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 where a polynomial decay to equilibrium is proven. The basis of the proof is the study of the linearized equation for which we prove a new spectral gap estimate in a L 1 space with a polynomial weight by taking advantage of the theory of enlargement of the functional space for the semigroup decay developed by Gualdani et al. in [22]. We then get our final result by combining this new spectral gap estimate with bilinear estimates on the collisional operator that we establish.

1. Introduction 1.1. The model. In the present paper, we investigate the asymptotic behavior of solutions to the spatially homogeneous Boltzmann equation without angular cut-off, that is, for long-range interactions. Previous works have shown that these solutions converge towards the Maxwellian equilibrium with a polynomial rate when time goes to infinity. Here, we are interested in improving the rate of convergence and we show an exponential decay to equilibrium.

We consider particles described by their space homogeneous distribution density f = f (t, v). We hence study the so-called spatially homogeneous Boltzmann equation:

(1.1) ∂ t f (t, v) = Q(f, f )(t, v), v ∈ R 3 , t ≥ 0.
The Boltzmann collision operator is defined as

Q(g, f ) :=
The Boltzmann collision kernel B(vv * , σ) only depends on the relative velocity |vv * | and on the deviation angle θ through cos θ = κ, σ where κ = (vv * )/|vv * | and •, • is the usual scalar product in R 3 . By a symmetry argument, one can always reduce to the case where B(vv * , σ) is supported on κ, σ ≥ 0 i.e 0 ≤ θ ≤ π/2. So, without loss of generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the following conditions:

• it takes product form in its arguments as

(1.2) B(v -v * , σ) = Φ(|v -v * |) b(cos θ);
• the angular function b is locally smooth, and has a nonintegrable singularity for θ → 0, it satisfies for some c b > 0 and s ∈ (0, 1/2) (moderate angular singularity) Our main physical motivation comes from particles interacting according to a repulsive potential of the form (1.5) φ(r) = r -(p-1) , p ∈ (2, +∞).

The assumptions made on B throughout the paper include the case of potentials of the form (1.5) with p > 5. Indeed, for repulsive potentials of the form (1.5), the collision kernel cannot be computed explicitly but Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF] has shown that the collision kernel can be computed in terms of the interaction potential φ. More precisely, it satisfies the previous conditions (1.2), (1.3) and (1.4) in dimension 3 (see [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Cercignani | The mathematical theory of dilute gases[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF]) with s := 1 p-1 ∈ (0, 1) and γ := p-5 p-1 ∈ (-3, 1). One traditionally calls hard potentials the case p > 5 (for which 0 < γ < 1), Maxwell molecules the case p = 5 (for which γ = 0) and soft potentials the case 2 < p < 5 (for which -3 < γ < 0). We can hence deduce that our assumptions made on B include the case of hard potentials. The equation (1.1) preserves mass, momentum and energy. Indeed, at least formally, we have:

R 3 Q(f, f )(v) ϕ(v) dv = 0 for ϕ(v) = 1, v, |v| 2 ;
from which we deduce that a solution f t to the equation (1.1) is conservative, meaning that

(1.6) ∀ t ≥ 0, R 3 f (t, v) ϕ(v) dv = R 3 f 0 (v) ϕ(v) dv for ϕ(v) = 1, v, |v| 2 .
We introduce the entropy H(f ) = R 3 f log(f ) and the entropy production D(f ). Boltzmann's H theorem asserts that (1.7) d dt H(f ) = -D(f ) ≤ 0 and states that any equilibrium (i.e any distribution which maximizes the entropy) is a Maxwellian distribution µ ρ,u,T for some ρ > 0, u ∈ R 3 and T > 0:

µ f (v) = µ ρ,u,T (v) = ρ e -|v-u| 2 2T (2πT ) 3/2 ,
where ρ, u and T are the mass, momentum and temperature of the gas:

ρ := ρ f = R 3 f (v) dv, u := u f = 1 ρ R 3 f (v) v dv, T := T f = 1 3ρ R 3 f (v) |v -u| 2 dv.
Thanks to the conservation properties of the equation (1.6), the following equalities hold:

ρ f = ρ f 0 , u f = u f 0 , T f = T f 0 where f 0 is the initial datum.
Moreover, a solution f t of the Boltzmann equation is expected to converge towards the Maxwellian distribution µ ρ,u,T when t → +∞.

In this paper, we only consider the case of an initial datum satisfying

(1.8) ρ f 0 = 1, u f 0 = 0, T f 0 = 1,
one can always reduce to this situation (see [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF]). We then denote µ the Maxwellian with same mass, momentum and energy of f 0 :

µ(v) = (2π) -3/2 e -|v| 2 /2 .
1.2. Function spaces and notations. We introduce some notations about weighted L p spaces. For some given Borel weight function m ≥ 0 on R 3 , we define the Lebesgue weighted space L p (m), 1 ≤ p ≤ +∞, as the Lebesgue space associated to the norm

h L p (m) := h m L p .
We also define the weighted Sobolev space W s,p (m), s ∈ N, 1 ≤ p < +∞, as the Sobolev space associated to the norm

h W s,p (m) :=   |α|≤s ∂ α h p L p (m)   1/p .
Throughout this paper, we will use the same notation C for positive constants that may change from line to line. Moreover, the notation A ≈ B will mean that there exist two constants

C 1 , C 2 > 0 such that C 1 A ≤ B ≤ C 2 A.
1.3. Main results and known results.

1.3.1.

Convergence to equilibrium. We first state our main result on exponential convergence to equilibrium.

Theorem 1.1. Consider a collision kernel B satisfying conditions (1.2), (1.3), (1.4) and f 0 a nonnegative distribution with finite mass, energy and entropy:

f 0 ≥ 0, R 3 f 0 (v) (1 + |v| 2 ) dv < ∞, R 3 f 0 (v) log(f 0 (v)) dv < ∞
and satisfying (1.8). Then, if f t is a smooth solution (see Definition 1.2) to the equation (1.1) with initial datum f 0 , there exists a constant C > 0 such that

∀ t ≥ 0, f t -µ L 1 ≤ C e -λ t
where λ > 0 is defined in Theorem 1.4.

We improve a polynomial result of Villani [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF] and generalize to our context similar exponential results known for simplified models. Mouhot in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] proved such a result for the spatially homogeneous Boltzmann equation with hard potentials and Grad's cut-off. Carrapatoso in [START_REF] Carrapatoso | On the trend to equilibrium for the homogeneous landau equation with hard potentials[END_REF] recently proved exponential decay to equilibrium for the homogeneous Landau equation with hard potentials which is the grazing collisions limit of the model we study in the present paper. Let us also mention the paper of Gualdani et al. [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] where an exponential decay to equilibrium is proved for the inhomogeneous Boltzmann equation for hard spheres (see also [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF][START_REF] Mischler | Semigroup factorisation in banach spaces and kinetic hypoelliptic equations[END_REF] for related works).

It is a known fact that our equation (1.1) admits solutions which are conservative and satisfy some suitable properties of regularity, we will call them smooth solutions. We here precise the meaning of this term and give an overview of results on the Cauchy theory of our equation. Definition 1.2. Let f 0 be a nonnegative function defined on R 3 with finite mass, energy and entropy. We shall say that (t, v) → f (t, v) is a smooth solution to the equation (1.1) if the following conditions are fulfilled:

• f ≥ 0, f ∈ C(R + , L 1 ); • for any t ≥ 0, R 3 f (t, v) ϕ(v) dv = R 3 f 0 (v) ϕ(v) dv for ϕ(v) = 1, v, |v| 2 and R 3 f (t, v) log(f (t, v)) dv + t 0 D(f (s, •)) ds ≤ R 3 f 0 (v) log(f 0 (v)) dv ;
where D(f ) is the entropy production defined in (1.7); • for any ϕ ∈ C 1 (R + , D(R 3 )) and for any t ≥ 0,

R 3 f (t, v) ϕ(t, v) dv = R 3 f 0 (v) ϕ(0, v) dv + t 0 R 3 f (τ, v) ∂ t ϕ(τ, v) dv dτ + t 0 R 3 Q(f, f )(τ, v) ϕ(τ, v) dv dτ
where the last integral is define through the following formula

R 3 Q(f, f )(v) ϕ(v) dv = 1 4 R 3 ×R 3 ×S 2 B(v -v * , σ) [f ′ * f ′ -f * f ] (ϕ + ϕ * -ϕ ′ -ϕ ′ * ) dσ dv * dv;
• for any t 0 > 0 and for any ℓ ∈ R + , (1.9) sup

t≥t 0 f (t, •) L 1 ( v ℓ ) < ∞ ;
• for any t 0 > 0 and for any N , ℓ ∈ R + ,

(1.10) sup t≥t 0 f (t, •) H N ( v ℓ ) < ∞.
Such a solution is known to exist. The problem of existence of solutions was first studied by Arkeryd in [START_REF] Arkeryd | Intermolecular forces of infinite range and the Boltzmann equation[END_REF] where existence of solutions is proven for not too soft potentials, that is γ > -1 (Goudon [START_REF] Goudon | On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions[END_REF] and Villani [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF] then improved this result enlarging the class of γ considered). We mention that uniqueness of solution for hard potentials can be proved under some more restrictive conditions on the initial datum, see the paper of Desvillettes and Mouhot [START_REF] Desvillettes | Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions[END_REF] where f 0 is supposed to be regular (f 0 ∈ W 1,1 ( v 2 )) and the paper of Fournier and Mouhot [START_REF] Fournier | On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity[END_REF] where f 0 is supposed to be localized ( R 3 f 0 e a|v| γ dv < ∞ for some a > 0) for hard potentials.

Concerning the moment production property, it was discovered by Elmroth [START_REF] Elmroth | Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range[END_REF] and Desvillettes [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] and improved by Wennberg [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF], which justifies our point (1.9) in the definition of a smooth solution. We here point out the fact that this property is not anymore true for Maxwell molecules or soft potentials. As a consequence, our method, which relies partially on this property, works only for hard potentials.

Finally, we mention papers where regularization results are proven for "true" (that is non mollified) physical potentials: [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF] by Alexandre et al. and [13] by Chen and He where the initial datum is supposed to have finite energy and entropy, [START_REF] Bally | Regularization properties of the 2D homogeneous Boltzmann equation without cutoff[END_REF] by Bally and Fournier where only the 2D case is treated and [START_REF] Fournier | Finiteness of entropy for the homogeneous boltzmann equation with measure initial condition[END_REF] by Fournier under others conditions on the initial datum. Theorem 1.4 from [START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case[END_REF] explains our point (1.10).

We now recall previous results on convergence to equilibrium for solutions to equation (1.1). It was first studied by Carlen and Carvalho [START_REF] Carlen | Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation[END_REF][START_REF] Carlen | Entropy production estimates for Boltzmann equations with physically realistic collision kernels[END_REF] and then by Toscani and Villani [START_REF] Toscani | Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation[END_REF]. Up to now, the best rate of convergence in our case was obtained by Villani in [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF]: Theorem 1.3. Let us consider f t a smooth solution to (1.1) with an initial datum f 0 satisfying (1.8) with finite entropy. Then f t satisfies the following polynomial decay to equilibrium: for any t 0 > 0 and any ε > 0, there exists C t 0 ,ε > 0 such that

∀ t ≥ t 0 , f t -µ L 1 ≤ C t 0 ,ε t -1 ε .
This result comes from [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF]Theorem 4.1] which states that if f is a function which satisfies the following lowerbound (1.11) ∀ v ∈ R 3 , f (v) ≥ K 0 e -A 0 |v| q 0 with K 0 , A 0 > 0, q 0 ≥ 2 then for any ε > 0, there exists an explicit constant K ε > 0 such that

(1.12) D(f ) ≥ K ε H(f |µ) 1+ε .
It is a result from Mouhot [30, Theorem 1.2] that the lowerbound (1.11) holds for any smooth solution f t of our equation (1.1). Let us mention that lowerbounds of solutions were first studied by Carleman [START_REF] Carleman | Sur la théorie de l'équation intégrodifférentielle de Boltzmann[END_REF] (for hard spheres) and then by Pulvirenti and Wennberg [START_REF] Pulvirenti | A Maxwellian lower bound for solutions to the Boltzmann equation[END_REF] (for hard potentials with cut-off). Finally, Mouhot [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF] extended these results to the spatially inhomogeneous case without cut-off. We here state Theorem 1.2 from [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF] that we use: for any t 0 > 0 and for any exponent q 0 such that

q 0 > 2 log 2 + 2s 1-s log 2 , a smooth solution f t to (1.1) satisfies ∀ t ≥ t 0 , ∀ v ∈ R 3 , f (t, v) ≥ K 0 e -A 0 |v| q 0 for some K 0 , A 0 > 0.
We can then deduce that the conclusion of Theorem 1.3 holds using the Csiszár-Kullback-Pinsker inequality fµ L 1 ≤ 2H(f |µ) combined with the result of Villani (1.12).

Let us here emphasize that the method of Villani to prove the polynomial convergence towards equilibrium is purely nonlinear. Ours is based on the study of the linearized equation.

1.3.2. The linearized equation. We introduce the linearized operator. Considering the linearization f = µ + h, we obtain at first order the linearized equation around the equilibrium µ

(1.13) ∂ t h = Lh := Q(µ, h) + Q(h, µ), for h = h(t, v), v ∈ R 3 . The null space of the operator L is the 5-dimensional space (1.14) N (L) = Span µ, µ v 1 , µ v 2 , µ v 3 , µ |v| 2 .
Our strategy is to combine the polynomial convergence to equilibrium and a spectral gap estimate on the linearized operator to show that if the solution enters some stability neighborhood of the equilibrium, then the convergence is exponential in time. Previous results on spectral gap estimates hold only in L 2 (µ -1/2 ) and the Cauchy theory for the nonlinear Boltzmann equation is constructed in L 1 -spaces with polynomial weight. In order to link the linear and the nonlinear theories, our approach consists in proving new spectral gap estimates for the linearized operator L in spaces of type L 1 ( v k ). To do that, we exhibit a convenient splitting of the linearized operator in such a way that we may use the abstract theorem from [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] which allows us to enlarge the space of spectral estimates of a given operator.

Here is the result we obtain on the linearized equation which provides a constructive spectral gap estimate for L in L 1 ( v k ) and which is the cornerstone of the proof of Theorem 1.1.

Theorem 1.4. Let k > 2 and a collision kernel B satisfying (1.2), (1.3) and (1.4). Consider the linearized Boltzmann operator L defined in (1.13). Then for any positive λ < min(λ 0 , λ k ) (where λ 0 is the spectral gap of L in L 2 (µ -1/2 ) defined in Proposition 2.1 and λ k is a constant depending on k defined in Lemma 2.7), there exists an explicit constant C λ > 0, such that for any h ∈ L 1 ( v k ), we have the following estimate

(1.15) ∀ t ≥ 0, S L (t)h -Πh L 1 ( v k ) ≤ C λ e -λt h -Πh L 1 ( v k ) ,
where S L (t) denotes the semigroup of L and Π the projection onto N (L).

Let us briefly review the existing results concerning spectral gap estimates for L. Pao [START_REF] Pao | Boltzmann collision operator with inverse-power intermolecular potentials[END_REF] studied spectral properties of the linearized operator for hard potentials by nonconstructive and very technical means. This article was reviewed by Klaus [START_REF] Klaus | Boltzmann collision operator without cut-off[END_REF]. Then, Baranger and Mouhot gave the first explicit estimate on this spectral gap in [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF] for hard potentials (γ > 0). If we denote D the Dirichlet form associated to -L:

D(h) := R 3 (-Lh) h µ -1 ,
and N (L) ⊥ the orthogonal of N (L) defined in (1.14) and Π the projection onto N (L), the Dirichlet form D satisfies

(1.16) ∀ h ∈ N (L) ⊥ , D(h) ≥ λ 0 h 2 L 2 (µ -1/2 ) ,
for some constructive constant λ 0 > 0. This result was then improved by Mouhot [START_REF] Mouhot | Explicit coercivity estimates for the linearized Boltzmann and Landau operators[END_REF] and later by Mouhot and Strain [START_REF] Mouhot | Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff[END_REF]. In the last paper, it was conjectured that a spectral gap exists if and only if γ + 2s ≥ 0. This conjecture was finally proven by Gressman and Strain in [START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF].

Another question would be to obtain similar results in other spaces: L p spaces with 1 < p ≤ 2 and a polynomial weight or L p spaces with 1 ≤ p ≤ 2 and a stretched exponential weight. Our computations do not allow to conclude in those cases, more precisely, we are not able to do the computations which allow to obtain the suitable splitting of the linear operator in order to apply the theorem of enlargement of the space of spectral estimates. As a consequence, we can not prove the existence of a spectral gap on those spaces. However, we believe that such results may hold.

We here point out that the knowledge of a spectral gap estimate in L 1 ( v k ) for the fractional Fokker-Planck equation (see [START_REF] Tristani | Fractional fokker-planck equation[END_REF]) is consistent with our result. Indeed, the behavior of the Boltzmann collision operator has been widely conjectured to be that of a fractional diffusion (see [START_REF] Desvillettes | On asymptotics of the boltzmann equation when the collisions become grazing[END_REF][START_REF] Goudon | On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions[END_REF][START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF]).

The linearized equation

Here and below, we denote m(v) := v k with k > 2. The aim of the present section is to prove Theorem 1.4. To do that, we exhibit a splitting of the linearized operator into two parts, one which is bounded and the second one which is dissipative. We can then apply the abstract theorem of enlargement of the functional space of the semigroup decay from Gualdani et al. [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] (see Subsection 2.4).

2.1. Notations. We now introduce notations about spectral theory of unbounded operators. For a given real number a ∈ R, we define the half complex plane

∆ a := {z ∈ C, ℜe z > a} .
For some given Banach spaces (E, • E ) and (E, • E ), we denote by B(E, E) the space of bounded linear operators from E to E and we denote by • B(E,E) or • E→E the associated norm operator. We write B(E) = B(E, E) when E = E. We denote by C (E, E) the space of closed unbounded linear operators from E to E with dense domain, and

C (E) = C (E, E) in the case E = E.
For a Banach space X and Λ ∈ C (X) we denote by S Λ (t), t ≥ 0, its semigroup, by D(Λ) its domain, by N(Λ) its null space and by R(Λ) its range. We also denote by Σ(Λ) its spectrum, so that for any z belonging to the resolvent set ρ(Λ) := C\Σ(Λ) the operator Λz is invertible and the resolvent operator

R Λ (z) := (Λ -z) -1
is well-defined, belongs to B(X) and has range equal to D(Λ). An eigenvalue ξ ∈ Σ(Λ) is said to be isolated if Σ(Λ) ∩ {z ∈ C, |z -ξ| ≤ r} = {ξ} for some r > 0.

In the case when ξ is an isolated eigenvalue, we may define Π Λ,ξ ∈ B(X) the associated spectral projector by

Π Λ,ξ := - 1 2iπ |z-ξ|=r ′ R Λ (z) dz with 0 < r ′ < r.
Note that this definition is independent of the value of r ′ as the application

C \ Σ(Λ) → B(X), z → R Λ (z) is holomorphic.
For any ξ ∈ Σ(Λ) isolated, it is well-known (see [START_REF] Kato | Perturbation theory for linear operators[END_REF] paragraph III-6.19) that Π 2 Λ,ξ = Π Λ,ξ , so that Π Λ,ξ is indeed a projector. When moreover the so-called "algebraic eigenspace" R(Π Λ,ξ ) is finite dimensional we say that ξ is a discrete eigenvalue, written as ξ ∈ Σ d (Λ).

2.2. Spectral gap in L 2 (µ -1/2 ). We here state a direct consequence of inequality (1.16) from [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF], which gives us a spectral gap estimate in L 2 (µ -1/2 ). Proposition 2.1. There is a constructive constant λ 0 > 0 such that

∀ t ≥ 0, ∀ h ∈ L 2 (µ -1/2 ), S L (t)h -Πh L 2 (µ -1/2 ) ≤ e -λ 0 t h -Πh L 2 (µ -1/2 ) .
2.3. Splitting of the linearized operator. We first split the linearized operator L defined in (1.13) into two parts, separating the grazing collisions and the cut-off part, we define b δ := 1 θ≤δ b and b c δ := 1 θ≥δ b for some δ ∈ (0, 1) to be chosen later, it induces the following splitting of L:

Lh = L δ h + L c δ h =: R 3 ×S 2 µ ′ * h ′ -µ * h + h ′ * µ ′ -h * µ b δ (cos θ)|v -v * | γ dσ dv * + R 3 ×S 2 µ ′ * h ′ -µ * h + h ′ * µ ′ -h * µ b c δ (cos θ)|v -v * | γ dσ dv * .
In the rest of the paper, we shall use the notations

B δ (v -v * , σ) := b δ (cos θ) |v -v * | γ and B c δ (v -v * , σ) := b c δ (cos θ) |v -v * | γ .
As far as the cut-off part is concerned, our strategy is similar as the one adopted in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] for hard-spheres. For any ε ∈ (0, 1), we consider Θ ε ∈ C ∞ bounded by one, which equals one on

|v| ≤ ε -1 and 2ε ≤ |v -v * | ≤ ε -1 and | cos θ| ≤ 1 -2ε
and whose support is included in

|v| ≤ 2ε -1 and ε ≤ |v -v * | ≤ 2ε -1 and | cos θ| ≤ 1 -ε .
We then denote the truncated operator

A δ,ε (h) := R 3 ×S 2 Θ ε µ ′ * h ′ + µ ′ h ′ * -µ h * b c δ (cos θ)|v -v * | γ dσ dv *
and the corresponding remainder operator

B c δ,ε (h) := R 3 ×S 2 (1 -Θ ε ) µ ′ * h ′ + µ ′ h ′ * -µ h * b c δ (cos θ)|v -v * | γ dσ dv * .
We also introduce

ν δ (v) := R 3 ×S 2 µ * b c δ (cos θ)|v -v * | γ dσ dv * ,
so that we have the following splitting:

L c δ = A δ,ε + B c δ,ε -ν δ . Moreover, ν δ satisfies ν δ (v) = K δ (µ * | • | γ )(v)
with

K δ := S 2 b c δ (cos θ) dσ ≈ π/2 δ b(cos θ) sin θ dθ ≈ δ -2s - π 2 -2s
---→ δ→0 +∞ using the spherical coordinates to get the second equality and (1.3) to get the final one; and

(µ * | • | γ )(v) ≈ v γ .
We finally define

B δ,ε := L δ + B c δ,ε -ν δ so that L = A δ,ε + B δ,ε .

Dissipativity properties.

Lemma 2.2. There exists a function ϕ k (δ) depending on k and tending to 0 as δ tends to 0 such that for any h ∈ L 1 ( v γ m), the following estimate holds:

(2.1) R 3 L δ (h) sign(h) m dv ≤ ϕ k (δ) h L 1 ( v γ m) .
Proof. Let us first introduce a notation which is going to be useful in the sequel of the proof:

(2.2)

κ δ := π/2 0 b δ (cos θ) sin 2 (θ) dθ = δ 0 b(cos θ) sin 2 (θ) dθ ≈ δ 1-2s ---→ δ→0 0,
where the last equality comes from (1.3). We here underline the fact that considering a moderate singularity, meaning s ∈ (0, 1/2), is here needed to get the convergence of κ δ to 0 as δ goes to 0.

We split L δ into two parts in the following way:

L δ h = R 3 ×S 2 µ ′ * h ′ -µ * h b δ (cos θ)|v -v * | γ dσ dv * + R 3 ×S 2 h ′ * µ ′ -h * µ b δ (cos θ)|v -v * | γ dσ dv * =: L 1 δ h + L 2 δ h,
this splitting corresponds to the splitting of L δ as Q δ (µ, h) + Q δ (h, µ) if Q δ denotes the collisional operator associated to the kernel B δ .

We first deal with L 1 δ . Let us recall that we have µ µ * = µ ′ µ ′ * . In the following computation, we denote g := h µ -1 :

R 3 L 1 δ (h) sign(h) m dv = R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g ′ -g sign(g) m dσ dv * dv = R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g ′ -g sign(g) -sign(g ′ ) m dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g ′ -g sign(g ′ ) m dσ dv * dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g ′ -g sign(g ′ ) m dσ dv * dv,
where we used that for any a, b ∈ R, (a-b)(sign(a)-sign(b)) ≤ 0 to get the last inequality.

Remark 2.3. We here emphasize that this computation is particularly convenient in the L 1 case since sign(h) = sign(g). In the L p case, it is trickier and for now, we are not able to adapt it to get the wanted estimates.

We now use the classical pre-post collisional change of variables to pursue the computation:

R 3 L 1 δ (h) sign(h) m dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g -g ′ sign(g) m ′ dσ dv * dv = R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g -g ′ sign(g) (m ′ -m) dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g -g ′ sign(g) m dσ dv * dv. = R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g -g ′ sign(g) (m ′ -m) dσ dv * dv - R 3 L 1 δ (h) sign(h) m dv.
We hence deduce that

R 3 L 1 δ (h) sign(h) m dv ≤ 1 2 R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * g -g ′ sign(g) (m ′ -m) dσ dv * dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ µ * |g| |m ′ -m| dσ dv * dv = R 3 ×R 3 ×S 2 B δ (v -v * , σ) µ * |h| |m ′ -m| dσ dv * dv.
We now estimate the difference |m ′ -m|:

|m ′ -m| ≤ sup z∈B(v,|v ′ -v|) |∇m| (z) |v ′ -v|, with |v ′ -v| = |v -v * |/2 sin (θ/2) ≤ 1 2 √ 2 |v -v * | sin θ.
Then, we use the fact

sup z∈B(v,|v ′ -v|) |∇m| (z) ≤ k 2 k-1 v k-2 + v -v ′ k-1 ≤ k 2 2(k-1) v k-2 + v * k-1 , which implies that (2.3) |m ′ -m| ≤ C k |v -v * | sin θ v k-1 + v * k-1 ,
for some constant C k > 0 depending on k.

Remark 2.4. We here point out that this kind of estimate does not hold in the case of a stretched exponential weight. Indeed, taking the gradient of a stretched exponential function, there is not anymore a gain in the degree as in the case of a polynomial function.

We finally obtain (2.4)

R 3 L 1 δ (h) sign(h) m dv ≤ C k R 3 ×R 3 ×S 2 b δ (cos θ) sin θ µ * |v -v * | γ+1 v k-1 + v * k-1 |h| dσ dv * dv ≤ C k π/2 0 b δ (cos θ) sin 2 (θ) dθ 2π 0 dφ R 3 ×R 3 µ * |v -v * | γ+1 v k-1 + v * k-1 |h| dv * dv ≤ C k κ δ R 3 |h| v γ m dv,
where we used spherical coordinates to obtain the second inequality and (2.2) to obtain the last one.

We now deal with L 2 δ . We split it into two parts:

L 2 δ h = R 3 ×S 2 h ′ * µ ′ -h * µ b δ (cos θ)|v -v * | γ dσ dv * = R 3 ×S 2 B δ (v -v * , σ) h ′ * µ ′ -µ dσ dv * + R 3 ×S 2 B δ (v -v * , σ) h ′ * -h * dσ dv * µ =: L 2,1 δ h + L 2,2 δ h. Concerning L 2,2 δ , we use the cancellation lemma [1, Lemma 1]. It implies that L 2,2 δ h = (S δ * h) µ with S δ (z) = 2π π/2 0 sin θ b δ (cos θ) |z| γ cos γ+3 (θ/2) -|z| γ dθ = 2π |z| γ π/2 0 sin θ b δ (cos θ) 1 -cos γ+3 (θ/2) cos γ+3 (θ/2) dθ = 2π |z| γ δ 0 sin θ b(cos θ) 1 -cos γ+3 (θ/2) cos γ+3 (θ/2) dθ ≤ C |z| γ δ 0 sin θ b(cos θ) θ 2 dθ ≤ C δ 2-2s |z| γ ,
where the next-to-last inequality comes from the fact that 1-cos γ+3 (θ/2) cos γ+3 (θ/2) ∼ γ+3 2 θ 2 as θ goes to 0. We hence deduce that for any θ ∈ (0, δ), 1-cos γ+3 (θ/2) cos γ+3 (θ/2) ≤ C θ 2 for some C > 0; and the last inequality comes from (1.3). We deduce that (2.5)

R 3 L 2,2 δ (h) sign(h) m dv ≤ R 3 |S δ * h| m µ dv ≤ C δ 2-2s R 3 (| • | γ * |h|) µ m dv ≤ C δ 2-2s R 3 (| • | γ * µ m) |h| dv ≤ C δ 2-2s R 3 |h| v γ dv.
We now deal with L 2,1 δ . To do that, we introduce the notation M := √ µ and write that µ

′ -µ = (M ′ -M )(M ′ + M ), which implies R 3 L 2,1 δ (h) sign(h) m dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h ′ * | |M ′ -M | (M ′ + M ) m dσ dv * dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h ′ * | |M ′ -M | M ′ |m ′ -m| dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h ′ * | |M ′ -M | M ′ m ′ dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h ′ * | |M ′ -M | M m dσ dv * dv.
We now perform the pre-post collisional change of variables, which gives us:

R 3 L 2,1 δ h sign(h) m dv ≤ R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h * | |M ′ -M | M |m ′ -m| dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h * | |M ′ -M | M m dσ dv * dv + R 3 ×R 3 ×S 2 B δ (v -v * , σ) |h * | |M ′ -M | M ′ m ′ dσ dv * dv =: I 1 + I 2 + I 3 .
For the term I 1 , we use the fact that M is bounded and the estimate (2.3) on |m ′ -m|:

(2.6)

I 1 ≤ C k R 3 ×R 3 ×S 2 b δ (cos θ) sin θ |v -v * | γ+1 |h * | M v k-1 + v * k-1 dσ dv * dv ≤ C k κ δ R 3 |h| v γ m dv.
The term I 2 is treated using that M is Lipschitz continuous, we obtain:

(2.7)

I 2 ≤ C κ δ R 3 |h| v γ+1 dv.
To treat I 3 , we first estimate the integral

R 3 ×S 2 B δ (v -v * , σ) |M ′ -M | M ′ m ′ dσ dv =: J(v * ) = J.
Using the fact that M is Lipschitz continuous, we have

J ≤ C R 3 ×S 2 b δ (cos θ) sin(θ/2) |v -v * | γ+1 M ′ m ′ dσ dv.
Then, for each σ, with v * still fixed, we perform the change of variables v → v ′ . This change of variables is well-defined on the set {cos θ > 0}. Its Jacobian determinant is

dv ′ dv = 1 8 (1 + κ • σ) = (κ ′ • σ) 2 4 
,

where κ = (v -v * )/|v -v * | and κ ′ = (v ′ -v * )/|v ′ -v * |. We have κ ′ • σ = cos(θ/2) ≥ 1/ √ 2. The inverse transformation v ′ → ψ σ (v ′ ) = v is then defined accordingly. Using the fact that cos θ = κ • σ = 2(κ ′ • σ) 2 -1 and sin(θ/2) = 1 -cos 2 (θ/2) = 1 -(κ ′ • σ) 2 , we obtain J ≤ C R 3 ×S 2 b δ (2(κ ′ • σ) 2 -1) 1 -(κ ′ • σ) 2 |ψ σ (v ′ ) -v * | γ+1 M (v ′ ) m(v ′ ) dv dσ ≤ C κ ′ •σ≥1/ √ 2 b δ (2(κ ′ • σ) 2 -1) 1 -(κ ′ • σ) 2 |ψ σ (v ′ ) -v * | γ+1 M (v ′ )m(v ′ ) 1 (κ ′ • σ) 2 dv ′ dσ ≤ C κ•σ≥1/ √ 2 b δ (2(κ • σ) 2 -1) 1 -(κ • σ) 2 |ψ σ (v) -v * | γ+1 M (v) m(v) 1 (κ • σ) 2 dv dσ. We now use the fact that |ψ σ (v) -v * | = |v -v * |/(κ • σ). We deduce that J ≤ C κ•σ≥1/ √ 2 b δ (2(κ • σ) 2 -1) 1 -(κ • σ) 2 |v -v * | γ+1 M (v) m(v) 1 (κ • σ) γ+3 dv dσ ≤ C R 3 ×S 2 b δ (2(κ • σ) 2 -1) 1 -(κ • σ) 2 |v -v * | γ+1 M (v) m(v) dv dσ
where we used the fact that κ

• σ ≥ 1/ √ 2 to bound from above 1/(κ • σ) γ+3 . Using the equalities cos(2θ) = 2(κ • σ) 2 -1 and sin θ = 1 -(κ • σ) 2 ,
we obtain

J ≤ C R 3 ×S 2 b δ (cos(2θ)) sin θ |v -v * | γ+1 M m dv dσ ≤ C S 2 b δ (cos(2θ)) sin θ dσ R 3 v γ+1 M m dv v * γ+1 ≤ C κ δ v * γ+1 ,
Using this last estimate, we can conclude that (2.8)

I 3 ≤ C κ δ R 3 |h| v γ+1 dv.
Gathering estimates (2.4), (2.5), (2.6), (2.7) and (2.8), we can conclude that (2.1) holds.

We now want to deal with the part B c δ,εν δ . To do that, we shall review a classical tool in the Boltzmann theory, a version of the Povzner lemma (see [START_REF] Wennberg | The Povzner inequality and moments in the Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF][START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF]). The version stated here is a consequence of the proof of Lemma 2.2 from [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF].

Lemma 2.5. For any k > 2, ∀ v, v * ∈ R 3 , S 2 v ′ * k + v ′ k -v * k -v k b c δ (cos θ) dσ ≤ C k v * k-1 v + v k-1 v * -C ′ k |v| k
for some constants C k , C ′ k > 0 depending on k. Proof. If we adapt the proof of Lemma 2.2 from [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] taking ψ = • , we obtain

S 2 v ′ * k + v ′ k -v * k -v k b c δ (cos θ) dσ ≤ C k π/2 0 b c δ (cos θ) sin 2 (θ) dθ v * k-1 v + v k-1 v * -C ′ k,δ |v| k with C ′ k,δ ---→ δ→0
+∞ and C ′ k,δ ≥ C ′ k > 0 for any δ ∈ (0, 1). We then conclude using (1.3) which implies that

π/2 0 b c δ (cos θ) sin 2 (θ) dθ ≈ π 2 1-2s -δ 1-2s ≤ C
for any δ ∈ (0, 1).

We can now prove the following estimate on B c δ,εν δ .

Lemma 2.6. For any k > 2, for any ε ∈ (0, 1) and for δ ∈ (0, 1) small enough, we have the following estimate (2.9)

∀ h ∈ L 1 ( v γ m), R 3 B c δ,ε (h) sign(h) m dv- R 3 ν δ |h| m dv ≤ (Λ k,δ (ε) -λ k ) h L 1 ( v γ m)
where λ k > 0 is a constant depending on k and Λ k,δ (ε) is a constant depending on k and δ which tends to 0 as ε goes to 0 when k and δ are fixed.

Proof. We compute

B c δ,ε h L 1 (m) ≤ R 3 ×R 3 ×S 2 (1 -Θ ε ) B c δ (v -v * , σ) µ ′ * |h ′ | + µ ′ |h ′ * | + µ|h * | m dσ dv * dv.
We first bound from above the truncation function (1 -Θ ε ):

B c δ,ε h L 1 (m) ≤ {| cos θ|∈[1-ε,1]} B c δ (v -v * , σ) µ * |h| (m ′ + m ′ * + m * ) dσ dv * dv + {|v-v * |≤ε} B c δ (v -v * , σ) µ * |h| (m ′ + m ′ * + m * ) dσ dv * dv + {|v|≥ε -1 or |v-v * |≥ε -1 } B c δ (v -v * , σ) µ ′ * |h ′ | + µ ′ |h ′ * | + µ|h * | m dσ dv * dv,
where the pre-post collisional change of variables has been used in the two first terms. We obtain that B c δ,ε h L 1 (m) is bounded from above by (2.10)

C k {| cos θ|∈[1-ε,1]} 1 θ≥δ b(cos θ) dσ + K δ ε γ R 3 ×R 3 µ * v * γ+k |h| v γ+k dv * dv + R 3 ×R 3 ×S 2 χ ε -1 B c δ (v -v * , σ) µ ′ * |h ′ | + µ ′ |h ′ * | + µ|h * | m dσ dv * dv =: J 1 + J 2
where χ ε -1 is the characteristic function of the set

|v| 2 + |v * | 2 ≥ ε -1 or |v -v * | ≥ ε -1 .
The first term of the right hand side of (2.10) is easily controlled as

(2.11) J 1 ≤ C k C δ ε γ h L 1 ( v γ m) .
As far as the second term in (2.10) is concerned, we write

J 2 = R 3 ×R 3 ×S 2 χ ε -1 B c δ (v -v * , σ) µ ′ * |h ′ | + µ ′ |h ′ * | + µ|h * | m dσ dv * dv = R 3 ×R 3 ×S 2 χ ε -1 B c δ (v -v * , σ) µ ′ * |h ′ | + µ ′ |h ′ * | -µ * |h| -µ|h * | m dσ dv * dv + K δ R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ m dv * dv + 2 K δ R 3 ×R 3 χ ε -1 µ|h * | |v -v * | γ m dv * dv =: T 1 + T 2 + T 3 .
We notice that the characteristic function χ ε -1 is invariant under the usual pre-post collisional change of variables as it only depends on the kinetic energy and momentum. We hence bound the term T 1 thanks to Lemma 2.5:

T 1 ≤ R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ S 2 v ′ * k + v ′ k -v * k -v k b c δ (cos θ) dσ dv * dv ≤ C k R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ v k-1 v * + v v * k-1 dv * dv -C ′ k R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ |v| k dv * dv ≤ C k R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ v k-1 v * + v v * k-1 dv * dv + C ′ k R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ dv * dv -C ′ k 2 1-k/2 R 3 ×R 3 χ ε -1 µ * |h| |v -v * | γ v k dv * dv =: T 11 + T 12 + T 13 .
We treat together the terms T 11 , T 12 and T 3 using the following inequality:

χ ε -1 (v, v * ) ≤ 1 {|v|≥ε -1 /2} + 1 {|v * |≥ε -1 /2} ≤ 2 ε(|v| + |v * |).
We obtain:

(2.12)

T 11 + T 12 + T 3 ≤ ε C k R 3 ×R 3 (|v| + |v * |) µ * |h| |v -v * | γ v k-1 v * + v v * k-1 dv * dv + ε C ′ k R 3 ×R 3 (|v| + |v * |) µ * |h| |v -v * | γ dv * dv + ε K δ R 3 ×R 3 (|v| + |v * |) µ|h * | |v -v * | γ m dv * dv ≤ ε C k C δ h L 1 ( v γ m) .
Gathering (2.11) and (2.12), we conclude that (2.13)

J 1 + T 11 + T 12 + T 3 ≤ C k C δ (ε + ε γ ) h L 1 ( v γ m) =: Λ k,δ (ε) h L 1 ( v γ m) .
We now put together the terms T 13 , T 2 and the term coming from ν δ , their sum is bounded from above by

-K δ R 3 ×R 3 (1-χ ε -1 ) µ * |v-v * | γ |h| m dv * dv -C ′ k 2 1-k/2 R 3 ×R 3 χ ε -1 µ * |v-v * | γ |h| m dv * dv.
Since K δ → ∞ as δ → 0, we can take δ small enough so that K δ ≥ C ′ k 2 1-k/2 , we obtain the following bound:

(2.14) -C ′ k 2 1-k/2 R 3 (µ * | • | γ ) |h| m dv ≤ -λ k h L 1 ( v γ m) .
Combining the bounds obtained in (2.13) and (2.14), we can conclude that (2.9) holds, which concludes the proof.

We can now prove the dissipativity properties of B δ,ε = L δ + B c δ,εν δ . Lemma 2.7. Let us consider a ∈ (-λ k , 0) where λ k is defined in Lemma 2.6. For δ > 0 and ε > 0 small enough, B δ,εa is dissipative in L 1 (m), namely

∀ t ≥ 0, S B δ,ε (t) L 1 (m)→L 1 (m) ≤ e at .
Proof. Gathering results coming from lemmas 2.2 and 2.6, we obtain

R 3 B δ,ǫ (h) sign(h) m dv ≤ R 3 (ϕ k (δ) + Λ k,δ (ε) -λ k ) |h| v γ m dv
We first take δ small enough so that ϕ k (δ) ≤ (a + λ k )/2. We then chose ε small enough so that Λ k,δ (ε) ≤ (a + λ k )/2. With this choice of δ and ε, we have the following inequality:

ϕ k (δ) + Λ k,δ (ε) -λ k ≤ a.
It implies that

R 3 B δ,ǫ (h) sign(h) m dv ≤ a h L 1 ( v γ m) ,
which concludes the proof.

Regularization properties.

We first state a regularity estimate on the truncated operator A δ,ε which comes from [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF]Lemma 4.16].

Lemma 2.8. The operator A δ,ε maps L 1 ( v ) into L 2 functions with compact support. In particular, we can deduce that A δ,ε ∈ B L 2 µ -1/2 and A δ,ε ∈ B L 1 (m) .

We now study the regularization properties of T (t) := A δ,ε S B δ,ε (t).

Lemma 2.9. Consider a ∈ (-λ k , 0). For a choice of δ, ε such that the conclusion of Lemma 2.7 holds, there exists a constant C > 0 such that

T (t)h L 2 (µ -1/2 ) ≤ C e at h L 1 (m) .
Proof. We here use Lemma 2.8. We introduce a constant R > 0 such that for any h in L 1 ( v ), supp (Ah) ⊂ B(0, R). We then compute

T (t)h L 2 (µ -1/2 ) ≤ C B(0,R) (T (t)h) 2 dv 1/2 ≤ C S B δ,ε (t)h L 1 ( v ) ≤ C S B δ,ε (t)h L 1 (m) ≤ C e at h L 1 (m) ,
where the last inequality comes from Lemma 2.7.

2.4. Spectral gap in L 1 ( v k ).

The abstract theorem.

Let us now present an enlargement of the functional space of a quantitative spectral mapping theorem (in the sense of semigroup decay estimate).

The aim is to enlarge the space where the decay estimate on the semigroup holds. The version stated here comes from [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF]Theorem 2.13].

Theorem 2.10. Let E, E be two Banach spaces such that E ⊂ E with dense and continuous embedding, and consider L ∈ C (E), L ∈ C (E) with L |E = L and a ∈ R. We assume:

(1) L generates a semigroup S L (t) and

Σ(L) ∩ ∆ a = {ξ} ⊂ Σ d (L)
for some ξ ∈ C and La is dissipative on R (Id -Π L,ξ ). (2) There exist A, B ∈ C (E) such that L = A + B (with corresponding restrictions A and B on E) and a constant C a > 0 so that

(i) B -a is dissipative on E, (ii) A ∈ B(E) and A ∈ B(E), (iii) T (t) := AS B (t) satisfies ∀ t ≥ 0, T (t) B(E,E) ≤ C a e at .
Then the following estimate on the semigroup holds:

∀ a ′ > a, ∀ t ≥ 0, S L (t) -S L (t)Π L,ξ B(E) ≤ C a ′ e a ′ t
where C a ′ > 0 is an explicit constant depending on the constants from the assumptions. 2)-(iii) from Lemma 2.9. We can conclude that estimate (1.15) holds.

The nonlinear equation

We first establish bilinear estimates on the collisional operator and we then prove our main result: Theorem 1.1.

3.1. The bilinear estimates. Proposition 3.1. Let B satisfying (1.2), (1.3) and (1.4). Then

Q(h, h) L 1 (m) ≤ C h L 1 ( v γ m) h L 1 (m) + h L 1 ( v γ+1 ) h W 1,1 ( v γ+1 m)
for some C > 0.

Proof. We split Q(h, h) into two parts and we use the pre-post collisional change of variables for the second one, we obtain

Q(h, h) L 1 (m) = R 3 R 3 ×S 2 B(v -v * , σ) (h ′ * -h * )h + (h ′ -h)h ′ * dσ dv * m dv ≤ R 3 R 3 ×S 2 B(v -v * , σ) (h ′ * -h * ) dσ dv * |h| m dv + R 3 ×R 3 ×S 2 B(v -v * , σ) |h ′ -h| |h ′ * | m dσ dv * dv ≤ R 3 R 3 ×S 2 B(v -v * , σ) (h ′ * -h * ) dσ dv * |h| m dv + R 3 ×R 3 ×S 2 B(v -v * , σ) |h ′ -h| |h * | m ′ dσ dv * dv =: T 1 + T 2 .
We first deal with T 1 using the cancellation lemma [1, Lemma 1]:

T 1 = R 3 |S * h| |h| m dv with S(z) = 2π π/2 0 sin θ b(cos θ) |z| γ cos γ+3 (θ/2) -|z| γ dθ = 2π |z| γ π/2 0 sin θ b(cos θ) 1 -cos γ+3 (θ/2) cos γ+3 (θ/2) dθ ≤ C |z| γ .
We deduce that

(3.1) T 1 ≤ C h L 1 ( v γ ) h L 1 ( v γ m) .
We now treat the term T 2 which is splitted into two parts:

T 2 = R 3 ×R 3 ×S 2 B(v -v * , σ) |h ′ m ′ -hm ′ | |h * | dσ dv * dv ≤ R 3 ×R 3 ×S 2 B(v -v * , σ) |h ′ m ′ -hm| |h * | dσ dv * dv + R 3 ×R 3 ×S 2 B(v -v * , σ) |m ′ -m| |h| |h * | dσ dv * dv =: T 21 + T 22 .
Concerning T 21 , we have to estimate

R 3 ×S 2 b(cos θ) |v -v * | γ |h ′ m ′ -hm| dv dσ =: J(v * ) = J.
To do that, we use Taylor formula denoting v u := (1u)v + uv ′ for any u ∈ [0, 1], which allows us to estimate |h ′ m ′ -hm|:

|h ′ m ′ -hm| = 1 0 ∇(hm)(v u ) • (v -v ′ ) du ≤ 1 0 |∇(hm)(v u )| |v -v * | sin(θ/2) du.
It implies the following inequality on J:

J ≤ C R 3 ×S 2 ×[0,1] b(cos θ) sin(θ) |v -v * | γ+1 |∇(hm)(v u )| du dσ dv.
Moreover, if v = v * , we have the following equality:

|v -v * | = 1 1 -u 2 κ + u 2 σ |v u -v * |.
Using the fact that 0 ≤ κ, σ ≤ 1, one can show that for any u ∈ [0, 1],

1 - u 2 κ + u 2 σ ≥ 1 √ 2 .
We can thus deduce that for any u ∈

[0, 1], we have |v -v * | ≤ C|v u -v * | for some C > 0, which implies J ≤ C R 3 ×S 2 ×[0,1] b(cos θ) sin(θ) |v u -v * | γ+1 |∇(hm)(v u )| du dσ dv.
For u, v * and σ fixed, we now perform the change of variables v → v u . Its Jacobian determinant is

dv u dv = 1 - u 2 2 1 - u 2 + u 2 κ, σ ≥ 1 - u 2 3 ≥ 1 8
since κ, σ ≥ 0. Gathering all the previous estimates, we obtain

J ≤ C S 2 b(cos θ) sin(θ) dσ R 3 |v -v * | γ+1 |∇(hm)(v)| dv.
We thus obtain :

(3.2) T 21 ≤ C h L 1 ( v γ+1 ) h W 1,1 ( v γ+1 m) .
Let us finally deal with T 22 . We here use the inequality (2.3):

(3.3)

T 22 ≤ C R 3 ×R 3 ×S 2 B(v -v * , σ) |h| |h * | v k-1 + v * k-1 |v ′ -v| dσ dv * dv ≤ C S 2
b(cos θ) sin(θ) dσ

R 3 ×R 3 |h| |h * | v k-1 + v * k-1 |v -v * | γ+1 dv * dv ≤ C h L 1 ( v γ m) h L 1 ( v γ+1 ) .
Inequalities (3.1), (3.2) and (3.3) together yields the result.

We now recall a classical result from interpolation theory (see for example Lemma B.1 from [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF]). Lemma 3.2. For any s, s * , q, q * ∈ Z with s ≥ s * , q ≥ q * and any θ ∈ (0, 1), there exists C > 0 such that for any h ∈ W s * * ,1 ( v q * * ), we have h W s,1 ( v q ) ≤ C h 1-θ W s * ,1 ( v q * ) h θ W s * * ,1 ( v q * * ) with s * * , q * * ∈ Z such that s = (1θ)s * + θs * * and q = (1θ)q * + θq * * .

It allows us to prove the following corollary which is going to be useful in the proof of our main theorem. Corollary 3.3. Let B satisfying (1.2), (1.3) and (1.4). Then

Q(h, h) L 1 (m) ≤ C h 3/2 L 1 (m) h 1/2 L 1 ( v 2γ m) + h 3/2 L 1 (m) h 1/2 H 4 ( v 4γ+k+6 ) .
Proof. On the one hand, using Lemma 3.2, we obtain:

h L 1 ( v γ m) ≤ h 1/2 L 1 ( v 2γ m) h 1/2 L 1 (m) .
On the other hand, again using twice Lemma 3.2, we obtain

h L 1 ( v γ+1 ) h W 1,1 ( v γ+1 m) ≤ h 2 W 1,1 ( v γ+k+1 ) ≤ C h L 1 (m) h W 2,1 ( v 2γ+k+2 ) ≤ C h 3/2 L 1 (m) h 1/2 W 4,1 ( v 4γ+k+4 ) .
To conclude we use that for any q ∈ N, we can show using Hölder inequality that

h L 1 ( v q ) ≤ C h L 2 ( v q+2 ) .
3.2. Proof of Theorem 1.1. Let f 0 = µ + h 0 and consider the equation (3.4) ∂ t h t = Lh t + Q(h t , h t ), h(t = 0) = h 0 .

Let us notice that for any t ≥ 0, we have Π h t = 0. Indeed, f 0 has same mass, momentum and energy as µ, it implies that Π h 0 = 0 and these quantities are conserved by the equation.

We now state a nonlinear stability theorem which is the third key point (with Theorems 1.3 and 1.4) in the proof of Theorem 1.1. Theorem 3.4. Consider a solution h t to (3.4) for any positive λ < min(λ 0 , λ k ) (see Theorem 1.4).

Proof. We use Duhamel's formula for the solution of (3.4): We denote η ′ := C K 1/2 η 1/4 + η 3/4 . We end up with a similar differential inequality as in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]Lemma 4.5]. We can then conclude in the same way that

h t =
∀ t ≥ 0, h t L 1 (m) ≤ C ′ e -λt h 0 L 1 (m) ,
for some C ′ > 0.

To conclude the proof of Theorem 1.1, we consider η > 0 defined in Theorem 3.4. Using Theorem 1.3, we can choose t 1 > 0 such that

∀ t ≥ t 1 , h t L 1 (m) = f t -µ L 1 (m) ≤ η.
Thanks to the properties of a smooth solution, we also have

∀ t ≥ t 1 , h t H 4 ( v 4γ+k+6 ) ≤ f t H 4 ( v 4γ+k+6 ) + µ H 4 ( v 4γ+k+6 ) ≤ K
for some K > 0. We can hence apply Theorem 3.4 to h t starting from t 1 . We finally obtain ∀ t ≥ t 1 , f tµ L 1 (m) ≤ C ′ e -λt h t 1 L 1 (m) ≤ C ′′ e -λt , for some C ′′ > 0. The conclusion of Theorem 1.1 is hence established.

( 1 . 3 )

 13 ∀ θ ∈ (0, π/2], c b θ 1+2s ≤ sin θ b(cos θ) ≤ 1 c b θ 1+2s ; • the kinetic factor Φ satisfies (1.4) Φ(|vv * |) = |vv * | γ with γ ∈ (0, 1),this assumption could be relaxed to assuming only that Φ satisfies Φ(•) = C Φ | • | γ for some C Φ > 0.

h s 5 / 4 L 1 0 e 1 / 4 + η 3 /4 h s 5 / 4 L 1

 5410143541 (m) ds ≤ e -λt h 0 L 1 (m) + C t -λ(t-s) K 1/2 η (m) ds.

  such that∀ t ≥ 0, h t H 4 ( v 4γ+k+6 ) ≤ Kfor some K > 0. There exists η > 0 such that if moreover∀ t ≥ 0, h t L 1 ( v 2γ m) ≤ ηthen there exists C > 0 (depending on K and η) such that

∀ t ≥ 0, h t L 1 (m) ≤ C e -λt h 0 L 1 (m)

  S L (t) h 0 + t 0 S L (ts) Q(h s , h s ) ds.We now estimate h t L 1 (m) thanks to Theorem 1.4 and Corollary 3.3:h t L 1 (m) ≤ e -λt h 0 L 1 (m)

	+ C	0	t	e -λ(t-s) h s	1/4 L 1 (m) h s	1/2 H 4 ( v 4γ+k+6 ) + h s	3/4 L 1 ( v 2γ m)
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