−bD
)

≤ Ce−bD (8)

for all D ≥ 0, ϑ ∈ K and sufficiently large values of n.

Finally, the last lemma follows by a standard argument from the following one
(
see, for

example, [11, Chapters 5.3 and 5.4]
)
.

Lemma 8. Let the conditions C1 – C4 be fulfilled with r = 0. Then there exist some
constants b, C > 0 such that

P
(n)
ϑ

(
sup

D≤|u|≤D+1

Zn,ϑ(u) > e−bD
)

≤ Ce−bD (9)

for all D ≥ 0, ϑ ∈ K and sufficiently large values of n.

4 Parameter estimation

In this section we apply the convergence of normalized likelihood ratio obtained in Section 3
to study the problem of parameter estimation for our model of observations. In the case
r 6= 0, the limiting likelihood ratio being the same as in the fixed jump size case, the
properties of estimators are also the same

(
see, for example, [12, 13] for more details

)
. So,

here we consider the case r = 0 only.
Recall that as function of ϑ, the likelihood of our model given by (2) is discontinuous

(has jumps). So, the maximum likelihood estimator ϑ̂n of ϑ is introduced through the
equation

max
{
Ln
(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}
= sup

ϑ∈Θ
Ln
(
ϑ,X(n)

)
.

The Bayesian estimator ϑ̃n of ϑ for a given prior density p and for square loss is defined
by

ϑ̃n =

∫ β
α
ϑ p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

∫ β
α
p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

.
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We are interested in the asymptotic properties of the maximum likelihood and Bayesian
estimators of ϑ as n → +∞. To describe the properties of the estimators we need some
additional notations.

We introduce the random variables ξϑ, ξ
∗, ζϑ and ζ∗ by the equations

Zϑ(ξϑ) = sup
u∈R

Zϑ(u),

Z∗(ξ∗) = sup
u∈R

Z∗(u),

ζϑ =

∫ +∞
−∞ uZϑ(u) du∫ +∞
−∞ Zϑ(u) du

and

ζ∗ =

∫ +∞
−∞ uZ∗(u) du
∫ +∞
−∞ Z∗(u) du

.

Let us note that ξϑ
d
= ψ(ϑ) ξ∗ and ζϑ

d
= ψ(ϑ) ζ∗.

Now we can state the following theorem giving an asymptotic lower bound on the risk
of all the estimators of ϑ.

Theorem 3. Let the conditions C1 – C4 be fulfilled with r = 0. Then, for any ϑ0 ∈ Θ,
we have

lim
δ→0

lim
n→+∞

inf
ϑn

sup
|ϑ−ϑ0|<δ

ϕ−2
n E

(n)
ϑ (ϑn − ϑ)2 ≥ Eζ2ϑ0 = ψ2(ϑ0)E(ζ

∗)2,

where the inf is taken over all possible estimators ϑn of the parameter ϑ.

This theorem allows us to introduce the following definition.

Definition 1. Let the conditions C1 – C4 be fulfilled with r = 0. We say that an estimator
ϑ∗n is asymptotically efficient if

lim
δ→0

lim
n→+∞

sup
|ϑ−ϑ0|<δ

ϕ−2
n E

(n)
ϑ (ϑ∗n − ϑ)2 = Eζ2ϑ0 = ψ2(ϑ0)E(ζ

∗)2

for all ϑ0 ∈ Θ.

Now, we can state the following two theorems giving the asymptotic properties of the
maximum likelihood and Bayesian estimators.
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Theorem 4. Let the conditions C1 – C4 be fulfilled with r = 0. Then the maximum
likelihood estimator ϑ̂n satisfies uniformly on ϑ ∈ K the relations

P
(n)
ϑ − lim

n→+∞
ϑ̂n = ϑ,

L(n)
ϑ

{
ϕ−1
n (ϑ̂n − ϑ)

}
⇒ L(ξϑ) = L

(
ψ(ϑ)ξ∗

)

and

lim
n→+∞

E
(n)
ϑ ϕ−p

n

∣∣ϑ̂n − ϑ
∣∣p = E |ξϑ|p = ψp(ϑ)E |ξ∗|p for any p > 0.

In particular, the relative asymptotic efficiency of ϑ̂n is E(ζ∗)2/E(ξ∗)2.

Theorem 5. Let the conditions C1 – C4 be fulfilled with r = 0. Then, for any contin-
uous strictly positive density, the Bayesian estimator ϑ̃n satisfies uniformly on ϑ ∈ K the
relations

P
(n)
ϑ − lim

n→+∞
ϑ̃n = ϑ,

L(n)
ϑ

{
ϕ−1
n (ϑ̃n − ϑ)

}
⇒ L(ζϑ) = L

(
ψ(ϑ)ζ∗

)

and

lim
n→+∞

E
(n)
ϑ ϕ−p

n

∣∣ϑ̃n − ϑ
∣∣p = E |ζϑ|p = ψp(ϑ)E |ζ∗|p for any p > 0.

In particular, ϑ̃n is asymptotically efficient.

Theorems 3–5 follow from the properties of the normalized likelihood ratio established
in Section 3. More precisely, Theorem 5 is a consequence of Lemmas 2–4 and [11, Theo-
rem 1.10.2]. Having the properties of the Bayesian estimators given in Theorem 5, we can
cite [11, Theorem 1.9.1] to provide the proof of Theorem 3. Finally, the proof of Theorem 4
can be carried out following the standard argument of [11, Chapters 5.3 and 5.4] which is
based on the weak convergence established in Theorem 1 together with the inequality (8).

5 Hypothesis testing

In this section we apply the convergence of normalized likelihood ratio obtained in Section 3
to study the problem of hypothesis testing for our model of observations. In the case r 6= 0,
the limiting likelihood ratio being the same as in the fixed jump size case, the properties of
test are also the same

(
see [6] for more details

)
. So, here we consider the case r = 0 only.

We consider the same model of observation as above, with the only difference that
now we suppose that θ ∈ Θ = [ϑ1, b), 0 < ϑ1 < β ≤ τ . We assume that the conditions
(C1)–(C4) are fulfilled with r = 0 and we want to test the following two hypothesis:

H1 : ϑ = ϑ1,

H2 : ϑ > ϑ1.

11



We define a (randomized) test φn = φn
(
X(n)

)
as the probability to accept the hypothesis

H2. The size of the test is defined by E
(n)
ϑ1
φn
(
X(n)

)
, and its power function is given by

β(φn, ϑ) = E
(n)
ϑ φn

(
X(n)

)
, ϑ > ϑ1. As usually, we denote Kε the class of tests of asymptotic

size ε ∈ [0, 1], that is,

Kε =
{
φn : lim

n→+∞
E

(n)
ϑ1
φn
(
X(n)

)
= ε
}
.

Our goal is to construct some tests belonging to this class and to compare them. The
comparison of tests can be done by comparison of their power functions. It is known that
for any reasonable test and for any fixed alternative the power function tends to 1. To avoid
this difficulty, we use Pitman’s approach and consider contiguous (or close) alternatives.

More precisely, changing the variable ϑ = ϑu
∆
= ϑ1 + uϕ∗

n, where ϕ
∗
n = ψ(ϑ1)

n r2n
, the initial

problem of hypotheses testing can be replaced by the following one

H1 : u = 0,

H2 : u > 0,

and the power function is now β(φn, u) = E
(n)
ϑn
φn
(
X(n)

)
, u > 0.

The study is essentially based on the properties of the normalized likelihood ratio
established above. Note that the limit of the normalized likelihood ratio at the point
ϑ = ϑ1 (under hypothesis H1) is the following:

Z∗
n,ϑ1

(v) =
Ln
(
ϑ1 + vϕ∗

n, X
(n)
)

Ln
(
ϑ1, X(n)

) ⇒ Z∗(v), v ≥ 0,

where the process Z∗ is defined by (5).
Under alternatives, we obtain

Z∗
n,ϑ1

(v) =
Ln
(
ϑ1 + vϕ∗

n, X
(n)
)

Ln
(
ϑ1, X(n)

)

=

(
Ln
(
ϑ1, X

(n)
)

Ln
(
ϑu, X(n)

)
)−1

Ln
(
ϑ1 + vϕ∗

n, X
(n)
)

Ln
(
ϑu, X(n)

)

=

(
Ln
(
ϑu − uϕ∗

n, X
(n)
)

Ln
(
ϑu, X(n)

)
)−1

Ln
(
ϑu + (v − u)ϕ∗

n, X
(n)
)

Ln
(
ϑu, X(n)

)

⇒
(
Z∗(−u)

)−1
Z∗(v − u)

d
= exp

{
W (v)− |v − u|

2
+
u

2

}
∆
= Z∗

u(v).

The score-function test — which is locally asymptotically uniformly most powerful
(LAUMP) in the regular case

(
see [5]

)
— does not exist in this non-regular situation. So,

we will construct and study the general likelihood ratio test (GLRT), Wald’s test (WT)
and two Bayesian tests (BT1 and BT2).
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General likelihood ratio test. The GLRT is defined by the relations

φ̂n
(
X(n)

)
= 1
{
Q(X(n))>hε

},

with

Q
(
X(n)

)
= sup

ϑ>ϑ1

Ln
(
ϑ,X(n)

)

Ln
(
ϑ1, X(n)

) = max

{
Ln
(
ϑ̂n+, X

(n)
)

Ln
(
ϑ1, X(n)

) ,
Ln
(
ϑ̂n−, X(n)

)

Ln
(
ϑ1, X(n)

)
}
,

where ϑ̂n is the maximum likelihood estimator of θ.
To choose the threshold hε such that φ̂n

(
X(n)

)
∈ Kε we need to solve the following

equation (under hypothesis H1)

P
(n)
ϑ1

{
Q
(
X(n)

)
> hε

}
= P

(n)
ϑ1

{
sup
v>0

Z∗
n,ϑ1

(v) > hε

}
→ P

{
sup
v>0

Z∗ (v) > hε

}
= ε.

For this, we note that the random variable sup
v>0

lnZ∗ (v) has the exponential distribution

with parameter 1
(
see, for example, [1]

)
. This allows us to calculate explicitly the threshold

hε of the GLRT as solution of the equation 1− e− lnhε = 1− ε, that is, hε = 1/ε.
The power function of the GLRT has the following limit:

β
(
φ̂n, u

)
= P

(n)
ϑu

{
sup
v>0

Z∗
n,ϑ1

(v) > hε

}
→ P

{
sup
v>0

Z∗
u (v) > hε

}
.

This limiting power function is obtained below with the help of numerical simulations.

Wald’s test. To define the WT, let us note that the maximum likelihood estimator ϑ̂n
converges in distribution:

(ϕ∗
n)

−1 (ϑ̂n − ϑ1
)
⇒ ξ∗+,

where the random variable ξ∗+ is solution of the equation

Z∗(ξ∗+) = sup
v>0

Z∗(v).

Therefore, if we put
φ◦
n

(
X(n)

)
= 1

{
(ϕ∗

n)
−1
(
ϑ̂n−ϑ1

)
>mε

},

where mε is defined by the equation

P
{
ξ∗+ > mε

}
= ε,

then φ◦
n ∈ Kε.

We recall the result of [15], that the joint distribution of
(
lnZ∗ (ξ∗+

)
, ξ∗+
)
has the density

f(y, t) =
y√
2πt3

exp

{
−
(
y + t

2

)2

2t

}
,

13



which allows us to calculate the marginal density of ξ∗+ as follows:

f(t) =

∫ +∞

0

f(y, t) dy =

∫ +∞

0

y√
t√
2πt

exp

{
−1

2

(
y√
t
+

√
t

2

)2
}

d

(
y√
t

)

=

∫ +∞

0

z√
2πt

exp

{
−1

2

(
z +

√
t

2

)2
}

dz =

∫ +∞

√
t

2

x−
√
t

2√
2πt

exp

{
−x

2

2

}
dx

= −
∫ +∞

√
t

2

1√
2πt

d exp

{
−x

2

2

}
−
∫ +∞

√
t

2

√
t

2√
2πt

exp

{
−x

2

2

}
dx

=
1√
2πt

exp

{
− t

8

}
− 1

2
Φ

(
−
√
t

2

)
,

where Φ is the distribution function of the standard Gaussian lowN (0, 1). So, the threshold
mε can be obtained as the solution of the equation

∫ +∞

mε

(
1√
2πt

exp

{
− t

8

}
− 1

2
Φ

(
−
√
t

2

))
dt = ε. (10)

The power function of the WT has the following limit:

β
(
φ◦
n, u
)
= P

(n)
ϑu

{
(ϕ∗

n)
−1 (ϑ̂n − ϑu

)
+ u > mε

}
→ P {ξ∗u > mε − u} ,

where the random variable ξ∗u is solution of the equation

Z (ξ∗u) = sup
v>−u

Z∗ (v) .

Note that we can also derive another expression of the limiting power function of the
WT as follows:

β
(
φ◦
n, u
)
= P

(n)
ϑu

{
(ϕ∗

n)
−1 (ϑ̂n − ϑ1

)
> mε

}
→ P

{
ξ∗u,+ > mε

}
,

where the random variable ξ∗u,+ is solution of the equation

Z
(
ξ∗u,+

)
= sup

v>0
Z∗
u (v) .

The threshold and the limiting power function are obtained below with the help of numer-
ical simulations.

Bayesian tests. Suppose now that the parameter ϑ is a random variable with the a
priori density p(θ), ϑ1 ≤ θ < β. This density is supposed to be continuous and positive.
We consider two tests.

The first one (BT1) is based on the Bayesian estimator:

φ̃n
(
X(n)

)
= 1{(ϕ∗

n)
−1(ϑ̃n−ϑ1)>kε}.
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As above, we have the convergence in distribution:

(ϕ∗
n)

−1 (ϑ̃n − ϑ1
)
⇒ ζ∗+

∆
=

∫ +∞
0

v Z∗ (v) dv
∫ +∞
0

Z∗ (v) dv
,

which allows us to chose the threshold such that φ̃n ∈ Kε as the solution of the equation

P
{
ζ∗+ > kε

}
= ε. (11)

The power function of the BT1 has the following limit:

β
(
φ̃n, u

)
= P

(n)
ϑu

{
(ϕ∗

n)
−1 (ϑ̃n − ϑu

)
+ u > kε

}
→ P {ζ∗u > kε − u} ,

where the random variable ζ∗u is given by

ζ∗u =

∫ +∞
−u v Z∗ (v) dv
∫ +∞
−u Z∗ (v) dv

.

Note that we can also derive another expression of the limiting power function of the
BT1 as follows:

β
(
φ̃n, u

)
= P

(n)
ϑu

{
(ϕ∗

n)
−1 (ϑ̂n − ϑ1

)
> kε

}
→ P

{
ζ∗u,+ > kε

}
,

where the random variable ζ∗u,+ is given by

ζ∗u,+ =

∫ +∞
0

v Z∗
u (v) dv∫ +∞

0
Z∗
u (v) dv

The threshold and the limiting power function are obtained below with the help of numer-
ical simulations.

The second test (BT2) minimizes the mean error. The likelihood ratio is

L̃
(
X(n)

)
=

∫ β

ϑ1

Ln
(
θ,X(n)

)

Ln
(
ϑ1, X(n)

) p(θ) dθ = ϕ∗
n

∫ (ϕ∗
n)

−1 (β−ϑ1)

0

Z∗
n,ϑ1

(v) p(ϑ1 + vϕ∗
n) dv.

Hence, we have the following limit:

(ϕ∗
n)

−1 L̃
(
X(n)

)
⇒ p (ϑ1)

∫ +∞

0

exp
{
W (v)− v

2

}
dv.

Therefore, if we denote

Rn =
(ϕ∗

n)
−1 L̃

(
X(n)

)

p (ϑ1)

and chose gε as solution of the equation

P

{∫ +∞

0

exp
{
W (v)− v

2

}
dv > gε

}
= ε,

the test 1{Rn>gε} belongs to the class Kε.
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Numerical simulations. Now, let us carry out some numerical simulations for the
GLRT, the WT and the BT1. We take rn = n−0.25 and, in order to simplify the sim-
ulations, we take a function ψn(t) depending neither on n nor on t. More precisely, we

consider n independent trajectories X
(n)
j =

{
X

(n)
j (t), t ∈ [0, 4]

}
, j = 1, . . . , n, of an inho-

mogeneous Poisson process on the interval [0, 4] of intensity function

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 ≤ t ≤ 4,

with ϑ ∈ [2, 4). So, denoting ϑ1 = 2 and

ϕ∗
n =

ψ(ϑ1)

n r2n
=

1.5√
n
,

we have (for v ≥ 0)

lnZ∗
n,ϑ1

(v) =

n∑

j=1

∫

(ϑ1,ϑ1+vϕ∗
n]

ln
1.5

1.5 + n−0.25
X

(n)
j (dt) + 1.5 v n0.25

= ln
1.5

1.5 + n−0.25

n∑

j=1

(
X

(n)
j (ϑ1 + vϕ∗

n)−X
(n)
j (ϑ1)

)
+ 1.5 v n0.25.

Some realizations of Z∗
n,ϑ1

can be found in Figure 1.
Recall that the threshold hε = 1/ε of the GLRT is known explicitly. We obtain the

threshold mε of the WT by numerically solving the equation (10), while the threshold kε
of the BT1 is obtained from the equation (11) by means of numerical simulations of the
random variable ζ∗+. Some values of the thresholds mε and kε are given in Table 5.

ε 0.01 0.05 0.10 0.20 0.40 0.50
mε 14.886 7.282 4.531 2.236 0.685 0.248
kε 16.782 8.582 5.573 3.024 1.102 0.657

Table 1: Thresholds of WT and BT1

To illustrate the convergence of power functions of different tests to their limits, we
present in Figure 2 the power functions for n = 100 (rn = 0.3162) and n = 300 (rn =
0.2403), as well as the limiting power functions. All these power functions are obtained by
means of numerical simulations. Note that the values of u greater than 2(ϕ∗

n)
−1 correspond

to θu = θ1 + uϕ∗
n > 4, which means that there is no longer jump in intensity function on

the interval [0, 4]. This explains the fact that for n = 100, the power functions are constant
for u > 2(ϕ∗

100)
−1 ≈ 13.33.

Comparison of the limiting power functions. Let us fix an alternative u1 > 0 and
consider the testing problem with two simple hypotheses

H1 : u = 0,

Hu1
2 : u = u1.
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Figure 1: Some realization of Z∗
n,ϑ1

(v)

Remind that in this situation the most powerful test is the Neyman-Pearson test (N-PT).
Of course, it is impossible to use the N-PT in our initial problem, because it depends on the
value u1 under alternative which is unknown. However, its power (considered as function
of u1) gives an upper bound (Neyman-Pearson envelope) for the power functions of all the
tests. Therefore, it is interesting to compare the power functions of different tests not only
one with another, but also with the power of the N-PT.

The N-PT is given by

φ∗
n

(
X(n)

)
= 1
{
Z∗
n,ϑ1

(u1)>dε

} + qε1{
Z∗
n,ϑ1

(u1)=dε

},

where dε and qε are solution of the equation

P
(n)
ϑ1

(
Z∗
n,ϑ1(u1) > dε

)
+ qεP

(n)
ϑ1

(
Z∗
n,ϑ1(u1) = dε

)
= ε. (12)

Recall that the likelihood ratio Z∗
n,ϑ1

(u1) under hypothesis H1 converges to the following
limit

Z∗
n,ϑ1

(u1) ⇒ Z∗(u1) = exp
{
W (u1)−

u1
2

}
.
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Figure 2: Power functions of GLRT, WT and BT1

Hence, in the asymptotic setting, the equation (12) can be replaced by the equation

P
(
Z∗(u1) > dε

)
+ qεP

(
Z∗(u1) = dε

)
= ε

and, since Z∗(u1) is a continuous random variable, we can put qε = 0 and find the threshold
dε as the solution of the equation

P
(
Z∗(u1) > dε

)
= ε.

Note that

P
(
Z∗(u1) > dε

)
= P

(
W (u1) > ln dε +

u1
2

)
= P

(
ζ >

ln dε +
u1
2√

u1

)
,

where ζ ∼ N (0, 1). Therefore, denoting zε the quantile of order 1 − ε of the standard
Gaussian law

(
P (ζ > zε) = ε

)
, the threshold dε is given by

dε = ezε
√
u1−u1

2 .
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Under alternative Hu1
2 , we have

Z∗
n,ϑ1

(u1) =
Ln
(
ϑ1 + u1ϕ

∗
n, X

(n)
)

Ln
(
ϑ1, X(n)

) =

(
Ln
(
ϑ1 + u1ϕ

∗
n − u1ϕ

∗
n, X

(n)
)

Ln
(
ϑ1 + u1ϕ∗

n, X
(n)
)

)−1

⇒
(
Z∗(−u1)

)−1
,

which allows us to obtain the limiting power of the N-PT as follows:

β
(
φ∗
n

)
= P

(n)
ϑ1+u1ϕ∗

n

(
Z∗
n,ϑ1(u1) > dε

)

→ P
((
Z∗(−u1)

)−1
> dε

)
= P

(
exp

{
−W (−u1) +

u1
2

}
> dε

)

= P
(
W (u1) > ln dε −

u1
2

)
= P

(
ζ >

ln dε − u1
2√

u1

)
= P

(
ζ > zε −

√
u1
)
.

So, the limiting Neyman-Pearson envelope is given by

β(u) = P
(
ζ > zε −

√
u
)
= 1− Φ

(
zε −

√
u
)
,

where, as before, Φ is the distribution function of the standard Gaussian low.
The limiting power functions of the GLRT, of the WT and of the BT1 are obtained by

means of numerical simulations and are presented in Figure 3 together with the limiting
Neyman-Pearson envelope β(u).

We can observe that the limiting power function of the GLRT is the closest to the
limiting Neyman-Pearson envelope for small values of u, while the limiting power function
of the BT1 is the one that tends to 1 (as u becomes large) the most quickly. We can
also see that for ε = 0.05 the limiting power functions of the WT and of the BT1 are
close (especially when u is small), and that for ε = 0.4 the limiting power functions of
the GLRT and of the WT almost coincide. Finally, we need to say that all these limiting
power functions are perceptibly below the limiting Neyman-Pearson envelope, and that
the choice of the asymptotically optimal test remains an open question.

6 Proofs of the lemmas

The proofs of Lemmas 2–4 in the case r 6= 0, as well as the proof of Lemma 5, are similar
to the fixed jump size case and hence are omitted

(
the interested reader can see, for

example, [12, 13]
)
.

Proof of Lemma 2 in the case r = 0. First we study the convergence of 2-dimensional dis-
tributions. For this, consider the distribution of the vector

(
Zn,ϑ(u1), Zn,ϑ(u2)

)
with some

fixed u1, u2 ∈ R. The characteristic function of the natural logarithm of this vector can be
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Figure 3: Comparison of limiting power functions for ε = 0.05 and ε = 0.4

written as follows
(
see, for example, [12]

)
:

E
(n)
ϑ exp

(
it1 lnZn,ϑ(u1) + it2 lnZn,ϑ(u2)

)

= exp

{
n

∫ τ

0

(
exp
{
it1 ln

λ
(n)
ϑ+u1ϕn

(t)

λ
(n)
ϑ (t)

+ it2 ln
λ
(n)
ϑ+u2ϕn

(t)

λ
(n)
ϑ (t)

}
− 1

− it1

(λ(n)ϑ+u1ϕn
(t)

λ
(n)
ϑ (t)

− 1
)
− it2

(λ(n)ϑ+u2ϕn
(t)

λ
(n)
ϑ (t)

− 1
))

λ
(n)
ϑ (t) dt

}

= exp
{
An,ϑ(u1, u2, t)

}

with an evident notation.
We will consider the case u2 > u1 ≥ 0 only (the other cases can be treated in a similar
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way). In this case, we have

An,ϑ(u1, u2, t) = n

∫ ϑ+u1ϕn

ϑ

(
exp
{
(it1 + it2) ln

ψn(t)

ψn(t) + rn

}
− 1

− (it1 + it2)
( ψn(t)

ψn(t) + rn
− 1
))(

ψn(t) + rn

)
dt

+ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

(
exp
{
it2 ln

ψn(t)

ψn(t) + rn

}
− 1

− it2

( ψn(t)

ψn(t) + rn
− 1
))(

ψn(t) + rn

)
dt

= nI1 + nI2

with evident notations.
Using the mean value theorem for the integrals I1 and I2, it is possible to find some

sn ∈ (ϑ, ϑ+ u1ϕn) and vn ∈ (ϑ+ u1ϕn, ϑ+ u2ϕn) such that

nI1 =
u1
r2n

(
exp{i(t1 + t2) ln gn(sn)} − 1− i(t1 + t2)

(
gn(sn)− 1

))(
ψn(sn) + rn

)

and

nI2 =
u2 − u1
r2n

(
exp{it2 ln gn(vn)} − 1− it2

(
gn(vn)− 1

))(
ψn(vn) + rn

)
,

where we have denoted gn(t) =
ψn(t)

ψn(t)+rn
= 1− rn

ψn(t)+rn
.

As sn → ϑ, using the condition I3 we obtain lim
n→+∞

ψn(sn) = ψ(ϑ). So,

nI1 ∼
u1ψ(ϑ)

r2n

(
exp{i(t1 + t2) ln gn(sn)} − 1− i(t1 + t2)

(
gn(sn)− 1

))
.

As rn → 0 and ℓ ≤ ψn(t) + rn ≤ L, we have gn(sn)− 1 = O(rn) → 0. So, using Taylor
expansion we get

ln gn(sn) = ln
(
1 +

(
gn(sn)− 1

))

= gn(sn)− 1− 1

2

(
gn(sn)− 1

)2
+ o

(
r2n

(ψn(sn) + rn)2

)

= gn(sn)− 1− 1

2

(
gn(sn)− 1

)2
+ o(r2n).

In particular, ln gn(sn) = O(rn) and
(
ln gn(sn)

)2
=
(
gn(sn)− 1

)2
+ o(r2n).

Using Taylor expansion once more, we obtain

exp
(
it ln gn(sn)

)
= 1 + it ln gn(sn)−

t2

2

(
ln gn(sn)

)2
+ o(r2n).
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So,

nI1 ∼
u1ψ(ϑ)

r2n

(
−i(t1 + t2)

(
gn(sn)− 1

)2

2
− (t1 + t2)

2

2

(
gn(sn)− 1

)2
+ o(r2n)

)

=
u1ψ(ϑ)

r2n

(
− i(t1 + t2)r

2
n

2(ψ(sn) + rn)2
− (t1 + t2)

2 r2n
2(ψ(sn) + rn)2

+ o(r2n)
)

→ u1
ψ(ϑ)

(
−i(t1 + t2)

2
− (t1 + t2)

2

2

)
.

Similarly, we can show that

nI2 →
u2 − u1
ψ(ϑ)

(
−it2

2
− t22

2

)
,

and hence

E
(n)
ϑ exp

(
it1 lnZn,ϑ(u1) + it2 lnZn,ϑ(u2)

)

→ exp
{
−u2 − u1

2ψ(ϑ)
(it2 + t22)−

u1
2ψ(ϑ)

(
i(t1 + t2) + (t1 + t2)

2
)}
.

(13)

For all u > 0, we introduce the σ-algebra Fu = σ
{
W (v), 0 ≤ v ≤ u

}
and write

E exp
(
it1 lnZϑ(u1) + it2 lnZϑ(u2)

)

= E

(
exp
{
i(t1 + t2) lnZϑ(u1)

}
E
(
exp
{
it2
(
lnZϑ(u2)− lnZϑ(u1)

)} ∣∣∣ Fu1

))

= exp
{
−(t1 + t2)

2

2ψ(ϑ)
u1 −

i(t1 + t2)

2ψ(ϑ)
u1 −

t22
2ψ(ϑ)

(u2 − u1)−
it2

2ψ(ϑ)
(u2 − u1)

}
.

Combining this with (13), we obtain the convergence of 2-dimensional distributions. The
convergence of three and more dimensional distributions can be carried out in a similar
way, and the uniformity with respect to ϑ is obvious.

Proof of Lemma 3 in the case r = 0. We will consider the case u2 ≥ u1 ≥ 0 only (the other
cases can be treated in a similar way). According to [13, Lemma 1.1.5], we have

E
(n)
ϑ

∣∣Z1/2
n,ϑ (u1)− Z

1/2
n,ϑ (u2)

∣∣2 ≤ n

∫ τ

0

(√
λ
(n)
ϑ+u1ϕn

(t)−
√
λ
(n)
ϑ+u2ϕn

(t)

)2

dt

= n

∫ ϑ+u2ϕn

ϑ+u1ϕn

(√
ψn(t) + rn −

√
ψn(t)

)2
dt

= n

∫ ϑ+u2ϕn

ϑ+u1ϕn

r2n(√
ψn(t) + rn +

√
ψn(t)

)2 dt.

As λ
(n)
ϑ is uniformly separated from zero, we have

(√
ψn(t) + rn +

√
ψn(t)

)2 ≥
(√

ℓ+
√
ℓ
)2

= 4ℓ,
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and hence

E
(n)
ϑ

∣∣Z1/2
n,ϑ (u1)− Z

1/2
n,ϑ (u2)

∣∣2 ≤ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

r2n
4ℓ

dt =
1

4ℓ
|u1 − u2| .

So, the required inequality holds with C = 1
4ℓ
.

Proof of Lemma 4 in the case r = 0. We will consider the case u ≥ 0 only (the other case
can be treated in a similar way). According to [13, Lemma 1.1.5], we have

E
(n)
ϑ Z

1/2
n,ϑ (u) = exp

{
−n
2

∫ τ

0

(√
λ
(n)
ϑ+uϕn

(t)−
√
λ
(n)
ϑ (t)

)2

dt

}

= exp

{
−n
2

∫ ϑ+uϕn

ϑ

(√
ψn(t)−

√
ψn(t) + rn

)2
dt

}

= exp

{
−n
2

∫ ϑ+uϕn

ϑ

r2n(√
ψn(t) +

√
ψn(t) + rn

)2 dt

}
.

As λ
(n)
ϑ is uniformly bounded, we have

(√
ψn(t) + rn +

√
ψn(t)

)2 ≤
(√

L+
√
L
)2

= 4L,

and hence

E
(n)
ϑ Z

1/2
n,ϑ (u) ≤ exp

{
−n
2

∫ ϑ+ϕnu

ϑ

r2n
4L

dt
}
= exp

{
− 1

8L
|u|
}
.

So, the required inequality holds with k∗ =
1
8L
.

Proof of Lemma 6. Using Markov inequality, we get

P
(n)
ϑ

(
|lnZn,ϑ(u1)− lnZn,ϑ(u2)| > ε

)
≤ 1

ε2
E

(n)
ϑ

(
lnZn,ϑ(u1)− lnZn,ϑ(u2)

)2
.

First we consider the case u1, u2 ≥ 0 (and say u2 ≥ u1). In this case, we have

lnZn,ϑ(u2)− lnZn,ϑ(u1) =
n∑

j=1

∫ ϑ+u2ϕn

ϑ+u1ϕn

ln
ψn(t)

ψn(t) + rn
dX

(n)
j (t) + n

∫ ϑ+u2ϕn

ϑ+u1ϕn

rn dt

=

n∑

j=1

∫ ϑ+u2ϕn

ϑ+u1ϕn

ln
ψn(t)

ψn(t) + rn
dY

(n)
j (t)

+ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

((
ψn(t) + rn

)
ln

ψn(t)

ψn(t) + rn
+ rn

)
dt,

where Y
(n)
j is the centered version of the process X

(n)
j .
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Since the stochastic integrals with respect to Y
(n)
j , j = 1, . . . , n, are independent and

has mean zero, we obtain

E
(n)
ϑ

(
lnZn,ϑ(u1)− lnZn,ϑ(u2)

)2
= nE

(n)
ϑ

(∫ ϑ+u2ϕn

ϑ+u1ϕn

ln
ψn(t)

ψn(t) + rn
dY

(n)
j (t)

)2

+ n2

(∫ ϑ+u2ϕn

ϑ+u1ϕn

((
ψn(t) + rn

)
ln

ψn(t)

ψn(t) + rn
+ rn

)
dt

)2

= E1 + E2

with obvious notations.
Using elementary inequalities ln(1 + x) ≤ x and ln(1 + x) ≥ x− x2/2 for |x| < 1/2, for

sufficiently large values of n (such that rn
ψn(t)+rn

< rn
ℓ
< 1/2) we obtain

− rn
ψn(t) + rn

− r2n

2
(
ψn(t) + rn

)2 ≤ ln
ψn(t)

ψn(t) + rn
≤ − rn

ψn(t) + rn
. (14)

For E1, if rn ≤ 0, we obtain

E1 = n

∫ ϑ+u2ϕn

ϑ+u1ϕn

(
ln

ψn(t)

ψn(t) + rn

)2
(ψn(t) + rn) dt

≤ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

r2n
ψn(t) + rn

dt ≤ n
(u2 − u1)r

2
nϕn

ℓ
=

|u1 − u2|
ℓ

.

As to the case rn ≥ 0, as rn
ψn(t)+rn

< 1/2, we have

E1 = n

∫ ϑ+u2ϕn

ϑ+u1ϕn

(
ln

ψn(t)

ψn(t) + rn

)2
(ψn(t) + rn) dt

≤ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

[
r2n

ψn(t) + rn
+

r3n
(ψn(t) + rn)2

+
r4n

4(ψn(t) + rn)3

]
dt

≤ n

∫ ϑ+u2ϕn

ϑ+u1ϕn

r2n
ψn(t) + rn

[
1 +

1

2
+

1

16

]
dt ≤ 25 |u1 − u2|

16ℓ
.

For E2, we have

−r
2
n

2ℓ
≤ − r2n

2(ψn(t) + rn)
≤
(
ψn(t) + rn

)
ln

ψn(t)

ψn(t) + rn
+ rn ≤ 0,

and hence

E2 = n2

(∫ ϑ+u2ϕn

ϑ+u1ϕn

((
ψn(t) + rn

)
ln

ψn(t)

ψn(t) + rn
+ rn

)
dt

)2

≤ n2

(∫ ϑ+u2ϕn

ϑ+u1ϕn

r2n
2ℓ

dt

)2

=
(u2 − u1)

2

4ℓ2
.
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Thus, for sufficiently large values of n, we have

E
(n)
ϑ

(
lnZn,ϑ(u1)− lnZn,ϑ(u2)

)2 ≤ 25 |u1 − u2|
16ℓ

+
(u2 − u1)

2

4ℓ2
.

In the case u1, u2 ≤ 0, proceeding similarly, we obtain the same inequality.
Finally, in the case u1u2 < 0 (say u1 < 0 and u2 > 0), we obtain

E
(n)
ϑ

(
lnZn,ϑ(u1)− lnZn,ϑ(u2)

)2 ≤ 2E
(n)
ϑ

(
lnZn,ϑ(u1)

)2
+ 2E

(n)
ϑ

(
lnZn,ϑ(u2)

)2

≤ 25 |u1|
8ℓ

+
u21
2ℓ2

+
25 |u2|
8ℓ

+
u22
2ℓ2

=
25

8ℓ

(
|u1|+ |u2|

)
+

1

2ℓ2
(
u21 + u22

)

≤ 25 |u1 − u2|
8ℓ

+
(u2 − u1)

2

ℓ2
.

Note that this final inequality holds for all the three cases, and so

P
(n)
ϑ

(
|lnZn,ϑ(u1)− lnZn,ϑ(u2)| > ε

)
≤ 25 |u1 − u2|

8ε2ℓ
+

(u2 − u1)
2

ε2ℓ2
(15)

for all u1, u2 ∈ Un and sufficiently large values of n. Hence,

lim
n→+∞

sup
|u1−u2|<h

P
(n)
ϑ

(
|lnZn,ϑ(u1)− lnZn,ϑ(u2)| > ε

)
≤ 25h

8ε2ℓ
+

h2

ε2ℓ2
→ 0

as h→ 0, and so, the lemma is proved.

Proof of Lemma 8. It is sufficient to establish the inequality (9) with the sup taken over
u > 0 only. Indeed, the case u < 0 can be treated similarly, and then the lemma will hold
(with two times grater C) since

P
(n)
ϑ

(
sup

D≤|u|≤D+1

Zn,ϑ(u) > e−bD
)

≤ P
(n)
ϑ

(
sup

D≤u≤D+1
Zn,ϑ(u) > e−bD

)
+P

(n)
ϑ

(
sup

−D−1≤u≤−D
Zn,ϑ(u) > e−bD

)

≤ 2Ce−bD.

Note also, that it is sufficient to prove the lemma for all D ≥ D0 only, where D0 > 0
is some fixed constant, the choice of which will be specified later. Indeed, for the case
0 ≤ D ≤ D0, we can write

P
(n)
ϑ

(
sup
|u|>D

Zn,ϑ(u) > e−bD
)

≤ 1 ≤ ebD0e−bD,

and so the lemma will hold for all D ≥ 0 by adapting, if necessary, the constant C so that
we have C ≥ ebD0 .
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We fix equally some constant b > 0. The choice of this constant will also be specified
later. Denoting ⌊A⌋ the integer part of A, we split the interval [D,D+1] into γ = ⌊ebD⌋+1
parts with the length of each part equal to h = γ−1 ≤ e−bD. We have the inequality

P
(n)
ϑ

(
sup

D≤u≤D+1
Zn,ϑ(u) > e−bD

)

= P
(n)
ϑ

(
max

0≤k≤γ−1

[
lnZn,ϑ(D + kh)

+ sup
u∈[D+kh ,D+(k+1)h]

(
lnZn,ϑ(u)− lnZn,ϑ(D + kh)

)]
> −bD

)

≤ P
(n)
ϑ

(
max

0≤k≤γ−1
lnZn,ϑ(D + kh) > −2bD

)

+P
(n)
ϑ

(
max

0≤k≤γ−1
sup

u∈[D+kh ,D+(k+1)h]

(
lnZn,ϑ(u)− lnZn,ϑ(D + kh)

)
> bD

)

= P1 + P2

with obvious notations.
For the term P1, using Lemma 4, we have

P1 ≤
γ−1∑

k=0

P
(n)
ϑ

(
Z

1
2
n,ϑ(D + kh) > e−bD

)

≤
γ−1∑

k=0

ebDE
(n)
ϑ Z

1
2
n,ϑ(D + kh)

≤
γ−1∑

k=0

ebDe−k∗(D+kh)

≤ (ebD + 1) ebDe−k∗D ≤ 2e2bDe−k∗D ≤ 2e−bD

if we choose b ≤ k∗/3.
For the term P2, we have

P2 ≤
γ−1∑

k=0

P
(n)
ϑ

(
sup

u∈[D+kh ,D+(k+1)h]

(
lnZn,ϑ(u)− lnZn,ϑ(D + kh)

)
> bD

)

≤
γ−1∑

k=0

P
(n)
ϑ

(
sup

u∈[D+kh ,D+(k+1)h]

∣∣lnZn,ϑ(u)− lnZn,ϑ(D + kh)
∣∣ > bD

)

=

γ−1∑

k=0

P2,k

with obvious notations.
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Looking at the representation (3), it becomes clear that the process lnZn,ϑ has its jumps

at the points uj,i = ϕ−1
n (tj,i−ϑ) and the size of each jump is given by

∣∣ln ψn(tj,i)

ψn(tj,i)+rn

∣∣. Hence,
using the inequalities (14), we see that for sufficiently large values of n (both in the cases
rn > 0 and rn < 0) the size of the jumps of the process lnZn,ϑ is bounded by

sup
t∈[0,τ ]

∣∣∣∣ln
ψn(t)

ψn(t) + rn

∣∣∣∣ ≤
|rn|
ℓ

+
r2n
2ℓ2

→ 0.

So, we can find n0 ∈ N such that for all n ≥ n0, the jumps of the process lnZn,ϑ are all
smaller than bD0/3 (and, in particular, smaller than bD/3 for all D > D0). Hence,

P2,k = P
(n)
ϑ

(
sup

u∈[D+kh,D+(k+1)h]

∣∣lnZn,ϑ(u)− lnZn,ϑ(D + kh)
∣∣ > bD

)

≤ P
(n)
ϑ

(
sup
u,v,w

min
{∣∣lnZn,ϑ(v)− lnZn,ϑ(w)

∣∣,
∣∣lnZn,ϑ(u)− lnZn,ϑ(v)

∣∣
}
>
bD

3

)

where the supremum is taken over the set
{
u, v, w : D + kh ≤ w < v < u ≤ D + (k + 1)h

}
.

The last probability will be estimated with the help of the corollary of [10, Lemma
6.5.3] (page 432). For this, we introduce

αn(h, ε) = supP
(n)
ϑ

(∣∣lnZn,ϑ(u)− x
∣∣ > ε

∣∣∣ lnZn,ϑ(v) = x
)

where the supremum is taken over u, v ∈ Un such that v < u ≤ v + h and x ∈ R.
As lnZn,ϑ(u) has independent increments, and using the inequality (15), we have

αn(h, ε) = sup
u,v : |u−v|≤h

P
(n)
ϑ

(∣∣lnZn,ϑ(u)− lnZn,ϑ(v)
∣∣ > ε

)

≤ sup
u,v : |u−v|≤h

(
25 |u− v|

8ε2ℓ
+

(u− v)2

ε2ℓ2

)
≤ 25h

8ε2ℓ
+

h2

ε2ℓ2
.

If we suppose D ≥ D1 = 12/b, we have bD/12 ≥ 1 and, noting that h ≤ 1, we obtain

α∗
n = αn

(
h,
bD

12

)
≤ 25h

8ℓ
+
h2

ℓ2
≤
(
25

8ℓ
+

1

ℓ2

)
h ≤

(
25

8ℓ
+

1

ℓ2

)
e−bD.

If we suppose, moreover, D ≥ D2 = 1
b
ln
(
25
4ℓ

+ 2
ℓ2

)
, we will also have α∗

n ≤ 1/2 < 1. So,
using the above mentioned corollary, we obtain

P2,k ≤
α∗
n

(1− α∗
n)

2
P

(n)
ϑ

(∣∣∣lnZn,ϑ
(
D + (k + 1)h

)
− lnZn,ϑ(D + kh)

∣∣∣ > bD

12

)

≤ α∗
n
2

(1− α∗
n)

2
≤ 4α∗

n
2.

27



Returning to the term P2, we get

P2 ≤
γ−1∑

k=0

P2,k ≤ 4γα∗
n
2 ≤ 4γ

(
25

8ℓ
+

1

ℓ2

)2

h2 =

(
25

4ℓ
+

2

ℓ2

)2

h ≤ C1e
−bD

where we denoted C1 =
(
25
4ℓ

+ 2
ℓ2

)2
.

So, fixing an arbitrary b ∈ (0, k∗/3] and putting D0 = max{D1, D2}, we have

P
(n)
ϑ

(
sup

D≤u≤D+1
Zn,ϑ(u) > e−bD

)
≤ (2 + C1)e

−bD

for all D ≥ D0, ϑ ∈ K and sufficiently large values of n, and Lemma 8 is hence proved.
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