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Effect of surface elasticity on the rheology of nanometric liquids.
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The rheological properties of liquids confined to nanometer scales are important in many physical
situations. In this paper we demonstrate that the long range elastic deformation of the confining
surfaces must be taken into account when considering the rheology of nanometric liquids. In the
case of a squeeze-flow geometry, we show that below a critical distance Dc the liquid is clamped
by its viscosity and its intrinsic properties cannot be disentangled from the global system response.
Using nanorheology experiments, we demonstrate that picometer elastic deflections of the rigid
confining surfaces dominate the overall mechanical response of nanometric liquids confined between

solid walls.

The rheological properties of thin liquid films are of
paramount importance in many fields such as the rhe-
ology of complex fluids and dispersed media, the flow of
liquids in rocks and nanopores, the lubrication of rubbing
solid contacts, nanofluidic devices and their applications.
As a result the investigation of liquids confined at the
nanometric scale has been an active field for many years,
from the pionneering experiments of Chan and Horn in
1985 [1] up to the very recent investigations with the
Atomic Force Microscope [2-6].

While the structure and physico-chemistry of the con-
fining surfaces are important when considering the prop-
erties of confined liquids, their elastic behavior is usually
not taken into account, as noted by E.J. Hinch [7] or
later by O.I. Vinogradova [8]. Investigations of flows in
thin liquid films are conducted in a conceptual frame-
work where the long range deformations of the confining
surfaces are either negligible, or can be routinely sub-
stracted, so that the intrinsic flow behaviour of the nano-
metric film is accessed.

In soft surfaces it is recognized that the coupling of
elastic deformations and thin film flows leads to very non-
intuitive effects. An example is the ”"dimple” that arises
when a drop or bubble approaches another surface, forc-
ing a draining flow. This can result in the formation of a
“wimple”; a more complicated rippled shape [9]. Another
example is droplets merging in a channel. Merging oc-
curs when the droplets are pulled away from each other,
not pushed together as might be expected [10]. In the
case of hard solids, it has been recognized that elasto-
hydrodynamic effects are important to understand the
lubrication of solids [11] from nanometric contacts [12]
to the lubrication of faults in geophysics [13].

In the present letter, we show that elastohydrodynamic
effects are to be taken into account to understand the flow
of confined liquids in nanometric confinement. More pre-
cisely, we show here that vanishingly small elastic deflec-
tions of the surfaces, of amplitude lower than the molecu-

lar size, have an effect on the apparent rheology of nano-
metric films. The long-range character of elastic interac-
tions does not allow to disentangle the confining bodies
bulk deformations from the nanometric confined liquid
flow.

We demonstrate quantitatively the effect of elastic cou-
plings in the specific geometry of an oscillating drainage
flow between a sphere and a plane, which is widely
used to study thin films flows in particular with Sur-
face forces apparatii (SFA) or Atomic force microscopes
(AFM). Our demonstration is based on an exact elasto-
hydrodynamic theory without ajustable parameters [14],
and well-controlled experiments using very rigid surfaces
(glass of Young modulus E = 64 GPa) and liquids of
rather low viscosity (between 0.02 to 0.1 Pa.s™!). We
show that liquids confined below a critical thickness D,
are clamped by their viscosity, while the surfaces accom-
modate for all the global displacements. We describe by
”elastic confinement” this state in which it is not possi-
ble to access the rheology of the liquid film. The critical
thickness for elastic confinement depends on the liquid
and solid modulii, the rate, geometry, and type of flow,
and can therefore widely vary for the same liquid. We
illustrate values of D. between 5 to 15 nm in our ex-
periments. Furthermore elastic effects lead to a spatial
heterogeneity of the flow pattern. This effect and the as-
sociated effective stiffness of the surfaces, depend on the
gap between the sphere and the plane, and cannot be cal-
ibrated out. We also show that even for film thicknesses
much larger than D., elastic effects cannot be neglected,
as surface indentations as small as a picometer have a
measurable impact on the apparent rheological proper-
ties of the liquid. Finally we extend qualitatively the
analysis of elastic effects to the case of flattened AFM
tips.

We study here the drainage flow of four different New-
tonian liquids with a dynamic surface force apparatus
(SFA) [15] used as a nano-rheometer (fig. 1). The SFA



FIG. 1: (a) Principle of hydrodynamic impedance measure-
ments: the relative distance D(t) = D + hocoswt between
a millimetric sphere of radius R and a plane is forced har-
monically and its d.c. and a.c. components are measured
with a capacitive sensor. The plane is mounted on a dou-
ble spring cantilever of stiffness k& and the dynamic force
F(t) = Focos(wt + ¢) is measured in amplitude and phase.
The hydrodynamic impedance Z*(w, D) is the linear force re-
sponse Fpe'®/hg. (b) Picture of the contact.

measures the relative distance D(t) between a sphere
and a plane, distance which is varied harmonically as
D(t) = D + hgcoswt in order to force an oscillatory
drainage flow. In all following experiments the frequency
is w/2m = 19 Hz. The amplitude hg of the harmonic dis-
placement is kept small (hg < 0.1D) in order to stay in
the linear response domain. The SFA also measures the
hydrodynamic impedance, defined as the complex force
response Z*(w,D) = Z' +iZ = F*(w)/ho associated
to the harmonic forcing, where Z’ and Z~ are respec-
tively the stiffness and the damping terms. In the case
of a Newtonian liquid of viscosity 79 confined between
two rigid surfaces with a no-slip boundary condition, the
hydrodynamic impedance is purely imaginary [16]:

2
2w, D) = i7" = ol (1)
D
This expression has been widely used to study the rhe-
ology of liquid films between various surfaces [1, 16-19]
and to test the boundary condition at the liquid-solid
interface [20].

The liquids studied are two non-polar liquids: silicon
oils 47V20 (M,, ~ 3000 g/mol, R, ~ 3 nm) and 47V100
(M, ~ 11000 g/mol, R, ~ 6 nm) purchased from Blues-
tar Silicones, and two polar liquids: glycerol-water mix-
tures made with analytical-grade glycerol (VWR analar,
normapur). The bulk viscosities of the liquids range from
20 to 100 mPa-s (tab. I). The confining solids are bulk
borosilicate glass (pyrex, Schott). A sphere is prepared
from a pyrex rod molten into a flame, washed in an ultra-
sonic bath with a detergent and ultra-clean water, and
rinsed with purified propanol. The planes are 1 cm x 1
cm plates of borosilicate glass (thickness 5 mm, Schott
Borofloat 33, Young modulus E = 64 GPa and Poisson
ratio ¥ = 0.2) washed in the same way. The peak-to-
peak roughness measured by atomic force microscopy is

0.5 nm over a 10 pm x 10 pum area. The experiments are
made at ambient temperature T = 25 F 1 °C.

In figure 2, the stiffness Z’ and the damping Z” ob-
tained with one of the glycerol-water mixtures are plot-
ted as a function of D. Essentially two regimes can be
observed. At large distances (D > 100 nm), the damp-
ing decays as 1/D, as expected for the lubricating flow
of a Newtonian liquid. This decay is in good agreement
with eq. (1) using the bulk viscosity of the mixture. But
a finite stiffness Z’ is measured at any distance. This
stiffness increases rapidly with the confinement. When
D < 2 nm, the stiffness becomes larger than the damp-
ing. This critical distance is the beginning of the second
regime, in which both the stiffness and the damping sat-
urate at a finite value.
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FIG. 2: Damping (red) and stiffness (blue) measured with the
water-glycerol mixture of viscosity 24.9 mPa.s, in linear scale
(a) and log-log scale (b). The frequency is w/27 = 19 Hz and
the radius of the sphere is R = 3.59 mm.

A similar behavior is observed with the four studied lig-
uids, which have quite different molecular properties and
molecular sizes. This suggests that the rheological fea-
tures plotted in fig. 2 may not be due to the liquid itself.
Indeed, eq. (1) assumes perfectly rigid surfaces, which
has no physical sense at small distances where the hy-
drodynamic force becomes very large. The drainage of a



Newtonian liquid between a sphere and a plane is known
to produce a pressure of the order of P ~ (3n9R/D?)D
extending over a distance v2RD from the sphere-plane
axis [1]. As aresult, one can expect an elastic deflection u
of the confining surfaces of the order of u/v2RD ~ P/E*
with E* = E/(1 — v?) the reduced Young’s modulus of
glass and v its Poisson ratio. The resulting deflection can
be estimated as:

wno\ [ R 3/2

UON2hO<E*) (D) 2)
where the factor 2 accounts for both surfaces. For the
system of figure 2, the order of magnitude of the deflec-
tion of the glass surface predicted by eq. (2) is of 16 pm
at D = 100 nm for hg = 2 nm, since the Young’s mod-
ulus of the borosilicate glass is high. This deflection in-
creases with the confinement, until it eventually reaches
the amplitude of the forced oscillation hg[14, 21]. This
transition is expected at a distance D, ~ R(wno/E*)?/3,
in the range of 5-15 nm for liquids of viscosity between 10
to 100 mPa.s. This is the typical distance where major
stiffness effects appear in fig. 2 and below which we can
speak about elastic confinement.

Fluid 47 V100 |47V20 Glycerol- |Glycerol-
water water
(a) (b)

o (mPa-s)[104.3 £ 3 [229+06 [249+1 |35
R (mm) |3.37-+0.04|3.28+0.03|3.2540.04|3.59 £ 0.04
D. (nm) |14 5.0 5.2 7.2

TABLE I: Experimental characteristics. The viscosity 1o is
obtained from the damping at large distance. R is the sphere
radius. D, is the cut-off distance defined in eq. (3), calculated
using the Young’s modulus £ = 64 GPa and the Poisson
ratio v = 0.2 of borosilicate glass (The Young’s modulus that
appear in eq. 3 has to be divided by 2 to take into account
the deformation of the sphere and the plane. All experiments
are performed at the frequency w/27 = 19 Hz.

As a consequence, we expect that at distances of the
order of D, the elastic deflection of glass reaches the
amplitude of the forced oscillation. How does this affect
the measured damping and stiffness 7 The full elasto-
hydrodynamic calculation of the oscillating drainage flow
in the linear response limit, yields to the expression [14]:

Z*(w, D)

_ 6mnowR? D w770>2/3
=7 p. 9\ D, -
(3)

where g, is a tabulated non-dimensional function not de-
pendent on the liquid or the solid (numerical values of
[14] are reported in the SI). In the limit « > 1, which is
equivalent to D > D, the asymptotic value of g; allows
to predict:

2 2 D 5/2 D
z*<w,p>=W<9” () 2w

Dc:8R(

D. 512\ D D

The scaling prediction for the measured stiffness, Z’ ~
D~%/2_is characteristic of the elastic deformation of the
two semi-infinite confining surfaces. It is indeed not pos-
sible to calibrate out this effect by assuming that the
surfaces are equivalent to an internal stiffness of con-
stant value k: the force response of a spring-and-dashpot
system of damping coefficient A is i w/(1 + idw/k) ~
idw + N2w?/k for large k. With A\ = 6mngR?/D for the
Newtonian flow, this would give a decay Z’/ ~ D2, dif-
ferent from the observed scaling. This is due to the fact
that the actual surface stiffness is indeed distance de-
pendant, and scales as the hydrodynamic radius v2RD
of the Newtonian drainage flow. Thus the flow and the
elastic effects are strongly coupled and cannot be simply
disentangled from each other.

10" [

E* ”

FIG. 3: Normalized impedance Z* = Z*(w, D) x D./6mnowR>
as a function of the normalized distance D/D.. Data obtained
with four different liquids are superimposed: two silicon oils,
47V20 and 47V100, and two water-glycerol mixtures of differ-
ent viscosities (see table I). D. is calculated in table I. The
continuous lines are the real and imaginary parts of the com-
plex master function g (x) (see SI). The different blue and red
points correspond to the four different liquids and can hardly
be distinguished.

The elasto-hydrodynamic theory also predicts that
Z* = Z*" for D = 0.28D.. Therefore, it is of inter-
est to plot the reduced hydrodynamic impedance Z*
Z*(w, D)D./6mnowR? obtained for the four tested lig-
uids, as a function of D/D.. For each liquid, the critical
distance D, is calculated using eq.(3) (see table I). The
result is in fig. 3. All reduced impedances follow the same
master curve, which is in quantitative agreement with the
predicted function gx(D/D.) [14] without any adjustable
parameter. This shows that the elastic deflection of glass
is entirely responsible for the apparent deviation of the
liquid response from the standard Newtonian behaviour.

In particular, the saturation of both the damping and
the stiffness at D < D, reflects the spatial segregation of
the flow. In a central region around the sphere-plane axis
where the liquid thickness is less than D., the surfaces



accomodate fully for the sphere displacement, and the
liquid merely transmits the pressure to the surfaces. The
usual lubrication flow occurs only in the outskirt of this
central region where the liquid thickness is larger than
D., and builds the pressure acting in the central region.
As a consequence, at distances smaller than D, the stiff-
ness and the damping only lightly reflect the intrinsic
properties of the confined liquids.
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FIG. 4: The inset sketches the plane deformation due to the
draining liquid. The same deformation occurs on the sphere
(not sketched). In green, the amplitude of the glass surfaces
indentation |uo| at the level of the sphere apex, calculated for
the experiment with the water-glycerol (b) mixture plotted in
fig. 2. In red, the corresponding amplitude |ho| of the forced
oscillation is plotted on the right axis.

We have calculated more precisely (see SI) the glass
surface deformation responsible for this apparent visco-
elastic behavior. In fig. 4, the calculated amplitude |ug|
of this deflection in the experiment presented in figure 2
is plotted as a function of the distance. The amplitude
of the forced oscillation hg is varied by steps from 0.1 nm
to 20 nm. Consequently, the calculated indentation |ug]
decreases by steps too, from 0.1 nm at D = 1 nm down
to 1 pm (107!2 m) at D = 1 ym. This is the order of
magnitude calculated previously. This extremely small
deflection corresponds to a relative change |ug|/ho lower
than 3.10~% in the liquid film thickness. It is remarkable
that such a small elastic deflection leads to a measurable
effect in the dynamic response of the system, with a finite
stiffness detected at distances larger than 100 nm.

In conclusion, these results demonstrate in the case of
a squeeze flow geometry, the strong influence of elastic
couplings on the dynamics of confined liquids. We have
defined a critical distance for elastic confinement, below
which the liquid is clamped by its viscosity and its in-
trinsic rheological behaviour cannot be disentangled from
the global system response. This does not mean that
these intrinsic properties have changed. For the four lig-
uids that we have studied, the global system response
is fully described down to the nanometer scale by an

exact elasto-hydrodnamic calculation without adjustable
parameters.

Our results also show that the critical distance for elas-
tic confinement depends strongly on the surfaces geom-
etry. Taking the example of AFM for instance, which
uses damping and stiffness measurements to characterize
thin liquid films as in the present work [2-6], one may
first estimate that for typical values of a probe radius
of 100 nm, liquid viscosity of 0.02 Pa.s (OMCTS), simi-
lar Young modulus as here and frequency of 1 kHz, the
value De = 2 pm given by eq. (3) predicts negligible elas-
tic effects. However, the actual shape of tips are seldom
measured and they tend to flatten on repeated contacts.
This is dramatic for expression (3), leading to an infinite
critical distance. Extending the dimensional analysis to
the (extreme) case of a flat disk of radius R instead of
a sphere, one has in this new geometry to balance the
viscous damping F, = 3mnowR*/2D? with the surface
stiffness 7 RE™, in order to find a new critical distance
D, fay = 8R(now/E*)1/3 = 1.2 nm, not negligible con-
sidering that elastic couplings have a measurable impact
above the critical distance.

Finally, elastic couplings have not often been taken
into account in the studies of confined fluids, except for
very soft surfaces such as tyres or bubbles [22, 23]. They
deserve to be considered more systematically and could
provide a thread to reconciliate apparently contradictory
observations [2-6, 24-26]. However they depend strongly
on the flow geometry and an adequate analysis remains to
be done in the case of shear flow, which has been used in
surface force balance studies. More generally they are of
interest to understand better the mechanical properties
of complex fluids and polymer matrix nano-composites,
in which usual effective medium approaches should be
modified when the distance between solid charges in less
than the critical distance for elastic confinement.
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