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ORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE

DELTOID CURVE

OLFA ZRIBI

Abstract. We study a family of bivariate orthogonal polynomials as-
sociated to the deltoid curve. These polynomials arise when classify-
ing bivariate diffusion operators that have discrete spectral decomposi-
tion given by orthogonal polynomials with respect to some compactly-
supported probability measure on the interior of the deltoid curve.

Keywords : orthogonal polynomials, diffusion processes, deltoid, root
systems.

MSC classification : 47D07, 33C45, 33C50, 33C52, 60H99.

1. Introduction

Orthogonal polynomials in the interior of the deltoid curve is one exam-
ple of the 11 families of orthogonal polynomials on a compact domain in
dimension 2 which are at the same time eigenvectors of an elliptic diffusion
operators, see [2]. It is also one of the most intriguing one, and have been
put forward by Koornwinder [12, 13, 14], (see also [24], [16]). This fam-
ily of bivariate polynomials depends on a parameter α : if P (X,Y ) is the
algebraic equation of the boundary of Ω, so that P (X,Y ) > 0 on Ω, then
the measure has density CαP (X,Y )α with respect to the Lebesgue measure.
Here, α > −5/6, as we shall see below (Proposition 4.5).

The two special cases α = 1/2 and α = −1/2 play a special role and
have been particularly investigated, see [3, 7] and also [22, 23] for a spectral
point of view. The first one is the image of the Euclidean Laplace operator
through the symmetries of the triangular lattice, and the second one is the
image of the Casimir operator on SU(3) through the spectral decomposi-
tion. It is of course not a surprise, since the root system of SU(3) is A2,
which corresponds to the triangular lattice (see [4, 5, 6, 15, 10, 21]). Those
two cases are referred below as the geometric cases. The analysis of the
geometric cases provides some insight on the general model. Therefore, al-
though this aspect is quite well documented (see [3], [7]), we present them in
detail from the point of view of symmetric diffusion operators for the sake
of completeness. Moreover, these models will provide us efficient insights
towards the general situation, since the study of the general family is more
delicate. In the core of the paper, we derive recurrence formulae for the
generic measures, which, as is the case in dimension 1, turn out to be a 3
term recurrence formula (although such a simple form is not to be expected
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in general in dimension 2). Those recurrence formulae take a particularly
simple form in the two geometric cases.

As mentioned above, the study of the two specific geometric cases lead
to simple representations of the eigenvectors. In the Euclidean case (α =
−1/2), we have a very simple presentation of the eigenvectors. The SU(3)
case (α = 1/2) leads to a representation of the eigenvectors through the
representation of the symmetric group, associated with Young diagrams (see
[11]). Finally, we derive in the general case partial generating functions,
leading to another representation of the orthogonal polynomials, which also
provides a complete generating function in the two geometric cases.

The paper is organized as follows : Section 2 is a short presentation of the
general setting of symmetric diffusion processes associated with orthogonal
polynomials, mostly inspired from [1] and [2]. In Section 3, we give the
explicit formulae for the measure and the generator associated to the Deltoid
model, and introduce the complex variables in which the operator takes
a much simpler form, leading to the explicit values for the eigenvalues of
the operator. Section 4 is the presentation of the Euclidean case (that
is the case α = −1/2), while Section 5 presents the SU(3) case, that is
α = 1/2. Section 6 concentrates on recurrence formulae in the general case,
and Section 7 provides some representation of the eigenvectors, first in the
geometric cases and then (but only partially for the generating functions)
in the general case.

2. Orthogonal polynomials and diffusion generators

Let Ω be an open bounded domain in Rd, d ≥ 1, with piecewise smooth
boundary, and let µ a probability measure on Ω. Recall from p. 32 in [24]
that a family of polynomials Pτ : Rd 7→ R is orthogonal in L2(Ω, µ) if

∫

Pτ (x)Pτ ′(x)µ(dx) = 0

where τ = (τ1, · · · , τd) ∈ Nd is a multi-index, whenever |τ | := τ1 + · · · +
τd 6= τ ′1 + . . . τ ′d = |τ ′|. In contrast to the real one variable setting, this
family needs not to be unique in higher dimensions due to various orders
one may choose when applying the Gram-Schmidt process to the canonical
basis (xτ11 . . . xτdd )τ∈Nd (see the bottom of p.31 in [24]). However, in many
situations, there are natural choices for this family orthogonal polynomials.
In particular, it may happen that they are also eigenvectors of some diffusion
differential operator. This is the case for the classical family of orthogonal
polynomials in dimension 1, Hermite, Laguerre and Jacobi (although only
the last one corresponds to a bounded domain, see [19]).

On the other hand, when solving stochastic differential equations in prob-
ability theory, one is often led to consider second order differential operators
on Ω which are symmetric with respect in L2(µ), at least when one restricts
it’s attention to the set C∞

c (Ω) of smooth functions compactly supported in
2



Ω. When µ has a smooth positive density on Ω, these operators may be
represented as

(1) Lf :=
1

ρ

d
∑

k,j=1

∂k (gkjρ∂jf) =
d

∑

k,j=1

gkj∂
2
kjf +

d
∑

j=1

bj∂jf

where g = (gkj(x))
d
k,j=1, x ∈ Ω is a symmetric non negative matrix depend-

ing smoothly on x ∈ Ω and

bj =
1

ρ

d
∑

k=1

∂k(gkjρ), j ∈ {1, . . . , d}.

The coefficients bj(x) are called the drift terms of the operator L.
We call such operators symmetric diffusion operators. They are related

to Markov diffusion processes (Xt) with values in Ω through the fact that

for any smooth function f , the processes f(Xt) −
∫ t
0 Lf(Xs) ds is a (local)

martingale. When the operator L is essentially self-adjoint, then this entirely
characterizes the law of the processus (Xt) (at least as long as we only
consider the finite dimensional marginals). The operator L is called the
infinitesimal generator of the process (Xt).

Working with such diffusion operators, it is often convenient to introduce
the so called carré du champ operator

Γ(f, g) =
1

2

(

L(fg)− fLg − gLf),

and observe that L is entirely determined from the knowledge of Γ and µ
through the integration by parts formula

∫

Ω
fLg dµ =

∫

Ω
gLf dµ = −

∫

Ω
Γ(f, g) dµ,

valid at least when f and g are smooth and compactly supported in Ω.
Moreover From the representation (1), it is immediate that bi(x) = L(xi)
and gij = Γ(xi, xj).

More generally, the change of variable formula, valid for any smooth Φ :
Rk 7→ R, and any k-uple f = (f1, · · · , fk) of smooth functions, reads

(2) L(Φ(f)) =
∑

i

∂iΦ(f)Lfi +
∑

ij

∂2
ijΦ(f)Γ(fi, fj).

In particular, whenever for i = 1, · · · , k, there exist functions Bi and Gij

such that Lfi = Bi(f) and Γ(fi, fj) = Gij(f), one has

(3) L
(

Φ(f)
)

= (L1Φ)(f)

where L1 is the new diffusion operator acting on the image of Ω under the
function f (which is not necessary a local diffeomorphism), as

L1(Φ) =
∑

ij

Gij(x)∂
2
ijΦ+

∑

i

Bi(x)∂iΦ,

which is called the image of L under the function f .
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In the probabilistic interpretation, if (Xt) is the stochastic process with
generator L, then f(Xt) is again a diffusion Markov process with generator
L1. In particular, the operator L1 is symmetric with respect to the image
measure of ρ under the map f , which, following equation (1) may be often a
efficient way to determine the image measure. When such situation occurs,
we shall say that L projects onto L1.

In what follows, we restrict for simplicity to the case where the matrix
g(x) is positive definite on Ω. It is then natural to raise the question of de-
termining when such L may be extended as a self adjoint operator (see [25])
with spectral decomposition given by a family of orthogonal polynomials
with respect to µ. In other words, one wants to determine for which choice
of ρ and g there is a complete family of µ-orthogonal polynomials which are
at the same time eigenvectors for L. This will produce a natural choice for
a basis of orthogonal polynomials.

It turns out that the general answer to this question is the following :
the functions gij(x) are polynomials with degree at most two, and the

boundary ∂Ω is included in the algebraic set {det(g) = 0}. More precisely if
P (x) denotes the irreducible equation of the boundary ∂Ω, then there exists
a family of degree 1 polynomials Li(x) such that for any i, the algebraic
equation

(4)
∑

j

gij∂jP = LiP.

Moreover, the sets of admissible density measures ρ are entirely described
from the algebraic structure of the boundary. In particular, when the deter-
minant det(g) is irreducible, the only admissible density measures ρ are
C(λ)det(g)λ, for any real λ such that ρλ is L1(Ω, dx), (see [2]). Once
the boundary ∂Ω is given through it’s irreducible equation, the coefficients
(gij)(x) are entirely determined from equation (4). It turns out that they
are in general unique up to some scaling factor.

3. The deltoid model

In dimension 2, up to affine transformations, there are only 11 bounded
sets Ω on which there exist a symmetric diffusion operator for which the
associated eigenvectors are orthogonal polynomials with respect to the re-
versible measure (see [2]) . One of the most intriguing one is the interior of
the deltoid curve, which is a degree 4 algebraic curve with equation

P (x) = (x21 + x22)
2 + 18(x21 + x22)− 8x31 + 24x1x

2
2 − 27 = 0.

For this particular choice, the matrix (gij)(x) is unique up to some scaling
factor, and is given by
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(5)











g11(x1, x2) = −(3x21 − x22 − 6x1 − 9)

g12(x1, x2) = −2x2(2x1 + 3)

g22(x1, x2) = −(3x22 − x21 + 6x1 − 9)

Whence we deduce that det(g) = −3P (x). Moreover, in this representation,
for the measure µ(dx) = c(α)|P (x)|αdx, the drift terms in the equation read

(6) b1(x1, x2) = −2(6α+ 5)x1, b2(x1, x2) = −2(6α+ 5)x2.

The general operator L(α) on the interior of Deltoid curve for which a
family of orthogonal polynomial is formed of eigenvectors of L(α) is therefore
given by

L(α) = g11(x1, x2)∂
2
1 + g22(x1, x2)∂

2
2 + 2g12(x1, x2)∂

2
1,2

−2(6α+ 5)x1∂1 − 2(6α+ 5)x2∂2

with associated measure c(α)ραdx, with

ρ =
1

3
det(g) = −(x21 + x22)

2 − 18(x21 + x22) + 8x31 − 24x1x
2
2 + 27.

As long as we only deal with polynomials, it turns out that it is simpler to
use complex variables. Indeed, let Z = x1+ ix2 and conjugate Z = x1− ix2,
then the generator is entirely characterized by

(7)



















Γ(Z,Z) = −4Z2 + 12Z,

Γ(Z,Z) = −2ZZ + 18,

Γ(Z,Z) = −4Z
2
+ 12Z,

L(α)Z = −2(6α+ 5)Z,L(α)Z = −2(6α+ 5)Z.

We can simplify the operator by setting Z = 3Z1, Z̄ = 3Z̄1 and multiply-
ing L(α) by 1/4, which does not change the eigenvectors and multiply the
eigenvalues by 1/4. This gives

(8)



















Γ(Z,Z) = Z − Z2,

Γ(Z,Z) = 1/2(1− ZZ),

Γ(Z,Z) = Z − Z
2
,

L(α)Z = −1/2(6α+ 5)Z,L(α)Z = −1/2(6α+ 5)Z.

In particular, giving a particular role to the case α = −1/2, one has

(9) L(α) = L(−1/2) − 3

2
(2α+ 1)(Z∂Z + Z∂Z).

This model has been studied by [12, 13], where the relationship with homo-
geneous spaces of rank 2 and root system A2 has been put forward. Observe
that the case λ = −1/2 corresponds to the Laplace-Beltrami operator asso-
ciated with the Riemannian metric g−1 associated with the inverse matrix
of the matrix g.
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Our aim here is to study the associated orthogonal polynomials together
with the associated eigenvalues, and various representations for it. Indeed,
this family belongs to the larger class of Hall polynomials associated with
root systems (here the root system A2) (see [18]), and our aim here is to
present some properties of these polynomials specific for this model.

4. L(−1/2) as a projection of the Euclidean Laplacian.

As already mentioned, the case α = −1/2 corresponds to the Laplace-
Beltrami operator associated to the inverse matrix g−1. If one computes the
associated curvature (here, in dimension 2, the scalar curvature is sufficient
to characterize the metric), we may observe that it vanishes, and therefore it
is not much surprising that the operator is the image, in the sense described
in Section 2, of the ordinary Laplace operator in R2.

In order to perform this identification, we first start by some remarks on
the Deltoid curve.

Figure 1. The deltoid domain.

It represented by the following parametric equations :

x1(θ) = 2 cos θ + cos 2θ, x2(θ) = 2 sin θ − sin 2θ

In complex notations z(θ) = x1(θ) + ix2(θ) = 2eiθ + e−2iθ.
We shall denote Ω the interior of the deltoid curve, and our aim is to

identify the above operator L(−1/2) as the image of the laplace operator ∆
on R2 through the action of some function Z : R2 7→ Ω is the sense described
above.

To proceed, we shall first use the change of variables formula to see that

L(−1/2)(f)(X,Y ) = ∆[f(X,Y )],
6



where (X,Y ) : R2 7→ Ω, or in complex notations

L(−1/2)(f)(Z,Z) = ∆[f(Z,Z)]

where
Z = X + iY, Z = X − iY.

So that we are looking for some functions Z : R2 7→ Ω satisfying :

Γ∆(Z,Z) = ∇Z · ∇Z = −Z2 + Z,Γ∆(Z,Z) = ∇Z · ∇Z = 1/2(1− ZZ)

Γ∆(Z,Z) = ∇Z · ∇Z = −Z
2
+ Z,

∆Z = −Z,∆Z = −Z.

In what follows, for any β ∈ R2 ≈ C, eβ(x) denotes the function R2 7→ C,

x 7→ ei(β·x)

Proposition 4.1. Let β1, β2, β3 ∈ R2 three vectors satisfying

βk · βk = 1, βk · βl = −1

2
, l 6= k.

and let

Z(x) =
3

∑

k=1

eβk
,

Then, one has
∆(Z) = −Z, ∆(Z) = −Z,

and

Γ(Z,Z) = −Z2 + 3Z,Γ(Z,Z) =
1

2
(9− ZZ),Γ(Z,Z) = −Z

2
+ 3Z.

Proof. — Splitting eβk
(x), k ∈ {1, 2, 3} into a real and imaginary parts, one

derives
[∇eβk

· ∇eβl
] = −(βk · βl)eβk+βl

for all l, k ∈ {1, 2, 3}. As a result

Γ(Z,Z) = −
∑

k,l

(βk · βl)eβk+βl

= −
[

3
∑

k=1

e2βk
−
∑

k<l

eβk+βl

]

= −
[

Z2 − 3
∑

k<l

eβk+βl

]

.

But one easily checks that

3
∑

k=1

βk ·
3

∑

k=1

βk = 0

so that β1 + β2 + β3 = 0 yielding Γ(Z,Z) = −Z2 + 3Z. Finally

Γ(Z,Z) = 3−
3

∑

k 6=l

eβk−βl
= 3− (

ZZ − 3

2
).

The identification is obtained changing (Z,Z) into (Z/3, Z/3).
7



Remark 1. The assumption βk · βl = −1/2, k 6= l is by no means a loss of
generality. Indeed, if one rather assumes that βk · βl = c ∈ (−1, 1) then one
may take β1 = 1 due to the rotation invariance of our conditions. But then
β1 · β2 = β1 · β3 forces both first coordinates of β2, β3 to be equal c, while the
fact that the vectors have unit length entails

β2 = c+ i
√

1− c2, β3 = c− i
√

1− c2.

Together with β2 · β3 = c show that c to be a root of 2c2 − c − 1 yielding
finally c = −1/2. Hence β1 = 1, β2 = j, β3 = j2, the cubic roots of the unit,
up to an orthogonal transformation.

From now on, with no loss of generality, we shall assume that (β1, β2, β3) =
(1, j, j2).

One immediately sees that Z is invariant under the action (by translation)
of the lattice L generated by 4πβ1, 4πβ2,

L = 4πZβ1 + 4πZβ2,

by rotation with 2π/3 angles and by symmetry with respect to the lines
Rβk. One may also observe that it is invariant under the symmetry with
respect to the horizontal line {y = 2π/

√
3}. From this, one sees that Z is

also invariant under the symmetries with respect of the lines of the regular
triangular lattice L1 whose fundamental domain is the regular triangle A
whose vertices are (0, 0), (4π/3, 0), (4π/3)eiπ/3 (see below). We shall say in
the sequel that a function having those invariance have the symmetries of
the lattice L1.

Equivalently, Z is invariant under the action of the dihedral group D3

of affine type ([10]). As a matter of fact, Z is uniquely determined by its
restriction to A.
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The lattice of regular triangles L1.

A
0 4π/3

Proposition 4.2. Z is a one-to-one map from ∂A onto D = ∂Ω and from
A onto Ω. In particular, it maps the whole plane onto Ω.
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Proof. — Recall the parametric equation of D written in complex notations

z(θ) = 2eiθ + e−2iθ

so that z(θ) = Z(−2θ, 0), where θ runs over any interval of length 2π. Then
the invariance of Z under rotations of angles ±2π/3 shows that the images
of the intervals

[−4π/3, 0], [4π/3, 8π/3]

coincides with the images of the oblique edges of A (the cusps of D are the
images of {θ = 0, 4π/3, 8π/3}). Thus Z maps ∂A onto D and it is easy to
check from the complex parametrization of D that Z is one-to-one there.
Combined with the compactness of A and the continuity of Z, we deduce
that Z maps A into Ω. But then Z(A) = Ω since otherwise Ω would not
be simply connected, which leads to a contradiction. Now, we shall use the
following parametrization of Ω:

Z(x1, x2) = eix1 + 2e−i
x1
2 cos(

√
3

2
x2), x = (x1, x2) ∈ A.

For fixed x1 ∈ [0, 2π/3], the image by Z of the vertical segments

[(x1, 0), (x1,
√
3x1)] ∈ A

is the line segment I(x1) = [A(x1), B(x1)] where

A(x1) = (cos(x1) + 2 cos(
x1
2
), sin(x1)− 2 sin(

x1
2
))

B(x1) = (2 cos(x1) + cos(2x1), 2 sin(x1)− sin(2x1)).

Thus, the coordinates of A(x1) are decreasing as functions of the variable
x1 while those of B(x1) are decreasing and increasing respectively. Equiva-
lently, A(x1) runs over the half part of the lowest branch of D starting from
(3, 0) while B(x1) runs over the whole highest one since clearly B(x1) =
A(−2x1). As a matter of fact, two line segments I(x1), I(x

′
1), 0 ≤ x1 6= x′1 ≤

2π/3 never intersect. A similar reasoning applies when x1 ∈ [2π/3, 4π/3]
and the segment [x1,−

√
3x1 + 4π/

√
3], A(x1) runs over the remaining half

part of the lowest branch while B(x1) runs over the whole third one. As a
matter of fact, Z is a one-to-one from A onto Ω. Finally, A is a fundamental
domain for the action of the affine group D3 on R2 so that every x ∈ R2 is
conjugated to a unique element of A. The proposition is proved. �

F_t

A B

C

E_t
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We are now in situation to identify the operator L(−1/2) as an image of
the 2-dimensional Laplace operator acting on functions which are invariant
under the symmetries of the lines in the triangular lattice.

Proposition 4.3. A measurable function f : R2 7→ R have the symmetries
of the lattice L1 if and only if it may be written f = g(Z), where g : Ω 7→ R

is a measurable function.
Moreover, when f ∈ C2, then we may chose g ∈ C2, in which case

(10) ∆(g(Z)) = L(−1/2)(g)(Z).

In other words, L(−1/2) is nothing else than the 2-dimensional Laplace op-
erator acting on set of functions having the symmetries of the lattice L1.

Proof. — If we denote by Z−1 the inverse map Ω 7→ A of the restriction of
Z to A, then we just set g = f ◦ Z−1.

Moreover, the change of variable formula (2) and formulae given in Propo-
sition 4.1 give immediately (10).

Remark 4.4. It is worth to remark that if we set that Z = z1 + z2 + z3,
where zi are complex numbers such that |zi| = 1 and z1z2z3 = 1, then

ρ = −3(z1 − z2)
2(z2 − z1)

2(z3 − z1)
2.

Indeed, if ρ(x, y) is the determinant of the matrix (gij) written in (x1, x2)
coordinates, one sees that, in (Z, Z̄) coordinates, it may be written as

1

4

(

Γ(Z, Z̄)2 − Γ(Z,Z)Γ(Z̄, Z̄)
)

,

which gives

(11) ρ = 12(Z3 + Z
3
)− 3Z2Z

2 − 54ZZ + 81

Using remark 4.4 and the above diffeomorphism between the deltoid and
the triangle, one obtains

Proposition 4.5. The function det(g)α on the deltoid is integrable with
respect to the Lebesgue measure if and only if α > −5/6.

In the sequel, we shall always set λ = 1
2(6α+ 5).

Proof. — By the change variables formula we have
∫

D
det(g)αdx1dx2 =

∫

A
det(g)α+

1

2dx1dx2

= (−3)α+
1

2

∫

A
((z1 − z2)(z2 − z3)(z3 − z1))

2α+1dx1dx2

where z1 = eiθ1 , z2 = eiθ2 , z3 = eiθ3 and θ1 = x1, θ2 = −x1

2 +
√
3x2

2 , θ3 =

−(θ1 + θ2) = −x1

2 −
√
3x2

2

10



A rapid inspection of the integrability condition for this function on the
triangle shows that, near the boundary and outside the corners of the trian-
gle, the integrability condition is α > −1, while at the corner of the triangles,
the condition is more restrictive. Indeed, for the integrability of the measure
near the point (0, 0), then (z1 − z2)(z2 − z3)(z3 − z1)) ≃ −i34

√
3x2(x

2
2 − 3x21)

and if we set x2 =
√
3tx1, t ∈ [0, 1] we have det(g)α+

1

2 ≃
(

− 27
4 t

2x61(1 −
t2)2

)α+ 1

2 , which is integrable for the measure tdtdx1 if and only if α > −5
6 .

5. The L(1/2) as a projection of the Casimir operator on SU(3)

Let G be a compact semi simple Lie linear group with Lie algebra L , seen
at the tangent space at Id for G, with Lie bracket [A,B] (see [9]). On L,
the Killing form is a scalar product defined by 〈A,B〉 = −trace (A.B) . On
the other hand, to any A ∈ L is associated a vector field XA on G defined
as XA(f)(g) = ∂t |t=0 f(getA). Given an orthonormal basis (A1, · · · , Ad)
in L with respect to the Killing form, the Casimir operator is defined as
∆G =

∑

iX
2
Ai
. It is also the Laplace-Beltrami operator on G when G in-

herits the Riemannian structure from the Killing form in L. ∆G is a second
order differential operator in the sense that it satisfies the change of vari-
able formula (2). We shall denote by ΓG the corresponding carré du champ
operator.

The Casimir operator commutes with the Lie group action. More pre-
cisely, if, for g ∈ G and for any function f : G 7→ R, one defines the right
action Rg(f)(k) = f(kg), then ∆GRg = Rg∆G , and the same holds true for
the left action Lg(f)(k) = f(gk).

In order to entirely determine the action of ∆G on functions of G, it
is enough to compute ∆G(fi) and ΓG(fi, fj) for a set of functions which
generates all functions on G (say as σ-algebras). Once again, it could be
helpful to consider complex valued functions, and on SU(n), if one represents
g as a matrix (zij) with complex entries, we shall consider the coordinates
g 7→ zij and g 7→ zij as generating functions.

When performing the above computations in SU(n), one ends up with
the following formulae

∆SU(n)(zkl) = −2
(n− 1)(n+ 1)

n
zkl, ∆SU(n)(z̄kl) = −2

(n− 1)(n+ 1)

n
z̄kl,

ΓSU(n)(zij , zkl) = −2zilzkj +
2

n
zijzkl, ΓSU(n)(zij , zkl) = −2zilzkj +

2

n
zijzkl,

ΓSU(n)(zij , zkl) = 2(δikδjl −
1

n
zijzkl).

11



For any p ∈ Z, consider the functions SU(n) 7→ C: Tp(g) = trace (gp).
For p ≥ 1, one has

(12) Tp(g) =

n
∑

i1,··· ,ip=1

zi1i2zi2i3 · · · zipi1 ,

while the same formula holds for p ≤ −1 replacing zij by zij (and of course

T−p = T p). From the change of variable formula, one has, for any m-uple of
functions (f1, · · · , fm) and any diffusion generator L

(13) L(f1 · · · fm) = f1 · · · fm
(

m
∑

i=1

Lfi
fi

+
m
∑

i,j=1

Γ(fi, fj)

fifj
−

m
∑

i=1

Γ(fi, fi)

f2
i

)

,

and, for any m-ulple (f1, · · · , fm) and any k-uple (g1, · · · , gk)

Γ(f1 · · · fm, g1 · · · gk) = f1 · · · fmg1 · · · gk
(

m
∑

i=1

k
∑

j=1

Γ(fi, gj)

figj

)

.

Applying these to the explicit expression (12) of Tp, one gets, for p ≥ 1

(14) ∆SU(n)Tp = −p
(

2(
n2 − p

n
)Tp +

p−1
∑

i=1

TiTp−i

)

,

with the conjugate formula for p ≤ −1, while, for any p, q ∈ Z

(15) ΓSU(n)(Tp, Tq) = 2|pq|
(TpTq

n
− Tp+q

)

.

In particular, if we set Z = T1, Z = T−1. Then

(16) ∆SU(n)Z = −2
n2 − 1

n
Z,∆SU(n)Z = −2

n2 − 1

n
Z,

and

ΓSU(n)(Z,Z) = 2(Z
2

n − T2), ΓSU(n)(Z,Z) = 2(Z
2

n − T 2),(17)

ΓSU(n)(Z,Z)) = 2(3− ZZ
n ).(18)

Now, consider more precisely the case n = 3. For any matrix in SU(3), if
(µ1, µ2, µ3) denote its eigenvalues, Tp = µp

1 + µp
2 + µp

3. The µi are complex
numbers with |µi| = 1 and µ1µ2µ3 = 1. With Z = µ1 + µ2 + µ3, they are
solution of the equation

X3 − ZX2 + ZX − 1 = 0,

and multiplying this by Xp and summing over the three values µ1, µ2, µ3,
one gets for any p ∈ Z

(19) Tp+3 − ZTp+2 + ZTp+1 − Tp = 0,
12



which, for p = −1 gives T2 = Z2−2Z, and similarly T 2 = Z
2−2Z. Replacing

this values in (16) and (17) lead to

∆SU(3)Z = −16

3
Z, ∆SU(3)(Z) = −16

3
Z

and

ΓSU(3)(Z,Z) =
4

3
(3Z − Z2),ΓSU(3)(Z,Z) =

4

3
(3Z − Z

2
),

ΓSU(3)(Z,Z) =
2

3
(ZZ − 9).

It remains to replace Z by Z/3 to observe that 3
4∆SU(3), acting on functions

of (Z,Z) is nothing else than L(1/2) and λ = 4. Observe also that the
functions on SU(3) which depend only on (Z,Z) are exactly those functions
which depend only on the spectrum of the matrix g ∈ SU(3), that is the
functions which are invariant under g 7→ h−1gh, for any h ∈ SU(3). Indeed,
as long as polynomials are concerned, those functions are exactly functions
depending only on the traces Tp, p ∈ Z, and formula (24) shows that these

functions are again polynomials in the variables (Z,Z).

6. Eigenvalues and eigenvectors

We proceed now to the determination of the eigenvalues of L(α), and give
a recurrence formula for the corresponding eigenvectors.

In dimension 1, it is well known (and easy to check) that for any proba-
bility measure for which the polynomials are dense in L2(µ), the unique (up
to the sign) associated sequence of orthogonal polynomials satisfies a 3 term
recurrence formula (see [20]), usually written under the form

xPn = anPn+1 + bnPn + an−1Pn−1.

It is not the case in dimension 2, since one then would get in general a
recurrence formula involving at each step n an increasing number of terms.
Indeed, if, for each degree n, one denotes by Pn the space of polynomials of
total degree less than n and byHn the space of polynomials in Pn orthogonal
to Pn−1, one has for any polynomial orthogonal polynomial P ∈ Hn

x1P = Qn+1 +Qn +Qn−1, x2P = Rn+1 +Rn +Rn−1,

where Qi and Ri belong to Hi. But the spaces Hi have dimension i+1, and
one should in general not expect any simple recurrence formula.

However, looking more precisely at the form of the operators L(α) is the
variables (Z,Z), one should expect for the sequence of eigenvectors of L(α)

a 6 term recurrence formula. It comes as a surprise that indeed one is able
to get a 3 term recurrence formula as in dimension 1.

We first start by investigating the eigenvalues. Recall first that we are

looking for polynomials P
(α)
p,q such that

L(α)(P (α)
p,q ) = −λp,qP

(α)
p,q

13



where (p, q) ∈ N2 is a bi-index whose weight p+ q is the degree of P
(α)
p,q .

Proposition 6.1. The eigenvalues of L(α) are

λp,q = (λ− 1)(p+ q) + p2 + q2 + pq,

where λ = 1
2(6α+ 5).

Proof. — The complex representation easily leads to the eigenvalues. In-
deed, if Pn denotes the space of polynomials (now in the variables (Z,Z))
with total degree at most n, one may write any P ∈ Pn as

P =

n
∑

p=0

ap,qZ
pZ

n−p
+Q = Pn +Q,

where Q ∈ Pn−1.
Now, looking at the action of L(α) on the highest degree term Pn of P ,

one sees that if L(α)P = −µP , then the highest degree term P̂n of L(α)Pn

is equal to −µP̂n. It remains to observe the action of L(α) on those highest
terms. Fortunately, in coordinates (Z,Z), this action is diagonal (which is
not the case in coordinates (x1, x2)).

Indeed, the change of variable formula (2) gives

L(α)(ZpZ
q
) = pZp−1Z

q
L(α)Z

+qZq−1ZpL(α)Z + p(p− 1)Zp−2ZqΓ(Z,Z)

+2pqZp−1Z
q−1

Γ(Z,Z) + q(q − 1)Z
q−2

ZpΓ(Z,Z),

whose highest term is

−λp,qZ
pZ

q
,

with λp,q = (λ− 1)(p+ q) + p2 + q2 + pq, where λ = 1
2(6α+ 5).

Remark 6.2. When α /∈ Q, then the eigenspaces associated to the eigen-
values λp,q are at most two-dimensional (and exactly two dimensional when
p 6= q). Indeed, writing σ = p + q and π = pq, with similar notation π′, σ′

for (p′, q′), we have λp,q = (λ − 1)σ + σ2 − π, and therefore if λp,q = λp′,q′,

then either σ = σ′ and then π = π′, either λ = 1− σ − σ′ +
π − π′

σ − σ′ , whence

λ ∈ Q.

We shall see moreover that for any (p, q) there exists exactly one poly-

nomial P
(α)
p,q (Z,Z) = ZpZ

q
+ lower degree terms which is an eigenvector of

L(α). Indeed,

Theorem 6.3. Define the family of polynomials P
(α)
p,q (Z,Z) by induction

from

P
(α)
0,0 = 1 , P

(α)
0,1 = Z ,P

(α)
1,0 = Z,

14



and

(20)











P
(α)
p+1,q = ZP

(α)
p,q + a1(λ, p)P

(α)
p−1,q+1 + a2(λ, p, q)P

(α)
p,q−1,

P
(α)
p,q+1 = ZP

(α)
p,q + a1(λ, q)P

(α)
p+1,q−1 + a2(λ, q, p)P

(α)
p−1,q,

where























a1(λ, p) = − p(3p+ 2λ− 5)

(λ+ 3p− 1)(λ+ 3p− 4)

a2(λ, p, q) = −Np,q

Dp,q

where










Np,q = q(3q + 2λ− 5)(λ+ 3(p+ q)− 1)(λ+ p+ q − 2)

Dp,q = (λ+ 3q − 1)(2λ+ 3(p+ q)− 5)(2λ+ 3(p+ q)− 2)(λ+ 3q − 4)

(21) λ =
1

2
(6α+ 5) > 0

Remark 6.4. The only possible values of λ for which the denominators
vanishes in the above formulae are λ = 1 and λ = 4, which correspond
to the (p, q) ∈ {(0, 0), (1, 0), (0, 1)}. In those situations, we have to replace
a1(λ, p) and a2(λ, p, q) by :











a1(λ, p) = limǫ→0 a1(λ+ ǫ, p)

a2(λ, p, q) = limǫ→0 a2(λ+ ǫ, p, q)

Moreover, a1(1, p) = a1(4, p) = −1/3 and a2(1, p, q) = a2(4, p, q) = −1/9
for every (p, q) except for those values of (p, q) ∈ {(0, 0), (1, 0), (0, 1)} . We
have indeed

a1(1, 1) = −2

3
, a2(1, 0, 1) = −1

3
,

a1(4, 1) = −1

3
, a2(4, 0, 1) = −1

9
,

a1(λ, 0) = a2(λ, p, 0) = 0,

In the case α = 1/2 the recurrence formulae simplify and for every p, q ≥ 0
is :

(22) P
(1/2)
p+1,q = ZP (1/2)

p,q − 1

3
P

(1/2)
p−1,q+1 −

1

9
P

(1/2)
p,q−1,

15



But in the other case α = −1/2, the recurrence formulae is the same
except for the values (p, q) = {(1, 0), (0, 1)} corresponding to the polynomials

P
(−1/2)
1,1 = ZZ − 1

3 , and P
(−1/2)
2,0 = Z2 − 2

3Z.

Therefore, for α = −1/2, 1/2, the recurrence formulae for the polynomials
are the same, except for the first two coefficients.

Then, for the operator L(α) determined from (8), we have

L(α)P (α)
p,q = −λp,qP

(α)
p,q

where

λp,q = (λ− 1)(p+ q) + p2 + q2 + pq.

It is worth to observe that since a1(λ, 0) = a2(λ, p, 0) = 0, formula (20)

make sense for p = 0 and q = 0, and defines completely the family P
(α)
p,q for

any (p, q) ∈ N2. One observes that P
(α)
p,q (Z,Z) = ZpZ

q
+lower degree terms,

and have real coefficients. It is also easily checked that P
(α)
q,p = P

(α)
p,q .

The proof of Theorem 6.3 is rather tedious. We start with a Lemma:

Lemma 6.5. For the same family of polynomials defined in (20) and the Γ
operator defined in (8), we have

Γ(Z,P (α)
p,q ) = α0(p, q)P

(α)
p+1,q + α1(p, q)P

(α)
p−1,q+1 + α2(p, q)P

(α)
p,q−1

Γ(Z,P (α)
p,q ) = α0(q, p)P

(α)
p,q+1 + α1(q, p)P

(α)
p+1,q−1 + α2(q, p)P

(α)
p−1,q

where

α0(p, q) = −1

2
(q + 2p),

α1(p, q) =
1

2

p(2λ+ 3q − 5)(λ+ p− q − 1)

(λ+ 3p− 1)(λ+ 3p− 4)

α2(p, q) =
1

2

N1p,q
D1p,q

where
{

N1p,q = q(3q + 2λ− 5)(λ+ 3(p+ q)− 1)(λ+ p+ q − 2)(2λ+ p+ 2q − 2).

D1p,q = (λ+ 3q − 1)(2λ+ 3(p+ q)− 5)(2λ+ 3(p+ q)− 2)(λ+ 3q − 4).

It is worth to observe that although the definition of Γ does not involve
the parameter α (or equivalently the parameter λ), the recurrence formula

defining P
(α)
p,q does, and this Lemma is valid whatever the parameter α is.

However, it is not clear from the proof below for which family of recur-

rence formulae on P
(α)
p,q three terms recurrence formulae for Γ(Z,P

(α)
p,q ) and

Γ(Z,P
(α)
p,q ) are still valid.

16



Proof. In what follows, we remove the parameter α from the formulae, since
it shall not change up to end of this Section. Lemma 6.5 proved by induction,
from

Γ(Z,Pp+1,q) = Γ(Z,ZPp,q) + a1(λ, p)Γ(Z,Pp−1,q+1)

+a2(λ, p, q)Γ(Z,Pp,q−1)

= Γ(Z)Pp,q + ZΓ(Z,Pp,q) + a1(λ, p)Γ(Z,Pp−1,q+1)

+a2(λ, p, q)Γ(Z,Pp,q−1)

and finally

Γ(Z,Pp+1,q) = (Z − Z2)Pp,q + ZΓ(Z,Pp,q)

+a1(λ, p)Γ(Z,Pp−1,q+1) + a2(λ, p, q)Γ(Z,Pp,q−1)

And by the definition (6.3) we have

ZPp,q = Pp,q+1 − a1(λ, q)Pp+1,q−1 − a2(λ, q, p)Pp−1,q

ZPp,q = Pp+1,q − a1(λ, p)Pp−1,q+1 − a2(λ, p, q)Pp,q−1

So that

(23) Z2Pp,q = Z(ZPp,q) = ZPp+1,q−a1(λ, p)ZPp−1,q+1−a2(λ, p, q)ZPp,q−1

Furthermore,











ZPp+1,q = Pp+2,q − a1(λ, p+ 1)Pp,q+1 − a2(λ, p+ 1, q)Pp+1,q−1

ZPp−1,q+1 = Pp,q+1 − a1(λ, p− 1)Pp−2,q+2 − a2(λ, p− 1, q + 1)Pp−1,q

ZPp,q−1 = Pp+1,q−1 − a1(λ, p)Pp−1,q − a2(λ, p, q − 1)Pp,q−2

which gives

Z2Pp,q = Pp+2,q −
(

a1(λ, p+ 1) + a1(λ, p)
)

Pp,q+1

−
(

a2(λ, p+ 1, q) + a2(λ, p, q)
)

Pp+1,q−1

+a1(λ, p)
(

a2(λ, p− 1, q + 1) + a2(λ, p, q)
)

Pp−1,q

+a2(λ, p, q)a2(λ, p, q − 1)Pp,q−2

+a1(λ, p)a1(λ, p− 1)Pp−2,q+2.
17



On the other hand, from the induction hypothesis we have

ZΓ(Z,Pp,q) + a1(λ, p)Γ(Z,Pp−1,q+1) + a2(λ, p, q)Γ(Z,Pp,q−1) =

α0(p, q)Pp+2,q +
[

α1(p, q)− α0(p, q)a1(λ, p+ 1) +

a1(λ, p)α0(p− 1, q + 1)
]

Pp,q+1 +
[

α2(p, q)− α0(p, q)a2(λ, p+ 1, q) +

a2(λ, p, q)α0(p, q − 1)
]

Pp+1,q−1 +
[

a1(λ, p)α2(p− 1, q + 1) + α1(λ, p)a2(λ, p, q)−
α1(p, q)a2(λ, p− 1, q + 1)− α2(p, q)a1(λ, p)

]

Pp−1,q +

[a1(λ, p)α1(p− 1, q + 1)− a1(λ, p− 1)α1(p, q)]Pp−2,q+2 +
[

a2(λ, p, q)α2(p, q − 1)− a2(λ, p, q − 1)α2(p, q)
]

Pp,q−2,

Substituting everything in (23), we get

Γ(Z,Pp+1,q) = (α0(p, q)− 1)Pp+2,q +A1(p, q)Pp,q+1 +

A2(p, q)Pp+1,q−1 +A3(p, q)Pp−1,q +

A4(p, q)Pp−2,q+2 +A5(p, q)Pp,q−2,

where

A1(p, q) = 1 + α1(p, q)− α0(p, q)a1(λ, p+ 1) +

a1(λ, p)α0(p− 1, q + 1)

+a1(λ, p+ 1) + a1(λ, p)

A2(p, q) = −a1(λ, q) + a2(λ, p+ 1, q) + a2(λ, p, q) + α2(p, q)

−α0(p, q)a2(λ, p+ 1, q) + a2(λ, p, q)α0(p, q − 1)

A3(p, q) = −a2(λ, q, p)− a1(λ, p)a2(λ, p− 1, q + 1)− a2(λ, p, q)a1(λ, p)

+a1(λ, p)α2(p− 1, q + 1) + α1(p, q − 1)a2(λ, p, q)

−α1(p, q)a2(λ, p− 1, q + 1)− α2(p, q)a1(λ, p)

A4(p, q) = a1(λ, p)α1(p− 1, q + 1)− a1(λ, p− 1)α1(p, q)

−a1(λ, p)a1(λ, p− 1)

A5(p, q) = a2(λ, p, q)α2(p, q − 1)− a2(λ, p, q − 1)α2(p, q)

−a2(λ, p, q)a2(λ, p, q − 1).

A simple calculation shows that

1 + α1(p, q) = α1(p+ 1, q),

A1(p, q) = α1(p+ 1, q), A2(p, q) = α2(p+ 1, q)

A3(p, q) = A4(p, q) = A5(p, q) = 0,

which concludes the induction formula for Γ(Z,Pp+1,q). The same method

leads to the formula for Γ(Z,Pp+1,q), and exchanging p and q in the previous

amounts to exchange Z and Z. �
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Now , we prove Theorem 6.3 using Lemma 6.5.

Proof. Assume by induction that L(α)Pp1,q1 = −λp1,q1Pp1,q1 when p1 + q1 ≤
p+ q, where λp,q = (λ− 1)(p+ q) + p2 + q2 + pq. As before, we simply write
the change of variable formula

L(α)Pp+1,q = L(α)(ZPp,q) + a1(λ, p)L
(α)Pp−1,q+1 + a2(λ, p, q)L

(α)Pp,q−1

= ZL(α)Pp,q + Pp,qL
(α)Z + 2Γ(Z,Pp,q)

−a1(λ, p)λp−1,q+1Pp−1,q+1 − a2(λ, p, q)λp,q−1Pp,q−1

= −(λp,q + λ)ZPp,q + 2α0(p, q)Pp+1,q + (2α1(p, q)

−a1(λ, p))Pp−1,q+1 + (2α2(p, q)− a2(λ, p, q)λp,q−1)Pp,q−1.

But

ZPp,q = Pp+1,q − a1(λ, p)Pp−1,q+1 − a2(λ, p, q)Pp,q−1,

so that

L(α)Pp+1,q = B1(p, q)Pp+1,q +B2(p, q)Pp−1,q+1 +B3(p, q)Pp,q−1,

where

B1(p, q) = −(λp,q + λ) + 2α0(p, q)

B2(p, q) = 2α1(p, q) + (λp,q − λp−1,q+1 + λ)a1(λ, p)

B3(p, q) = 2α2(p, q) + (λp,q − λp,q−1 + λ)a2(λ, p, q)

Everything boils down to the following formulae, which are straightforward
to check

B1(p, q) = −λp+1,q, B2(p, q) = B3(p, q) = 0.

The same proof applies for L(α)Pp,q+1 = −λp,q+1Pp,q+1. The conclusion
follows. �

Remark 6.6. From the recurrence formula, it is easily checked that

Pp,q = ZpZ
q
+Ap,qZ

p+1Z
q−2

+Bp,qZ
p−2Z

q+1

+Cp,qZ
p−1Z

q−1
+Dp,qZ

p−4Z
q+2

+ Fp,qZ
p+2Z

q−4
+R,

where degree(R) ≤ p + q − 3. This general form may be easily induced
from the form of the operator, and should produce a six term recurrence
formula. The fact that the recurrence formula contains only 3 terms (as it
is in dimension 1) is indeed quite mysterious.

7. Other representations of eigenpolynomials

In this section, we come back to the two different representations for
L(−1/2) and L(1/2) which provide new representations for the eigenvectors

P
(α)
p,q in those specific cases. This new representations will allow us to get in

those cases linearization formulae for the product together with generating
functions.
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7.1. Case α = −1/2. Although the α = −1/2 case is quite easy, since it
comes from an Euclidean Laplace operator, it gives rise to another family
of recurrence formulae. On the other hand, the case α = 1/2, which comes
from the Casimir operator on SU(3), leads to new representations of the

eigenvectors P
(α)
p,q related to the irreducible representations of the symmetric

group. In fine, comparing the two cases allows to generalize the SU(3)
formulae to the general situation.

With the representation (8) of the operator L(−1/2), one may represent the
function Z as a function R2 7→ C as Z(x1, x2) =

1
3(e1 + ej + ej̄), where, for

β = (β1, β2) ∈ R2 eβ = exp
(

i(β1x1 + β2x2)
)

, and 1, j, j̄ are the third root of

unity, that is 1 = (1, 0), j = (−1/2,
√
3/2), j̄ = (−1/2,−

√
3/2). Comparing

with the description given in Section 4, the change of normalization comes
from the fact that we have divided L by 4 and replaced Z by Z/3.

We have already observed that, for any triple (z1, z2, z3) of complex num-
bers satisfying |zi| = 1, z1z2z3 = 1, setting for any p ∈ Z, Tp = zp1 + zp2 + zp3 ,
one has (24)

(24) Tp+2 − 3ZTp+1 + 3ZTp − Tp−1 = 0,

with T1 = 3Z and T−1 = 3Z, T0 = 3. One may observe first that this formula
is unchanged if we replace p by −p and Z by Z. Setting Tp = 3|p|Qp, one
gets

(25) Qp+1 = ZQp −
1

3
ZQp−1 +

1

33
Qp−2.

From this, it is clear that Qp is a polynomial with degree less than p in

the variables (Z,Z), of the form Qp = Zp + lower degree term. Now, if we
replace z1, z2, z3 by e1, ej , ej̄ we see that Qp is an eigenvector for the Laplace

operator ∆ in R2, with eigenvalue p2. Therefore,

(26) ∀p ≥ 0, Qp = P
(−1/2)
p,0 , Q−p = Qp = P

(−1/2)
0,p .

Comparing (26) with the recurrence formulae for P
(α)
p,q , the first line in

formula (20) gives in this case (λ = 1)

P
(−1/2)
p+1,0 = ZP

(−1/2)
p,0 − 1

3
P

(−1/2)
p−1,1 ,

which leads to

P
(−1/2)
p−1,1 = ZP

(−1/2)
p−1,0 − 1

32
P

(−1/2)
p−2,0 ,

and the latter is nothing else than the second line in (20).
On the other hand, coming back to the representation Tp = zp1 + zp2 + zp3 ,

one sees that, for any (p, q) ∈ Z2,

TpTq − Tp+q =
∑

i 6=j

zpi z
q
j =

∑

i 6=j

zp−q
i z−q

j ,
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from which we get, for any (p, q) ∈ Z2

(27) TpTq − Tp+q = Tp−qT−q − Tp−2q = Tq−pT−p − Tq−2p.

When (z1, z2, z3) = (e1, ej , ej̄), this writes as sums of terms of the form

eβ(p,q), where |βp,q|2 = p2 + q2 − pq. Therefore, for the L(−1/2) operator,

writing TpT−q −Tp−q as a polynomial in (Z,Z), we see that this is an eigen-
vector associated with the eigenvalue p2 + q2 + pq. Looking at the highest
degree term, and translating this in terms of the polynomials Qp = 3−|p|Tp,
we obtain

(28) ∀p, q ≥ 1, P (−1/2)
p,q = QpQ−q − 3−2min(p,q)Qp−q,

which gives a representation of P
(−1/2)
(p,q) in terms of the polynomials P

(−1/2)
p,0

and P
(−1/2)
0,q which is not easy to obtain directly from the recurrence for-

mula (20).
When p, q ≥ 0, QpQq−Qp+q is also an eigenvector for the Laplace operator

associated with the eigenvalue p2+q2−pq. Indeed, using (27) which is valid
for any (p, q) ∈ Z2, and comparing with (20), we end up, for p ≥ q ≥ 0, with

P
(−1/2)
p−q,q = QpQq −Qp+q,

Proposition 7.1 (Linearization formula).

P
(− 1

2
)

p,q P
(− 1

2
)

p′,q′ = P
(− 1

2
)

p+p′,q+q′ +

3−min(q,q′)P
(− 1

2
)

p+p′+min(q,q′),max(q,q′)−min(q,q′)

+3−min(p,p′)P
(− 1

2
)

max(p,p′)−min(p,p′),q+q′+min(p,p′)

+b1(p, q, p
′, q′)P

(− 1

2

|γ|−max(0,δ),|δ|+min(0,γ)

+b2(p, q, p
′, q′)P

(− 1

2
)

|β|+min(0,α),|α|+min(0,β)

+b3(p, q, p
′, q′)P

(− 1

2
)

|β′|+min(0,α′),|α′|+min(0,β′)
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Where

γ = max(p′ − q, p− q′)

δ = min(p′ − q, p− q′)

α = p+ q − q′

β = p′ + q′ − p

α′ = p′ + q′ − q

β′ = p+ q − p′

b1(p, q, p
′, q′) = 3|γ|+|δ|+min(0,γ)−max(0,δ)−(p+q+p′+q′)

b2(p, q, p
′, q′) = 3|β|+|α|+min(0,α)+min(0,β)−(p+p′+q+q′)

b3(p, q, p
′, q′) = 3|β

′|+|α′|+min(0,α′)+min(0,β′)−(p+p′+q+q′)

7.2. Case α = 1/2. We now turn to the inspection of the family P
(1/2)
p,q . We

know that 4
3L

(1/2) may be represented as the action of the Casimir opera-
tor on SU(3) acting on spectral functions. Comparing with formulae (14)
and (15), one sees that, for p ≥ 1,

(29) L(1/2)(Tp) = −p

4

(

2(9− p)Tp + 3

p−1
∑

i=1

TiTp−i

)

,

while, for p, q ≥ 0

(30) Γ(Tp, Tq) =
pq

2

(

TpTq − 3Tp+q

)

,

with similar formulae for p ≤ 0, q ≤ 0.
If we remember that L(1/2) = L(−1/2) − 3(Z∂Z + Z∂Z), we end up with

the formula for p ≥ 0

(31)
(

Z∂Z + Z∂Z
)

Tp = −p

2
(p− 3)Tp +

p

4

p−1
∑

i=1

TiTp−i.

With the help of formula (9), for p ≥ 1 we end up with

(32) L(α)Tp = −p

4

(

p(1− 6α) + 9(2α+ 1)
)

Tp −
3p

8
(2α+ 1)

p−1
∑

i=1

TiTp−i.

Fix now some integer n and denote by Πn the set of sequences π =
(p1, · · · , pk) of integers p1 ≥ pk ≥ 1 such that p1 + · · · + pk = n. For

π ∈ Πn, denote Tπ =
∏k

j=1 Tj . Comparing with formula (30), and the

general formula (13), we see that the vector space generated by Tπ, π ∈ Πn,

is stable under L(α). We therefore will be able to diagonalize L(α) in this
vector space.
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We first perform a slight change in the normalization of the variables Tp,
setting Tp = cSp, in order to reduce formulae (32) and (30) to

(33) L(α)Sp = −µp,αSp −
1

c

3p

4

p−1
∑

i=1

SiSp−i,

and

(34) Γ(Sp, Sq) =
pq

2
(SpSq −

3

c
Sp+q).

With µp,α = p
4

(

p(1− 6α) + 9(2α+ 1)
)

and c =
√

2
2α+1 ,

Following [17], it is easier to introduce the group Sn of order n permuta-
tions. For any σ ∈ Sn, one consider it’s cycle decomposition σ = σ1 · · ·σk
(ordered in increasing lengths) and denote by π = π(σ) = (p1, · · · , pk) ∈ Πn

the sequence of the lengths of σj . We then denote Sσ = Sp1 · · ·Spk . It is
worth to observe that if τ = (ij) is a transposition, the cycle decomposition
of στ splits one cycle in two subcycles when i and j belong to the same cycle
and glues together two cycles when i and j belong to two different cycles.

Therefore, if Tn denotes the set of all transpositions, for a permutation σ
with π(σ) = (p1, · · · , pk), through an easy combinatorial argument, one gets

∑

τ∈Tn
Sτσ =

1

2

k
∑

i=1

pi
Sσ

Spi

pi−1
∑

j=1

SjSpi−j +

k
∑

i,j=1

pipj
Sσ

SpiSpj

Spi+pj .

Comparing this and the formula (13), we get

(35) L(α)(Sσ) = −µσ,αSσ − 3

2c

∑

τ∈Tn
Sστ ,

More precisely

L(α)Sσ = Sσ

(

−
k

∑

i=1

µpi,α +
∑

i 6=j

pipj
2

− 3

2c

(

k
∑

i=1

pi
2Spi

pi−1
∑

j=1

SjSpi−j +
∑

i 6=j

pipj
Spi+pj

SpiSpj

)

)

= Sσ

(

− µσ,α − 3

2c

(

k
∑

i=1

pi
2Spi

pi−1
∑

j=1

SjSpi−j +
∑

i 6=j

pipj
Spi+pj

SpiSpj

)

)

where, for π(σ) = (p1, · · · , pk),

µσ,α =

k
∑

i=1

µpi,α −
∑

i 6=j

pipj
2

=
3

4
(1− 2α)

k
∑

i=1

p2i +
9

4
(2α+ 1)n− n2

2
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Finally

L(α)Sσ = −µα,σSσ − 3

2c

∑

τ∈Tn
Sτσ

where Tn is the set of transpositions in Sn.
It is worth to observe that for α = 1/2 (and only in this case), µσ,α

depends on n only, and therefore finding eigenvectors for L(1/2) amounts to
find eigenvectors for the linear operator Sσ 7→

∑

τ∈Tn Sστ . But the latter
corresponds to the operator

∑

τ∈Tn τ in the group algebra of the group Sn,
which commutes to every group element. It is therefore diagonal on any
irreducible representation. Turning back to our setting, we conclude that
for any character χ of the group Sn,

∑

σ∈Sn
χ(σ)Sσ is an eigenvector for

L(1/2). The characters of the group Sn are well known and correspond to
Young diagrams, which are indeed elements of the set Πn described above.
Unfortunately, as we shall see in the following examples, this representation
is far from being one to one, and many eigenvectors coming from the Sn

representation has degree less than n in (Z, Z̄). The correspondence between
the degree and the shape of the Young diagram remains quite mysterious.

The paper [8] describes an elegant method which provides a simple com-
binatorial way for computing the character table in any symmetric group
Sn. Since for any character χ, the value of χ(σ) only depends on the con-
jugacy class of σ, that is on the Young diagram it belongs to, one has to
compute χ(ξ) for any pair (χ, ξ) of Young diagrams. This may be achieved
through the analysis of the so-called border strips. In what follows, we then
give some examples of eigenvectors for L(1/2) provided by this description,
that is

∑

π∈Πn
|π|ξ(π)Tπ, where |π| denotes the size of the conjugacy class

π ∈ Sn, that is the number of those elements σ ∈ Sn such that π(σ) = π.

For π = (p1, · · · , pk), one has |π| = n!
∏n

j=1 kj !

k
∏

1

1

pj
, where kj is the number

of cycles with length j in π.
As an example, we show below the eigenvectors given by this construction

for n = 2, 3, 4
The group S2 has two conjugacy classes χ1, χ2, corresponding to the par-

titions (2, 0) and (1, 1),

χ1 = , χ2 = .

The character table is then

χ1 χ2

χ1 1 1
χ2 1 -1
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From his we get the following eigenvectors for L(1/2):

Q1(Z,Z) = χ1(χ1)T2 + χ1(χ2)T
2
1

= T2 + T 2
1

= 18Z2 − 6Z

Q2(Z,Z) = χ2(χ1)T2 + χ2(χ2)T
2
1

= T 2
1 − T2

= 6Z

For S3, we have three conjugacy classes χ1, χ2, χ3 corresponding to the par-
titions (3, 0, 0), (2, 1, 0), (1, 1, 1)

χ1 = , χ2 = , χ3 = ,

with character table
χ1 χ2 χ3

χ1 1 1 1
χ2 2 0 -1
χ3 1 -1 1

and corresponding eigenvectors

Q1(Z,Z) = χ1(χ1)T
3
1 + χ1(χ2)T2T1 + χ1(χ3)T3

= T 3
1 + T2T1 + T3

= 3(27Z3 − 15ZZ + 1)

Q2(Z,Z) = χ2(χ1)T3 + χ2(χ2)T1T2 + χ2(χ3)T
2
1

= 2T3 − 2T 3
1

= 2(27ZZ − 3)

Q3(Z,Z) = χ3(χ1)T3 + χ3(χ2)T1T2 + χ3(χ3)T
2
1

= T 3
1 − 3T2T1 + 2T3

= 6

For S4, we have five conjugacy classes, with Young diagrams χ1, χ2, χ3, χ4, χ5,
corresponding to (4, 0, 0, 0), (2, 1, 1, 0), (2, 2, 0, 0), (3, 1, 0, 0), (1, 1, 1, 1).

χ1 = , χ2 = , χ3 = , χ4 = , χ5 = ,
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and character table
χ1 χ2 χ3 χ4 χ5

χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 2 -1 0
χ4 3 1 -1 0 -1
χ5 3 -1 -1 0 1

The corresponding eigenvectors are then:

Q1(Z,Z) = χ1(χ1)T
4
1 + 6χ1(χ2)T

2
1 T2 + 3χ1(χ3)T

2
2 + 8χ1(χ4)T1T3

+6χ1(χ5)T4

= T 4
1 + 6T 2

1 T2 + 3T 2
2 + 8T1T3 + 6T4

= 72(27Z4 − 27ZZ2 + 3Z
2
+ 2Z)

Q2(Z,Z) = χ2(χ1)T
4
1 + 6χ2(χ2)T

2
1 T2 + 3χ2(χ3)T

2
2 + 8χ2(χ4)T1T3

+6χ2(χ5)T4

= T 4
1 − 6T 2

1 T2 + 3T 2
2 + 8T1T3 − 6T4

= 0

Q3(Z,Z) = χ3(χ1)T
4
1 + 6χ3(χ2)T

2
1 T2 + 3χ3(χ3)T

2
2 + 8χ3(χ4)T1T3

+6χ3(χ5)T4

= 2T 4
1 + 2.3T 2

2 − 8T1T3

= 72(3Z
2 − Z)

Q4(Z,Z) = χ4(χ1)T
4
1 + 6χ4(χ2)T

2
1 T2 + 3χ4(χ3)T

2
2 + 8χ4(χ4)T1T3

+6χ4(χ5)T4

= 3T 4
1 + 6T 2

1 T2 − 3T 2
2 − 6T4

= 72(9ZZ2 − 3Z
2 − Z)

Q5(Z,Z) = χ5(χ1)T
4
1 + 6χ5(χ2)T

2
1 T2 + 3χ5(χ3)T

2
2 + 8χ5(χ4)T1T3

+6χ5(χ5)T4

= 3T 4
1 − 6T 2

1 T2 − 3T 2
2 + 6T4

= 72Z

8. Generating functions

In this section, we provide first a partial generating function in the general

case for the family P
(α)
0,n or equivalently for P

(α)
n,0 , which leads to some simple

representation of the polynomials P
(α)
n,m as linear combinations of P

(α)
p,0 P

(α)
0,q .

then we turn to the two geometric cases in which a complete generating
function may be provided.
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8.1. Partial generating functions in the general case. In this section,
we propose an alternative representation of the eigenvectors in the general
case, together with a partial generating function. We start with the following

Proposition 8.1. Let

(36) P (X) = 1− 3ZX + 3ZX2 −X3,

Then, still with λ = 1
2(6α+ 5),

L(α)(P (X)) = −λXP ′ +
λ

2
X2P ′′,

Γ(P (X), P (Y )) =
XY

2

(

P ′(X)P ′(Y ) + 3
P ′(X)P (Y )− P (X)P ′(Y )

X − Y

)

,

from which

Γ(P (X), P (X)) =
X2

2
(3PP ′′ − 2P ′2),

Also, with P̄ (Y ) = 1− 3ZY + 3ZY 2 − Y 3 = −Y 3P (1/Y )

Γ(P (X), P̄ (Y )) =
XY

2(XY − 1)

(

3XP ′P̄ + 3Y P̄ ′P − 9PP̄ − (XY − 1)P ′P̄ ′
)

.

Proof. — The proof boils down to a simple verification, using the linearity of
L and the bilinearity of Γ. The formula for Γ(P (X), P (X)) may be obtained
directly from Γ(P (X), P (X)) = limY→X Γ(P (X), P (Y )).

Proposition 8.2. Let Q = P β, β = 1−λ
3 = −1+2α

2 . Then, for α 6= −1/2,
one has

(37) L(α)(Q(X)) = −λXQ′(X)−X2Q′′(X),

(38) Γ(Q(X), Q(Y )) =
XY

2

(

Q′(X)Q′(Y )+3β
Q′(X)Q(Y )−Q(X)Q′(Y )

X − Y

)

.

(39)

Γ(Q(X), Q̄(Y )) = 3β2 XY

2(XY − 1)
Q(X)Q̄(Y )

(

XS+Y S̄−3
)

−XY

2
Q′(X)Q̄′(Y ),

where S = P ′

P (X), S̄ = P̄ ′

P̄
(Y )

(

For α = −1/2, one should replace Q = P β by Q = log(P )
)

.

Proof. — Let us look first at L(α)(Q). With the formulae (2), we have

L(α)(Q(X)) = βP (X)β−1L(α)(P (X)) + β(β − 1)P (X)β−2Γ(P (X), P (X)),
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and from Proposition 8.1, we have

L(α)(Q(X)) = −λXQ′(X) +X2[(
λ

2
+

3

2
(β − 1))βP ′′(X)P (X)β−1

−β(β − 1)P ′2(X)P β−2(X)].

For the particular value of β = 1−λ
3 , λ

2 + 3
2(β − 1) = −1, and we get the

announced result.
Turning now to formula (38), we write

Γ(Q(X), Q(Y )) = β2P β−1(X)P β−1(Y )Γ(P (X), P (Y ))

=
XY

2

(

β2P ′(X)P β−1(X)P ′(Y )P β−1(Y )

+
3β

X − Y

(

βP β(Y )P ′(X)P β−1(X)

−βP β(X)P ′(Y )P β−1(Y )
)

)

It remains to write Q′ = βP ′P β−1 to obtain formula (38).
Formula (39) is obtained in the same way.

Corollary 8.3. Q(X) is a generating function for the family P
(α)
0,n . More

precisely, still with β = −(1 + 2α)/2,

(1− 3Z̄X + 3ZX2 −X3)β =
∑

n

cnP
(α)
0,nX

n,

where

cn = (−3)n
β(β − 1)....(β − n+ 1)

n!
(

The same remarks as in Proposition 8.2 applies for α = −1/2
)

.

Proof. — If we write the asymptotic expansion of Q(X) around X = 0
(which is licit since both Z and Z̄ are bounded), and writing Q(X) =
∑

nAn(Z, Z̄)Xn, equation (37) gives

L(α)An = −(λn+ 2n(n− 1))An.

As a consequence, then An(Z,Z) are eigenvectors of L(α). But a simple
computation shows that An(Z, Z̄) is a polynomial in (Z, Z̄) with highest

degree term cnZ̄
n. Therefore, An = cnP

(α)
0,n .

For example:

A0(Z,Z) = 1

A1(Z,Z) = −3βZ

A2(Z,Z) = 3β(3(β − 1)Z
2
+ 2Z)
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If we set Q̄ = P̄ β , then Q(X)Q̄(Y ) =
∑

p,q cpcqP
(α)
0,p P

(α)
q,0 X

pY q, where the

highest degree term in the polynomial P
(α)
0,p P

(α)
q,0 is ZqZ̄p. Considering simi-

larly a differential equation satisfied by Q(X)Q̄(Y ) will then provide useful

informations about the eigenvectors P
(α)
p,q .

Obtaining two variables generating functions for the general family P
(α)
m,n is

not easy. To simplify the calculations, it is simpler to introduce the operator
L̂ = L(α) + L0, where

L0 = λ(X∂X + Y ∂Y ) +X2∂2
X + Y 2∂2

Y +XY ∂2
X,Y ,

and associated Γ0 operator

Γ0(f, g) = X2∂Xf∂Xg + Y 2∂Y f∂Y g +
1

2
XY (∂Xf∂Y g + ∂Xg∂Y f)

and Γ̂ = Γ + Γ0.
Then, from Proposition 8.2, we have L̂(Q(X)) = L̂(Q̄(Y )) = 0 and there-

fore

L̂(Q(X)Q̄(Y )) = 2Γ̂(Q(X), Q̄(Y ))

= 2
(

Γ(Q(X), Q̄(Y )) +
XY

2
Q′(X)Q̄′(Y )

)

,

form which we get

Proposition 8.4.

L̂(Q(X)Q̄(Y )) =
3β2XY

XY − 1
Q(X)Q̄(Y )

(

XS + Y S̄ − 3
)

,

where as before S = P ′

P (X), S̄ = P̄ ′

P̄
(Y ).

This proposition leads us to a new representation of the polynomials P
(α)
n,m.

Writing for simplicity Q(X) =
∑

n≥0AnX
n and Q(Y ) =

∑

m≥0BmY m then
we deduce that :

L(α)(AnBm −An−1Bm−1) = − λn,mAnBm − δn,mAn−1Bm−1

where

λn,m = (λ− 1)(n+m) + n2 +m2 + nm.

and

δn,m = (1− λ)(λ+ n+m− 3)− λn−1,m−1.

Finally, from an easy induction, one sees that L(α)(AnBm) is a linear
combination of An−pBm−p, 0 ≤ p ≤ min(n,m), from which one deduces

that P
(α)
m,n may be written as

P (α)
m,n =

min(m,n)
∑

p=0

dm,n,p,αP
(α)
m−p,0P

(α)
0,n−p
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very similar to the representation given for the case α = −1/2 in equa-
tion (28). Unfortunately, the explicit expression for the constants dm,n,p,α

does seem to have any simple form.
From what preceedes, we see that the family Q(X)Q̄(Y ) is not a gen-

erating function for the family P
(α)
m,n(Z,Z), but we may expect that it is

the case for some expression of the form F (XY )Q(X)Q̄(Y ) for some real
valued function F . Therefore, we may look at an equation of the form
L̂(F (XY )QQ̄) = 0. We may then use the following remark

Proposition 8.5.

Γ̂(XY,Q(X)Q̄(Y )) =
3

2
βXY QQ̄(XS + Y S̄)

where S = P ′

P (X), S̄ = P̄ ′

P̄
(Y )

Proof. —

Γ̂(XY,Q(X)Q̄(Y )) = Γ0(XY,QQ̄)

= X
(

QΓ0(Y, Q̄) + Q̄Γ0(Y,Q)
)

+

Y
(

QΓ0(X, Q̄) + Q̄Γ0(X,Q)
)

=
3

2
XY

(

Y Q(X)Q̄′(Y ) +XQ̄(Y )Q′(X)
)

=
3

2
βXY Q(X)Q̄(Y )

(

XS + Y S̄
)

Then we have,

L̂(F (XY )QQ̄) = F (XY )L̂(QQ̄) +QQ̄L̂(F (XY )) + 2Γ̂(F (XY ), QQ̄)

= F (XY )L̂(QQ̄) +QQ̄
(

F ′(XY )L̂(XY ) +

F ′′(XY )Γ̂(XY,XY )
)

+ 2F ′(XY )Γ̂(XY,QQ̄)

A simple computation shows that L̂(XY ) = (2λ + 1)XY , Γ̂(XY,XY ) =
3X2Y 2. Finally we have

L̂(F (XY )QQ̄) = 2Γ̂(F (XY ), QQ̄)
(

F ′(XY ) +
β

XY − 1
F (XY )

)

+QQ̄XY
(

(2λ+ 1)F ′(XY ) + 3XY F ′′(XY )−
9β2

XY − 1
F (XY )

)

In order to get L̂(F (XY )QQ̄) = 0, two are led to solve the two linear
differential equations on F











F ′(u) + β
u−1F (u) = 0

3uF ′′(u) + (2λ+ 1)F ′(u)− 9β2

u−1F (u) = 0
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and it is easy to see that they are compatible only when λ2 − 5λ + 4 = 0
that is λ ∈ {1, 4}, which leads to the study of the two geometric cases.

8.2. Case α = −1/2. In this case, the previous approach just provides log(P (X))−
log(P̄ (Y )) as a bivariate generating function, which is too degenerate to

give useful information on the general polynomials P
(−1/2)
n,m . But the explicit

representation of the eigenvectors in this case pearly provides an efficient
generating function already obtained in [7].

Proposition 8.6. A generating function in the case α = −1/2 for the family

S
(− 1

2
)

p,q = TpT−q − Tp−q, p, q ≥ 0 is defined by :

G(X,Y ) =
(

3−X
P̄ ′

P̄
(X)

)(

3− Y
P ′

P
(Y )

)

+
1

1−XY

(

X
P̄ ′

P̄
(X) + Y

P ′

P
(Y )− 3

)

Proof. — It is quite easy to deduce the generating function for the family

S
(− 1

2
)

p,q . Indeed, since S
(− 1

2
)

p,q = TpT−q − Tp−q, p, q ≥ 0 we get

G(X,Y ) :=
∑

p≥0,q≥0

XpY qSp,q

= (
∑

p≥0

TpX
p)(

∑

q≥0

T−qY
q)−

∑

p≥0,p≥0

Tp−qX
pY q,

the series being convergent as soon as |X| < 1 and |Y | < 1. Using the
representation Tp = zp1 + zp2 + zp3 , this sums as

(

3
∑

i=1

(1−Xzi)
−1

)(

3
∑

j=1

(1− Y zi)
−1)

)

−
3

∑

i=1

(1−Xzi)
−1(1− Y zi)

−1,

But
3

∑

i=1

(1−Xzi)
−1 =

1

X

P ′

P
(
1

X
).

On the other hand

(1−Xzi)
−1(1− Y zi)

−1 =
1

1−XY
(

1

1−Xzi
+

1

1− Y z̄i
− 1),

so that

3
∑

i=1

(1−Xzi)
−1(1− Y zi)

−1 =
1

1−XY

( 1

X

P ′

P
(
1

X
) +

1

Y

P̄ ′

P̄
(
1

Y
)− 3

)

.

This simplifies using X3P (1/X) = −P̄ (X), such that

1

X

P ′

P
(
1

X
) = 3−X

P̄ ′

P̄
(X),
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Then we have the result. Using the notations of the previous subsec-

tion 8.1, we may also check directly that (L(− 1

2
) + L0)G(X,Y ) = 0 in this

case.

8.3. Case α = 1/2. Finally, the formulae providing in subsection 8.1 leads
us directly to a generating function in the α = −1/2 case. This generat-
ing function has been proposed in [7] with however a completely different
approach, based on the representations of the SU(3) group.

Proposition 8.7. A generating function for the family P
( 1
2
)

m,n is given by

G(X,Y ) =
1−XY

(1− 3XZ + 3X2Z −X3)(1− 3Y Z + 3Y 2Z − Y 3)

Proof. — This a a direct application of the computations provided in sub-
section 8.1 to this particular case.
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